
System Informatics (Системная информатика), No. 22 (2023) 31

UDK 004.4’418

SSA Algebras

Sokolov P.P. (Higher School of Economics)

SSA (static single-assignment) form is an intermediate representation for compiling

imperative programs where every variable is assigned to only once. Properly defined, SSA

form gives rise to the family of purely syntactic categories with some nice properties. We

hope this lays out the groundwork for categorical approach to compiler optimization.

Keywords: formalisms for program semantics, category theory, program synthesis and

transformation

1. Introduction

In compilers of imperative languages, a program is usually represented as a control flow

graph (CFG) where every block is a sequence of assignments and, notably, reassignments. SSA

(static single-assignment) is a special form of CFG where every variable is assigned to exactly

once. SSA form is useful because it opens up many possibilities for optimization of programs:

pruning, constant folding, register allocation, language-dependent optimizations etc.

Here we argue that it is also a suitable basis for a categorical framework to judge about

compiler optimizations, too. First, we define a base category SSA; then we try to define a

product in SSA and arrive at an important equivalence relation for programs. Finally, we

provide categorical definitions of optimization and compilation. Main results are presented

as theorems in bold.

2. Related work

SSA is a hot and thoroughly studied research topic; while there already is a comprehensive

book on SSA-based compiler design [1], new papers keep coming out [2, 3]. This paper, however,

is not in the tradition of previous SSA works because we focus on the formal, mathematical,

categorical side of things.

Applying category theory to programming languages has a long history; it is extensively used

to model execution of programs either inside Kleisli category [4] or via Curry-Howard-Lambek

correspondence [5]. Unfortunately, it is impossible to express the notion of optimization in these

categories; our approach allows one to judge about optimization inside a categorical

framework.

32 Sokolov P.P. SSA Algebras

3. The categories of SSA programs

For the language of expressions of an SSA program, let us use the set of expressions E = Σ[N]

in arbitrary algebraic signature Σ where variables are taken from the set of natural numbers

starting from 0. The following definition is useful:

Definition 1. An expression e ∈ E is said to be bound by n iff n ∈ N and, for all variables

x ∈ N mentioned in e, x < n.

Now, we consider SSA programs to be a sequence of assignments where, for new binding

xi, one can refer to one of m inputs and to one of i previous assignments using variables

{0, . . . ,m− 1} and {m, . . . ,m+ i− 1}, respectively.

Definition 2. Let Pm→n ⊆ E∗ ×Nn be the set of valid SSA programs for language Σ with m

inputs and n outputs, that is, a set of pairs (O,R) where, for every r ∈ R, r < m + |O| and,

for every i < |O|, Oi is bound by m+ i.

Lists of operations O can be concatenated as lists with (++); same goes for output tuples

R. To turn concatenated lists back into valid programs, we use substitution which is applied to

natural numbers and substitutes them according to the first matching predicate. An example

of how substitution works on an expression in the language with binary (+):

(x1 + x3 + x0)[i < 2 7→ i+ 1 || i 7→ i− 1] = x2 + x2 + x1

Notable examples of SSA programs include:

Definition 3. For every natural n, there is the identity SSA program with no operations:

idn = (ε, (0, . . . , n− 1)) ∈ Pn→n

Definition 4. For every permutation σ ∈ Sn, there is an SSA program which reorders the

inputs according to σ:

pσ = (ε, (σ0, . . . , σn−1)) ∈ Pn→n

Definition 5. Given SSA programs f : Pm→n and g : Pk→m, composition f ◦ g : Pk→n is a

program which feeds outputs of g into f , that is,

Of◦g = Og ++Of [i < m 7→ Rg
i || i 7→ i−m+ k + |Og|] (1)

Rf◦g = Rf [i < m 7→ Rg
i || i 7→ i−m+ k + |Og|] (2)

System Informatics (Системная информатика), No. 22 (2023) 33

Our first main result is that this turns out to be a category:

Theorem 1. There is a category SSA(Σ) of SSA programs in language Σ with Ob = N and

Hom(m,n) = Pm→n.

The proof goes as follows: id and f ◦ g are given above. Their properties are proven by

obvious induction on the lengths of programs.

Now, the problem with this category is that SSA programs might contain expressions they

never even reuse. It might be useful if the compiled language has side-effects; but we can

model effectful programs by threading some extra variables through IO operations, as is done

in languages with linear typing like Clean [6]. To get rid of truly unused expressions, we

(informally) define

Definition 6. Let prune : Pm→n → Pm→n be a function which, for every SSA program,

removes operations not reachable from the output and patches indices accordingly.

Statement 1. There is a category PrunedSSA of pruned SSA programs with Hom(m,n) =

{prune(p) | p ∈ Pm→n}.

The proof goes as follows: let id(n) = idSSA(n) and f ◦ g = prune(f ◦SSA g). The following

are obvious:

prune(idSSA(n)) = idSSA(n); (3)

prune(f ◦ prune(g ◦ h)) = prune(f ◦ g ◦ h) = prune(prune(f ◦ g) ◦ h). (4)

Statement 2. In PrunedSSA, 0 is a terminal object with ! = (ε, ()).

To get into products, we first have to define another operation on programs.

Definition 7. Given SSA programs f : k → m and g : k → n, their parallel composition

f |g : k → (m+ n) is a program which computes both f and g from the same inputs, that is,

Of |g = Of ++Og[i < k 7→ i || i 7→ i+ |Of |] (5)

Rf |g = Rf ++Rg[i < k 7→ i || i 7→ i+ |Of |] (6)

Statement 3. In PrunedSSA, for every f : k → m and g : k → n, f |g commutes with f , g,

π1 = (ε, (0, . . . ,m− 1)) and π2 = (ε, (m, . . . ,m+ n− 1)) as a product.

34 Sokolov P.P. SSA Algebras

Note that f |g is not unique as a product arrow: operations from both f and g can be freely

intertwined and the result would still satisfy the product property. Furthermore, both f and g

might contain the same expressions which can be reused in a product arrow, which, actually, is a

well-known CSE (common subexpression elimination) problem [7]. Finally, composing effectful

programs like this is slightly wrong. The following equivalence helps with the first problem:

Definition 8. Two SSA programs p, q : Pm→n are called equivalent (or p ∼ q) iff l = |Op| =

|Oq| and there exists a permutation σ ∈ Sl such that the following holds:

Op
j = Oq

σ(j)[i < m 7→ i || i 7→ σ(i−m) +m] (7)

Rp = (σ(Rq
1), . . . , σ(R

q
n)) (8)

Theorem 2. p ∼ q is an equivalence relation; f ◦ g and f |g respect it.

The proof goes as follows: equivalence follows from properties of permutations; respect of

f ◦ g and f |g can be proven by taking permutations that act on parts of f ◦ g and f |g.

4. Optimization, compilation and semantic functors

In this framework, optimization and compilation procedures become functors of SSA which

act on morphisms in the semantic-preserving way. Reserving study of semantics of effectful

programs for further work, here we outline the definitions and properties of such functors via

semantic functors:

Definition 9. Given a structure S of signature Σ, semantic category Sem(S) is a category

with Ob = N and Hom(m,n) = (Sm → S)n.

Definition 10. A semantic functor FS : SSA(Σ) → Sem(S) is a functor with FS(n) = n

which interprets SSA programs as functions on vectors over S.

In terms of semantic functors, optimization and compilation can be defined like this:

Definition 11. An endofunctor Q : SSA(Σ) → SSA(Σ) is an optimization with respect to S

iff FS ◦Q ≃ FS.

Definition 12. Given a functor G : Sem(S) → Sem(T), where S is a structure of Σ and

T is a structure of Ξ, a functor C : SSA(Σ) → SSA(Ξ) is a compilation with respect to G iff

FT ◦ C ≃ G ◦ FS.

System Informatics (Системная информатика), No. 22 (2023) 35

Note that, in the case of compilation, G (and, consequently, C) might not keep the objects

(sizes of inputs/outputs) intact. This is reserved for the case where a single s ∈ S is represented

by a vector of values from T .

Study of the properties of optimization and compilation functors is reserved for further work.

References

1. Rastello F. SSA-Based Compiler Design. Springer Publishing Company, Incorporated, 2016.

2. Buchwald S., Lohner D., Ullrich S. Verified Construction of Static Single Assignment Form //

Proceedings of the 25th International Conference on Compiler Construction. Barcelona, Spain,

2016. P. 67–76.

3. Bhat S., Grosser T. Lambda the Ultimate SSA: Optimizing Functional Programs in SSA. [2022].

URL: https://arxiv.org/abs/2201.07272 (access date: 28.10.2023).

4. Moggi E. Notions of computation and monads // Information and Computation. 1991. Vol. 93, №

1. P. 55–92.

5. Lambek J., Scott P.J. Introduction to higher-order categorical logic. Cambridge University Press,

1988.

6. Plasmeijer R., Eekelen M. Keep It Clean: A Unique Approach to Functional Programming //

SIGPLAN Not. New York, NY, USA: Association for Computing Machinery, June 1999. Vol. 34,

№ 6. P. 23–31.

7. Muchnick S. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997. P. 378–396

36 Sokolov P.P. SSA Algebras

