Memory model describes the memory consistency requirements in a multithreading system. Compiler optimizations may violate the consistency requirements due to bugs, and the program behavior will differ from the required one. The bugs in compiler optimizations, like incorrect instruction reordering, are very difficult to detect, because they may occur with a very low chance in real execution on a hardware. There are different approaches of formal verification for memory consistency requirements, but the challenge is that the approaches are not scalable for industrial software. In the paper we present the MCC tool that was evaluated on the industrial virtual machine ARK VM and was able to find a real bug in a compiler optimization. The MCC is a static tool, which allows to check all possible executions of a particular test, not relying on a hardware execution. The approach also includes test suite generation and specification of memory consistency properties.
Process-oriented programming is a promising approach to the development of control software. Control software often has high reliability requirements. Formal verification methods, in particular deductive verification, are used to prove the correctness of such programs regarding the requirements. Previously, a temporal requirements language was developed to specify temporal requirements for deductive verification of process-oriented programs. It was also shown that a significant part of the requirements falls into a small number of classes. Requirements patterns was developed for these classes. In this paper, we present a collection of process-oriented programs and requirements for them. Requirements are formalized in the temporal requirements language and classified according the set of patterns. We also define a new requirement pattern. These results can be used in the research of formal verification methods for process-oriented programs, in particular in the research of methods of proving verification conditions.
The process-oriented programming is a paradigm based on the process concept where each process is a concurrent finite state machine inside. The paradigm is intended for PLC (programmable logic controllers) developers to write Industry 4.0-enabled software.
The poST language is a promising process-oriented extension of the IEC 61131-3 Structured Text (ST) language designed to provide a conceptual consistency of the PLC source code with technological description of the process under control. This language combines the advantages of FSM-based programming with the standard syntax of the ST language. We propose transformational semantics of poST providing rules for translation of poST language statements to Promela -- the input language of the SPIN model checker. Following these semantic rules, our Xtext-based translator outputs a Promela model for the poST program.
Our contribution is a method for automatic generation of the Promela code from poST control programs. The resulting Promela program is ready to be verified with SPIN model checker against linear temporal logic requirements to the source poST program.
SSA (static single-assignment) form is an intermediate representation for compiling imperative programs where every variable is assigned to only once. Properly defined, SSA form gives rise to the family of purely syntactic categories with some nice properties. We hope this lays out the groundwork for categorical approach to compiler optimization.
Generative artificial intelligence systems should be carefully tested because they can generate low-quality content, but the testing challenges the test oracle problem. Metamorphic testing helps to test programs without test oracles. In this study, we consider an AI system that generates personalized stickers. Personalized sticker is a thematic picture with a person's face, some decorative elements and phrases. This system is stochastic, complex and consists of many parts. We formulate requirements for the whole system and check them with metamorphic relations. The requirements focus on dependency on input images quality and resulting quality of generated stickers. Our testing methodology helps us to identify major issues in the system under test.
This paper presents the work in progress implementation of the language server for the Rzk proof assistant. It analyzes relevant technologies related to Language Server Protocol, VS Code extensions, and theorem provers, and builds on top of them for Rzk’s language support.