This paper presents the object model and the language of domain-specific transition systems, a new formalism designed for specification and approbation of formal methods which ensure software reliability.
Many variants of the communication sliding window
protocol were specified and verified using various techniques like
theorem proving, model checking and their combinations. In this
paper we consider a specification of the Sliding window protocol
as a multi-agent affine model. Temporal and epistemic properties
of the protocol are expressed in Logic of Knowledge and Time.
This paper presents the approach to creation of computational platforms in the basics of UGENE Workflow Designer. This platform is based on the internal programming language. It demonstrates a method of keeping the system consistent and handy to maintain and develop if you follow the concepts of the platform internal model and the concepts of the programming language syntax.
UGENE Workflow Designer is designed to solve the bioinformatics tasks; and the UWL language is the DSL of bioinformatics. The paper describes the feature of how to reuse the basics of the platform in some other application areas.
, full_html
Maximal employment of formal and sound methods is one of the distinctive features of C-light project. This concerns not only the fundamental verification bases, like Plotkin's operational semantics or Hoare's logics, but also implementation aspects. The localization of possible errors is one of them. In the majority of known verification systems such localization is simply coded by developers as a part of system functionality without any formal basis for it. The recent reinforcement of the C-light project by the semantical labeling technique and the choice of LLVM/Clang for the system input block allowed us to obtain some new results, which are surveyed in this paper.
The article presents a strip-method of linear pre-distortion of signals and images using multiple types of transformation matrices. Matrices that are good enough to minimize the amplitude of the noise were determined. The dependence of the quality of data recovery on the location and size of the noise were investigated. Also we found the possibility of using the strip-method in combination with image compression and developed an algorithm that implements this approach.
The authors discuss an intelligent access to information resources. An analysis of information systems which support textual or ontology-based data representation is provided. The authors propose an approach to develop an information system that would support both of the aforementioned ways to represent knowledge. A possible architecture and database schema for such a system are described.