
System Informatics (Системная информатика), No. 22 (2023) 1

UDK 004

Static Memory Consistency Constraints Checking

Andrianov P.S. (Ivannikov Institute for System Programming of RAS)

Mutilin V.S. (Ivannikov Institute for System Programming of RAS)

Memory model describes the memory consistency requirements in a multithreading

system. Compiler optimizations may violate the consistency requirements due to bugs, and

the program behavior will differ from the required one. The bugs in compiler optimizations,

like incorrect instruction reordering, are very difficult to detect, because they may occur

with a very low chance in real execution on a hardware.

There are different approaches of formal verification for memory consistency require-

ments, but the challenge is that the approaches are not scalable for industrial software. In

the paper we present the MCC tool that was evaluated on the industrial virtual machine

ARK VM and was able to find a real bug in a compiler optimization.

The MCC is a static tool, which allows to check all possible executions of a particular

test, not relying on a hardware execution. The approach also includes test suite generation

and specification of memory consistency properties.

Keywords: static analysis, memory model, compiler optimizations

1. Introduction

Nowadays processors have one or more layers of cache memory, which improves performance.

However, their use also throws up new challenges. Hardware memory model defines necessary

and sufficient conditions to guarantee that memory writes by other processors will be visible to

the current processor, and that the current processor’s writes will be visible to other processors.

There exists a strong memory model, which guarantees that all processors always see exactly

the same values for any given memory location. An opposite case is a weaker memory model.

There is different software, which can be executed over different hardware architectures. So,

languages, like C++ or Java, specify its own memory models, which describe software behaviour

independently from hardware. Java Memory Model (JMM) [1] provides strong guarantees, for

example, if Java program does not have data races the programmer may assume sequentially

consistent behavior.

ARK VM1 is a general virtual machine, which is a part of a unified operating system Har-

1https://gitee.com/openharmony-sig/arkcompiler_runtime_core.git



2 Andrianov P.S., Mutilin V.S. Static Memory Consistency Constraints Checking

Shared variable: var.x ; local variables: sum, r...

loop:

wait()

sum += var.x

...

Before optimization

...

r = var.x

loop:

wait()

sum += r

...

After optimization

Fig. 1. Example of a program in pseudocode before and after optimization

monyOS 2. Like the other virtual machines ARK VM supports running multithreaded programs.

Such programs consist of threads concurrently executing VM instructions, e.g. writing to or

reading from the memory. Some instructions have a special memory consistency semantics

providing guarantees for a programmer when the other threads will see memory updates. For

example, for Java there are strong guarantees that threads will see the results of writing to

and reading from volatile variables in a sequentially consistent order. This memory consistency

guarantees are specified in JMM. ARK VM has its own memory model (MM).

ARK VM should satisfy the requirements of MM, i.e. both ARK interpreter and ARK

compiler. In our method we focused on the latter, i.e. verifying that the ARK compiler fulfills

memory consistency requirements. More specifically we are interested in correctness of opti-

mization transformations performed in Just-in-Time (JIT)/ Ahead-of-Time (AoT) of the ARK

VM compiler. The method checks that ARK compiler optimizations generate code in target

hardware instruction set architecture (HW ISA) which does not break memory consistency

requirements of the input program.

The main contribution is an approach to detect memory consistency violations in the indus-

trial software. The approach is more general and may be applied to other VMs or compilers.

2. Motivating example

Consider the following example (in pseudocode) in Fig. 1.

Here in the loop there are two actions: wait and access to a shared memory var.x. A

compiler optimization transforms the code and extracts the read of the shared variable from

the loop to the local variable r. The transformation modifies the program logic. Imagine, for

example, a second thread, which updates var.x and then wakes the initial thread. Then the

2https://www.harmonyos.com/en/



System Informatics (Системная информатика), No. 22 (2023) 3

code after optimization will be able to read shared var.x before wake, but it is not possible

before optimization.

The task of proving that the left program is not equivalent to the right, is very complicated,

especially due to the presence of a loop. Also, dynamic tools likely may not reproduce the

problem, because it requires both a specific interleaving sequence between threads and specific

cache updates in a hardware. Thus, we have a task to develop an approach to detect such kind

of bugs.

3. Method Overview

The MCC approach breaks into three major parts:

• MCC-props - specifications of consistency properties;

• MCC-testgen - a test generator (OTK tool [2]);

• MCC-core - a core verification engine.

The main workflow is presented in Fig. 2. One has to specify constraints, or invariants,

which should be hold on the all program executions. MCC-testgen provides a test suite for

a specified property. When the test is compiled, the compiler optimizations are triggered.

MCC-core verifies, that the specified property holds on each compiled test (in native code).

Fig. 2. MCC approach overview.

4. MCC properties

As it was already written, in the approach we have two representations of program: before

compiler optimizations and after it. The first one is in the form of source code with the

corresponding VM MM. The second one is in the form of native code with corresponding HW

MM.

On each representation we can define a set of possible executions including sequence of



4 Andrianov P.S., Mutilin V.S. Static Memory Consistency Constraints Checking

events defined by the program order and the relation between written and read values, i.e.

which writes are seen by which reads. In general, we want to check that any execution in the

native code should be possible in the source code.

MM defines a set of synchronization events which significantly restricts the relation between

reads and writes. In many cases MM forbids to transfer reads and writes through synchroniza-

tion events. In our work we rely on this fact and specify our properties in terms of the sequence

of events along the execution.

In general, we formulate our properties in terms of sequence of events with modalities refer-

ring to time, similar to Linear Temporal Logic, but for the sake of effectiveness we introduced

a simple language in the form of source code model comments presented later. The language

is used to specify MM properties of ARK VM, namely ordering and existence specifications.

4.1. Ordering specification

There are different kinds of events in program: synchronization events (sync), non-synchroni-

zation events (unsync) and others. Synchronization events used for synchronization between

threads, they provide some guarantees for user, for example, access to Java volatile variable

or acquire of a lock. Thus, synchronization events cannot be reordered. Non-synchronization

events are accesses to the shared data, they depends from synchronization events, but may not

depend to each other. Thus, non-synchronization events can be reordered with each other, but

cannot be reordered with synchronization events.

So, this is ordering specification:

• synchronization events cannot be reordered;

• non-synchronization events cannot be reordered with synchronization events.

As it was already written, operations with volatile variables are an example of synchroniza-

tion events in JMM. In ARK VM there are intrinsic calls. The intrinsics have different flags,

related to optimizations. And a specific set of flags means, that the intrinsic call cannot be

optimized and can be expressed as a synchronization event. Reads and writes of a memory cell

are non-synchronization events. For ARK VM they are expressed as load/store into memory.

Thus, we have a set of non-synchronization events, each of them can not be reordered through

any synchronization event.

An example of specification is presented in Fig. 3. It contains a call of wait - a sync event

and a read of shared data - an unsync event.



System Informatics (Системная информатика), No. 22 (2023) 5

...

loop:

// MODEL: sync

wait()

// MODEL: unsync

sum += var.x

...

Fig. 3. Example of a program with a specification inside

So, intrinsics with the flags are synchronization event, and can not be optimized. In the

opposite case, it is possible to optimize and even remove the call.

4.2. Existence specification

One more generic property is that synchronization event cannot be totally removed by

optimization. Actually, this is very strong condition and dead code optimization can remove

the synchronization events. However, the check is rather important and in our experiments we

found a bug with missing flag using this property.

5. MCC test generator

MCC-testgen is built upon a method for test generation using extended ISA model (OTK) [2].

We extend this method by supporting model of situations with data types related to MCC-

props. We base on the model of situations which are being developed for generating tests

covering logic of optimizations in ARK compiler. We extend them with situations related to

MCC-props. For example, MCC-testgen model of situations introduces synchronization data

types which are combined with general models. Thus, MCC-testgen generates tests for covering

both general logic of optimization and a memory consistency property.

Currently, MCC-testgen provides model of situations for five optimizations: loop-invariant

code motion (LICM), LICM for conditions (LICMCond), loop peeling (LP), redundant loop

elimination (RLE), loop unrolling (LU). It means, that MCC-testgen generates tests specifically

to trigger the corresponding optimizations. Then, it combines the test with memory actions.

Every test is a sequence of actions, which trigger the optimization. For example, it may

have loops with different number of iterations, depth and so on. Between the actions, related

to optimization, there are actions, related to memory model events.



6 Andrianov P.S., Mutilin V.S. Static Memory Consistency Constraints Checking

Every memory action consists from three parts: pre-action, target action and post-action.

Target action may be a write to a local register, a write to a shared object or an empty action.

Pre-action and post-action can contain sync events, read/write to a shared object or an empty

action. There may be several memory action triples in a single test.

The testgen randomly iterates different kinds of memory actions and generate a specified

number of tests. For each test generated with the MCC-testgen the MCC-core verifies that

ARK compiler optimizations satisfy memory consistency requirements stated in MCC-props.

6. MCC core

MCC-core is a verifier of MCC properties on a VM program. It may be an any program,

but we used tests, provided by MCC-testgen. Actually, MCC needs not only an HW assembly

program with a specification, which operations are sync and unsync events. The relation is

extracted from a compiler dump with debug information.

The MCC-props specification is written inside a VM program using model comments. We

just need to mark synchronization and non-synchronization events inside source code of a test.

Then MCC-core checks that every specification constraint in terms of VM instructions is fulfilled

in the HW program. For every model event in terms of VM instructions, MCC-core finds its

HW assembler representation. And then it checks that the specified relation is the same. For

example, assembler instructions for event A are before assembler instructions for event B.

MCC-core result is a verdict saying, whether it has detected a scenario of execution of HW

variant which does not satisfy a specification property.

MCC-core takes a VM program (or directory) and configuration as input. Internally, it

performs the following steps:

• Model extraction – extracts a model of events: synchronization and non-synchronization

with relation to the origin source code.

• Preparation – obtains an assembly dump from the compiler.

• Assembler parser – obtains a relation of assembler instructions to the origin source code,

that is performed using the compiler dump information.

• Constraint checker – checks, that every synchronization event is not reordered or removed

in the assembler code.

Model extraction is performed just by model comments: if a line is marked as sync, it is

considered as a synchronization event. And unsync means non-synchronization event. There



System Informatics (Системная информатика), No. 22 (2023) 7

is also a possibility to specify constraints directly, for example, A > B, meaning the event A

must be after B. In general case the model comments should be set manually. However, as we

use a test generator, it performs all the work. So, the model comments are a part of OTK test

templates.

Preparation stage takes a source code, produces a bytecode file and then runs compiler to get

a compiler dump in Intermediate Representation (IR). A compiler dump file contains different

information, but we use it to extract relation from IR assembler operations to origin source

lines.

To extract the relation, we search pattern:

< IRoperation > ...(< filename >:< sourceline >)

However, not all IR operations has the information, thus it may be not complete. As source

lines are marked with sync and unsync events, using the relation, we may obtain the same

information about the assembler operations.

The constraint checker is implemented as a model checker based on Configurable Program

Analysis (CPA) [3, 4]. We implemented Sync CPA which checks MCC ordering and existence

properties. Its limitation still is false alarms due to dead code.

7. Discussion on method completeness

MCC approach performs static checks, and allows to consider all executions (see soundness

of CPA approach). So, for a particular test and a particular property the MCC approach is

able to be sound. For dynamic methods executing HW assembly on the processor the most

tricky part is reproducing bugs, because they have a low probability and require rare cache

coherence protocol states to occur.

The sources of incompleteness come from the techniques used in the components.

First, since we are basing on MCC-testgen and rely on the concrete set of generated tests.

The tests reach some coverage of model of situations and we can measure progress related to

the consistency model. However, we are dealing with tests, hence 100% coverage does not give

100% guarantee of covering all situations in the implementation.

Second, the set MCC properties elaborated from a memory model may not be complete.

Here we rely on our expert knowledge.

8. Evaluation



8 Andrianov P.S., Mutilin V.S. Static Memory Consistency Constraints Checking

To evaluate the MCC tool we used a machine with Ubuntu 22.04, Intel Core i5-6600K CPU

@ 3.50GHz × 4 and 32 Gb RAM. We generated 100 tests for the LICM optimization and then

checked MCC properties with MCC core. We run the tests on the origin ARK VM and on the

ARK VM with bug introduced. The bug is related to incorrect intrinsic flag, which potentially

may enable a compiler optimization in forbidden cases. The results are presented in Table 1.

Stage Wall Time CPU Time Passed Failed

Test generation 8 m 14 s 21 m 31 s - -

Normal run

MCC-core 45 s 45 s 100 0

A bug introduced

MCC-core 42 s 43 s 86 14

Table 1

Evaluation

Current version of the test suite for one LICM optimization achieves about 42% of line

coverage in compiler directory. Anyway, we are mostly interested in coverage of target code,

which works with memory events. Usually the target code is represented as conditions checking

the properties of instructions, i.e. whether it is a sync event or not. It not a big number in line

of code, but important for memory consistency. We manually inspected the collected coverage

and found that we covered such conditions.

With the MCC tool there was found a real bug. It has been existed for a long time in

optimization of intrinsic calls3. Some operations can be reordered with the call, which may

lead to unexpected behaviours.

9. Related work

For checking JMM requirements there exists benchmark sets, like JCStress4, which targets on

concurrency bugs, including memory model violations. The benchmark set allows to reproduce

MM bugs indeed, however, the chance is very low. For example, an introduced bug in volatile

processing was fixed after several months5, and test failure rate was about 0,0001%.

3https://gitee.com/openharmony-sig/arkcompiler_runtime_core/pulls/1389
4https://github.com/openjdk/jcstress
5https://gitee.com/openharmony-sig/arkcompiler_runtime_core/pulls/993



System Informatics (Системная информатика), No. 22 (2023) 9

One more approach for memory consistency verification is formal prove with Alloy [5]. The

approach requires to describe memory models of language and hardware, and also a mapping

from one to another (a model of compiler). Then, it is possible to prove with Alloy model

checker, if there is no forbidden execution found after “compilation”. The main problem of the

approach is performance, as with all formal methods. Authors used a rather powerful machine

with four 16-core 2.1 GHz AMD Opteron processors and 128 GB of RAM. However, proving

that compilation from C11 to x86 takes about 3 hours for an execution with 5 synchronization

events. Need to say, that comparison of memory models (without “compilation” task) takes less

time, especially, if a counterexample was found.

DoItYourself tool [6] allows to generate litmus tests for a specific hardware memory model.

Power and x86 are supported. Memory model specification is written on Coq, and then the tool

generates the test with a potential forbidden execution. If the forbidden execution is observed on

a real test run, it means, that the hardware does not fulfill its specification. The approach suits

for checking hardware memory model in case we have a complete memory model specification.

However, it does not consider compilation level and, moreover, compiler optimizations. Thus,

it solves another task.

10. Conclusion

We presented an approach for practical detection of memory consistency violations. It was

applied to an industrial virtual machine and found a complicated bug in compiler optimization.

References

1. J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. (2013) Java memory model, §17.4.

[Online]. Available: https://docs.oracle.com/javase/specs/jls/se19/html/jls-17.html

2. S. Zelenov and S. Zelenova, “Model-based testing of optimizing compilers,” in Testing of Soft-

ware and Communicating Systems, A. Petrenko, M. Veanes, J. Tretmans, and W. Grieskamp,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 365–377.

3. D. Beyer, T. A. Henzinger, and G. Théoduloz, “Configurable software verification: concretiz-

ing the convergence of model checking and program analysis,” in Proceedings of CAV. Berlin,

Heidelberg: Springer-Verlag, 2007, pp. 504–518.

4. D. Beyer and M. Keremoglu, “CPAchecker: A tool for configurable software verification,”

in Computer Aided Verification, ser. Lecture Notes in Computer Science. Springer Berlin



10 Andrianov P.S., Mutilin V.S. Static Memory Consistency Constraints Checking

Heidelberg, 2011, vol. 6806, pp. 184–190.

5. J. Wickerson, M. Batty, T. Sorensen, and G. Constantinides, “Automatically comparing

memory consistency models,” 01 2017, pp. 190–204.

6. J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, “Fences in weak memory models,” in

Computer Aided Verification, T. Touili, B. Cook, and P. Jackson, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2010, pp. 258–272.


