
System Informatics (Системная информатика), No. 22 (2023) 21

UDK 004.4’42

Model Checking Programs in

Process-Oriented IEC 61131-3 Structured Text

Garanina N.O. (Institute of Automation and Electrometry SB RAS)

Staroletov S.M. (Institute of Automation and Electrometry SB RAS)

Zyubin V.E. (Institute of Automation and Electrometry SB RAS)

Anureev I.S. (Institute of Automation and Electrometry SB RAS)

The process-oriented programming is a paradigm based on the process concept where

each process is a concurrent finite state machine inside. The paradigm is intended for PLC

(programmable logic controllers) developers to write Industry 4.0-enabled software. The

poST language is a promising process-oriented extension of the IEC 61131-3 Structured

Text (ST) language designed to provide a conceptual consistency of the PLC source code

with technological description of the process under control. This language combines the

advantages of FSM-based programming with the standard syntax of the ST language.

We propose transformational semantics of poST providing rules for translation of poST

language statements to Promela – the input language of the SPIN model checker. Following

these semantic rules, our Xtext-based translator outputs a Promela model for the poST

program. Our contribution is a method for automatic generation of the Promela code from

poST control programs. The resulting Promela program is ready to be verified with SPIN

model checker against linear temporal logic requirements to the source poST program.

Keywords: control software, model checking, process-oriented programming, LTL,

SPIN, Structured Text

1. Introduction

With the significant progress in formal methods for proving program models, the question

of their applicability to real software remains. It can be stated that the application of such

methods to general programs does not seem appropriate due to the laboriousness of translating

language constructs with ambiguous semantics, a large state space, and the uncertainty or

inexpressibility of requirements.

In the field of control software, the situation is twofold: on the one hand, the cost of an

error is high, and control programs need formalization and proving correctness with respect

to formalized requirements, on the other hand, programs for PLC (Programmable Logic Con-

22 Garanina N.O. et al. Model Checking Process-Oriented IEC 61131-3 Structured Text Programs

trollers) designed to implement industrial process control algorithms are concise, the languages

themselves contain a small number of constructions, the requirements are expressible as there

are few key control variables. These features of PLC languages makes applicability of formal

methods more promising.

Currently, the languages of the IEC 61131-3 standard [11] are used for programmable indus-

trial controllers. They differ in program representation: in text, ladder diagrams, function block

diagrams and instruction lists. In this work, we focus on a textual representation in Structured

Text (ST) language. This language is Pascal-like and has a simple syntax with some features

(e.g. timers, intervals) specific to PLC programs [10, 11]. However, most control programs are

cyclical and state dependent, resulting in a large number of switch statements.

Exploiting this feature and presenting developers with convenient means of operating with

states and transitions, we introduce the concept of process as the main logical entity of the pro-

gram. We call programming according to this methodology process-oriented, and the language

that adds such syntactic sugar is called process-oriented programming language. Note, that

it is reasonable to extend standardized ST language, since the development, simulation and

firmware creation environments for real controllers are already adapted for this language. The

poST (process-oriented Structured Text) language is one of such extensions, which is compiled

into the ST language. The source-to-source compiling is also called transpiling, and nowadays

it is a convenient means to switch between various languages [8].

The use of formal verification methods for PLC programs is justified primarily by the fact

that such programs can work with expensive equipment of some plant and the incorrect behavior

of the program can lead to both financial losses and serious consequences for the environment

and plant personnel. Therefore, it is necessary to provide as many means as possible for static

checks of such programs in the early stages of their production.

In this paper, we present an automatic translation of poST programs into programs in the

input language of a program verifier which use the model checking method. A review of the

practices of applying the model checking for such systems is presented in the paper [9].

In our series of previous works, we used the SPIN verification tool [7] coming with the

Promela input language (Protocol Meta-Language), which corresponds to the CSP approach

[6], that is, it has the ability to describe systems as interacting processes. This is close to

process-oriented, but not quite the same: the language does not work with process states by

language means, although states, processes and switching between them can be represented

System Informatics (Системная информатика), No. 22 (2023) 23

in the form of conditional structures, additional variables, and passing the progress through

channels.

In this paper, we describe, the code transformation from poST to Promela as well as the

issues of formalizing and implementing such transpiling. The implementation is a solution

based on the Eclipse Xtext parser tool in Java and Xtend.

The rest of the paper has the following structure. In Section 2, we consider features of the

poST and Promela languages. Section 3 defines rules for the transformational semantics for

the poST language and the conclusion is given in Section 4.

This work is supported by the Russian Ministry of Education and Science, project no.

122031600173-8.

2. The poST and Promela languages

The poST language is a novel process-oriented extension of the IEC 61131-3 Structured Text

(ST) language which provides conceptual consistency of the PLC source code with technolog-

ical description of the process under control. The language combines the advantages of FSM

based programming with the conventional syntax of the ST language which would facilitate its

adoption.

Inspired by a general PLC scan cycle, a poST program includes processes whose activity is

orchestrated into a cycle in order of their appearance in the program code. This scheme expects

PLC models that abstract from a scan cycle time [5]. Each process is specified by an ordered

set of process states. To describe process states, we use standard ST constructs (variable dec-

larations, control-flow statements, etc.) and specific process-oriented features: process states

statements (START/STOP PROCESS, SET NEXT and other) and timeout statements. The seman-

tics of the poST language assumes an automatic implementation of low-level constructions for

mapping I/O signals to program variables, process states, timeout statements, and cyclic time-

triggered control. The grammar of the poST language in the Xtext format is available in the

repository [15].

Promela language [13] is used to describe parallel communicating processes based on the CSP

formalism [6]. Promela program consists of parallel processes communicating through channels

or shared variables. The execution of a set of Promela parallel processes exploits the interleaving

semantics. Interleaving can be bounded by atomic and d_step statements, which permit

interruption of specified sequence of process actions. The Promela language includes blocking

24 Garanina N.O. et al. Model Checking Process-Oriented IEC 61131-3 Structured Text Programs

control-flow statements if and do, unlike standard non-blocking poST control-flow statements.

Promela model can be verified by model checker SPIN [7] against LTL requirements, hence it

assumes only finite types for model variables. This causes the main difficulty of translation

poST programs to Promela models because poST types for real numbers cannot be directly

translated to Promela types.

The poST language specifies control algorithms which interact with some environment.

Hence, we suppose that the source poST code may contain the control program and the con-

trolled object program. Translating this code, we construct the Promela model that corresponds

to the order of processes activation, the structure of process states, timeout management, and

variable types up to abstracting from real types.

3. poST Language Transformation Rules

In this section, we describe representative translations from poST language to Promela

language. We start from common constructs as types, variables, standard operations and

control-flow statements (Sections A and B). Further, we present special process-oriented fea-

tures, namely, a scan cycle, process states, timeouts, and special LTL forms for requirements.

The complete formal transformational semantics for poST is located in the repository [14].

3.1. Naming, Types, Declarations, and Operations

poST has global, program, and process namespaces, while Promela only has global and

process namespaces. To avoid name collisions, we form the full entity names in the Promela

model of a poST program taking care of (1) the entity name; (2) the entity kind (process,

variable, etc.); and (3) the name of the entity owner. To improve program readability, we use

the default naming mode which takes into account just entity kinds enriched with counters if

there are several equal names in the global Promela namespace.

Variable types are translated trivially in most cases. We consider poST programs without

real variables, since Promela does not have real types, and data type abstraction is beyond

the scope of this paper. Translation of the TIME type is discussed below when describing the

translation of the TIMEOUT expression.

Following this naming and type policy, all renamed poST variables are declared in Promela

model as global variables, and poST constants are trivially translated using Promela directive

#define.

System Informatics (Системная информатика), No. 22 (2023) 25

Promela includes the same operations as poST except exponentiation which can be modeled

bit-wise shift Promela operations.

3.2. Control-Flow Statements

In Table 1 we give translation two kinds of poST control-flow statements to Promela code.

Let code′ be the Promela image of the poST code made by our translation algorithm. We use

the Promela else branch and the skip statement in the translation of the poST IF statement

because the Promela if statement is blocking and the process cannot proceed further if con-

dition cond is false. Following the Promela semantics, else branch is chosen when no other

condition in if statement is satisfiable. The skip statement in this branch just does noth-

ing. The poST CASE statement is translated in the similar way. The Promela do statement is

also blocking, hence in modeling poST DO statement we need the else branch with the break

statement to model the termination of a loop in Promela.

Table 1

Control-Flow statements

poST Promela poST Promela
IF cond THEN if :: cond′ -> { body′ } WHILE cond do :: cond′ -> { body′ }

body :: else -> skip; DO body :: else -> break;
END_IF fi; END_WHILE od;

3.3. Process-oriented features

A control system is specified in poST by a set of poST programs. Hence, we should translate

several poST programs into a single Promela model. A particular poST program consists of

processes which activated cyclically one after another. Several poST programs run in a joint

scan cycle in the order of their appearance in the source code. In Promela, we model this

cyclic activation sequentially passing a move message from a process to a process through a

Promela channel in the order in which poST processes appear in the source programs. Promela

channels support blocking reads and writes. We use the channel turn of capacity 1 to pass

nicknames of processes in move messages. Every process is initially blocked until reading its

nickname from this channel. After execution of its body, a process pushes the nickname for

the next process into the channel to pass the move. The Promela process for the last poST

process turns the move to the service process Gremlin which represents the non-deterministic

26 Garanina N.O. et al. Model Checking Process-Oriented IEC 61131-3 Structured Text Programs

environment generating input values. This process is the first process of the resulting Promela

model. Due to sequential activation semantics of poST programs, we use Promela atomic

statement for the body of every translated poST process. This statement permits interleaving

execution of other processes and significantly simplifies verification. The left block of Table 2

gives translation of the upper process structure of poST programs to Promela.

Table 2

Process-oriented features

poST Promela poST Promela
PROGRAM prog1 mtype : P = PROCESS id mtype:S_id′ =
PROCESS id11 { p_id′11, ... } STATE s1 {s_s′1,...,s_Error′}

body11 chan turn=[1]of{mtype:P} body1 mtype:S_id′

END_PROCESS END_STATE c_id′ = s_Stop′;
... active proctype id′11(){ ... active proctype id′(){

END_PROGRAM do :: turn ? p_id′11 -> STATE sn do :: turn ? p_id′->
... atomic { bodyn atomic {
PROGRAM progm body′11; END_STATE if
PROCESS id1m turn ! p_id′21;} END_PROCESS :: c_id′==s_s′1->

body1m od; { body′1 }
END_PROCESS } ...
... ... :: else ->skip;

END_PROGRAM active proctype id′nm(){ fi;
... turn ! nx_pr;}
} od;

}

A body of a poST process consists of states, including special states of inactivity STOP and

ERROR. At every iteration of the scan cycle, the poST process executes the code corresponding

to some of its states except states STOP and ERROR when it does nothing. In Promela, we use a

special state counter for every translated process to keep the name of the current state. At the

start of a poST program, its first declared process is in its first state and all other processes are

in state STOP. The right block of Table 2 gives translation to Promela for a particular poST

process.

poST processes can check an activity status of other processes with statement ACTIVE and

INACTIVE. Also each process can force itself or anther process to change its state with state-

ments RESTART, STOP, START PROCESS, STOP PROCESS, and others. These poST statements are

translated trivially to Promela if the goal state do not include TIMEOUT statement. Please, see

examples in the right block of Table 3.

poST process states can have a TIMEOUT block as the last state block. Instructions of this

System Informatics (Системная информатика), No. 22 (2023) 27

block is executed after the time specified in the timeout has elapsed since the process entered

this state. To model this behaviour in Promela, we introduce a counting time variable — one

per each process that contains states with TIMEOUT.

To reduce the size of the Promela model, we provide the following optimisation for model

time counters. First, we use the value of poST scan cycle (INTERVAL) to reduce all timeout

values to the nearest multiple of this interval. Second, we divide all timeout values by their

greatest common divisor. In addition, we choose the minimum sufficient size nb of the unsigned

type for the time counters. For example, we add one time counter with a size of 4 bits if a

resulting Promela process has two states with timeouts that count 5 (101b) and 9 (1001b) units

of time.

At every scan cycle, if a process in a state with a timeout, its time counter is incremented.

A process counter sets to zero when (1) the process resets the timeout; (2) the process moves

to other state; and (3) timeout happens. Following poST semantics, we use the > sign in

the Promela timeout if statement because the execution of the timeout block begins at the

next cycle after the timeout time has passed. We give the representative model constructs for

timeouts in the left block of Table 3.

Table 3

State and Timeout Statements

poST Promela poST Promela
IF (PROCESS id if PROCESS id1 unsigned t_id′1 : nb

INACTIVE) :: c_id′ == s_Stop′ || STATE s1 active proctype id′1()
THEN body c_id′ == s_Err′ -> body1 { ...
END_IF { body′ } TIMEOUT T#tt :: c_id′1 == s_s′1 ->{
PROCESS id :: else -> skip; fi; THEN bodyt body′1
STATE s1 active proctype id′(){ END_TIMEOUT if

body1 do :: turn ? p_id′-> END_STATE :: t_id′1 > tt′ ->
SET NEXT atomic { ... body′t

END_STATE if END_PROCESS :: else ->t_id′1++;
STATE s2 :: c_id′==s_s′1 -> fi;}

body2 { body′1 ... }
END_STATE c_id′ = s_s′2; } PROCESS id2 active proctype id′2()
... :: c_id′==s_s′2 -> STATE s2 { ...
END_PROCESS { body′2 } body2 :: c_id′2 == s_s′2 ->{

... START body′2
:: else -> skip; PROCESS id1 c_id′1 = s′1;
fi; END_STATE t_id′1 = 0; }
turn ! next;}

od; } END_PROCESS }

28 Garanina N.O. et al. Model Checking Process-Oriented IEC 61131-3 Structured Text Programs

Table 4

The Promela model for poST programs

poST Promela
PROGRAM prog1 V ar_Declaration′

1

V ar_Declaration1 ...
PROCESS name11 V ar_Declaration′

m

... Service_Declarations
PROCESS namen1 init{ turn ! p_Gremlin; }

END_PROGRAM active proctype Gremlin(){...}
... active proctype OutInput(){...}
PROGRAM progm active proctype BOC(){...}
V ar_Declarationm active proctype name′11(){...}
PROCESS name1m ...
... active proctype name′nm(){
PROCESS namenm do :: turn ? p_name′nm ->

END_PROGRAM atomic { ...
turn ! p_Gremlin; }

od;
}

3.4. Overall Promela model for poST programs

In general, our translation algorithm takes as input several poST program that describe

a control system in one file. This control system may include the control algorithm and its

environment: controlled and uncontrolled objects. In Table 4, we give the resulting Promela

model, which includes three service processes and processes corresponding the source poST pro-

cesses. Non-deterministic service process Gremling models uncontrolled object. Service process

OutInput cares about proper corresponding of inputs and outputs of programs composing the

source program. Service process BOC captures the beginning of the scan cycle for checking

requirements. Activity of these processes forms a scan cycle by passing move messages between

them starting from the Gremling process modeling initial inputs from uncontrolled object and

ending with the last source poST process which pass move message to Gremlin again. Inside

the cycle, the processes activity is ordered as described in Table 2.

4. Discussion and Conclusion

In this paper, we have considered approaches to formalization and implementation of the

source-to-source compiling (transpiling) process. For PLC programming languages with a small

number of statements, such a process is justified, since all constructs of the input language

can be converted into language constructs for which methods of formal program verification

System Informatics (Системная информатика), No. 22 (2023) 29

have already been well developed (in this case, we use the model checking method and SPIN

verification system). This allows us to make examples of PLC programs intended for verification

and not to write repetitive code constructs in Promela related to the semantics of process

switching, transitioning through states, exchanging variable values and generating an impulse

for checking program properties w.r.t. scan cycles. The project is publicly available in our

repository [12]. Among the shortcomings of the current approach, we note the incomplete

support for data types, in particular, real variables are not supported. This can be eliminated

by implementing libraries of both fixed-point and floating-point arithmetic, however, this will

entail a huge number of states and the verification of resulting programs cannot be done without

manual abstraction methods. Also, library functions are not implemented.

As a result, with the development of the considered transpiler, we are approaching the

development of a toolchain for writing verifiable programs in the process-oriented style.

References

1. Zyubin V. E., Rozov A. S., Anureev I. S., Garanina N. O. and Vyatkin V. poST: A Process-

Oriented Extension of the IEC 61131-3 Structured Text Language // IEEE Access 2022.

Vol. 10, P. 35238–35250.

2. Ponomarenko A. A., Garanina N. O., Staroletov S. M., and Zyubin V. E. Towards the

Translation of Reflex Programs to Promela: Model Checking Wheelchair Lift Software //

Proc. of IEEE 22nd Intern. Conf. of Young Professionals in Electron Devices and Materials

(EDM). 2021. P. 493–498.

3. Anureev I. S., Garanina N. O., Liakh T. and Rozov A. S., and Schulte H. and ZyubinV. E.

Towards safe cyber-physical systems: the Reflex language and its transformational semantics

// Proc. of 2019 Intern. Siberian Conf. on Control and Communications (SIBCON). 2019.

P. 1–6.

4. Clarke E.M., Henzinger T. A., Veith H., and Bloem R. Handbook of model checking.

Springer, 2018. 1210 p.

5. Mader A. A Classification of PLC Models and Applications // Discrete Event Systems 2000.

Vol. 596. P. 239–246.

6. Hoare C. A. R. Communicating sequential processes. Prentice-Hall: 1985.

7. Holzmann G. J. The Spin Model Checker, Primer and Reference Manual. Addison-Wesley:

2003.

8. Schneider L. and Schultes D. Evaluating Swift-to-Kotlin and Kotlin-to-Swift transpilers //

30 Garanina N.O. et al. Model Checking Process-Oriented IEC 61131-3 Structured Text Programs

Proc. of the 9th IEEE/ACM Int. Conf. on Mobile Software Engineering and Systems. 2022.

P. 102–106.

9. Ovatman T. An overview of model checking practices on verification of PLC software //

Software & Systems Modeling. 2016. Vol 4, No 15. P. 937–960.

10. Antonsen T. M. PLC Controls with Structured Text (ST), V3: IEC 61131-3 and best

practice ST programming. BoD–Books on Demand, 2020.

11. IEC 61131-3:2013. Programmable controllers - Part 3: Programming languages. 2013. URL:

https://webstore.iec.ch/publication/4552

12. Translator-poST-Promela. 2023.

URL: https://github.com/SergeyStaroletov/poST_to_Promela_compiler_dev

13. Promela grammar. URL: http://spinroot.com/spin/Man/grammar.html

14. URL: https://github.com/SergeyStaroletov/poST_to_Promela_compiler_dev/semantics/

transformation.pdf, 2023.

15. URL: https://github.com/SergeyStaroletov/poST_to_Promela_compiler_dev/

poST_grammar.xtext, 2022.

16. URL: https://github.com/SergeyStaroletov/poST_to_Promela_compiler_dev/samples/,

2023.

17. Xtext is a framework for development of programming languages and domain-specific lan-

guages. 2022. URL: http://eclipse.org/Xtext

18. Xtend is a flexible and expressive dialect of Java. 2021. URL:

https://www.eclipse.org/xtend/

