
System Informatics (Системная информатика), No.25 (2024) 1

УДК 004.415.52+519.681

Enhancing Verification Condition Generation for Reflex

Programs Through Simple Static Analysis∗

Ishchenko A.D. (Institute of automatics and electrometry, Siberian Branch of

the Russian Academy of Sciences)

Control systems play a crucial role in various domains necessitating high reliability and

proof of correct software operation. To address this, formal methods, such as deductive

verification, are employed to ensure the correctness of safety-critical software mathemati-

cally. This process involves generating verification conditions from the program’s axiomatic

semantics and its requirements. Main disadvantage of manual verification condition gen-

eration is its labor-intensity and prone to human error, which leads to the development

of automated verification condition generators. However, they produce excessive or overly

complex verification conditions that do not accurately reflect the possible program’s op-

erational paths. To mitigate the second issue, domain-oriented languages like Reflex have

been introduced, which adopt a process-oriented paradigm to streamline programming and

simplify verification condition generation. Nevertheless, the inherent switch-case structure

of Reflex can lead to an increase in the number of verification conditions, exacerbating the

first issue and complicating the selection of relevant ones. This paper proposes a simple

static analysis system designed to optimize the generation of verification conditions for Re-

flex programs, enhancing the efficiency of the verification process. It is based on attaching

attributes to different statements. Then, throughout the verification condition generation

these attributes are collected and checked to be compatible with previously collected. If

attributes are incompatible then verification condition are discarded.

Key words: process-oriented, static analysis, attributes, deductive verification

1. Introduction

Control systems are widely used in many areas: from the Internet of Things to programmable

industrial controllers. This requires advanced reliability for such systems and, in particular,

proof of correct operation of used software.

Nowadays, the most common method to ensure correctness is to test the system on digital

models or real-world control objects. It is popular for its simplicity and relative cheapness.

However, this method is incomplete because it does not cover all possible cases. This leads to

∗ This work was supported by the Russian Ministry of Education and Science, project no. 122031600173-8.

2 Ishchenko A.D. Enhancing Verification Condition Generation for Reflex Programs Through Simple Static Analysis

a danger of appearing of rare errors among widely used devices which looked completely safe.

To ensure the correctness of safety-critical software, formal methods are used. They use

formal semantics of the program and its requirements to simplify this challenge by transforming

it into some mathematical problem.

One of these formal methods is deductive verification [5]. It requires defining the axiomatic

semantics of programming language in some logical inference system and formalizing require-

ments. Then program and its requirements are transformed into a set of logical formulas. This

process is called verification condition (VC) generation. Doing it manually is time-consuming

and dangerous because of human factors. To automate this process, verification condition gen-

erators are developed. A generator goes through all possible paths of control flow and creates

VCs for them.

However, the naive realization of the generator may create a lot of excess verification condi-

tions that do not represent the ways the program really could work. Therefore, it is important

to find ways for reducing the amount of VCs and their simplification.

For simplification of creating and verification of control software special domain-oriented

languages are used. One of them is Reflex language [10] created for writing control programs.

It is designed in the style of a process-oriented paradigm. This paradigm represents the program

as a list of processes that are executed sequentially once in a certain period called activation

time thus forming a control loop. Each process consists of several active states created by

the programmer and two inactive states: stop and error. Each state is a list of instructions

that include both ordinary imperative statements (for example, conditional statements) and

special process-oriented statements designed to interact with other processes. The use of the

Reflex language rebuilds the programming style for control programs, which leads, in particular,

to the definition of VCs in terms of control processes and their states and thus makes them

conceptually simpler. However, this also leads to an increase in the number of VCs caused

by the switch-case nature of processes of a Reflex program, and some of these VCs are ’false-

positive’ since they correspond to the paths of the program that are non-reachable in its actual

execution.

In this paper, we propose a static analysis system for Reflex programs that finds such VCs

to optimize the process of VCs generation.

2. Reflex language

System Informatics (Системная информатика), No.25 (2024) 3

A Reflex program consists of processes, process states, process-oriented statements and C-

like statements.

For interaction with processes and their states, the following instructions are defined:

• restart, start p – sets the current process or process p into its first state;

• stop, stop p – sets current process or process p into stop state;

• error, error p – sets the current process or process p into error state;

• set state s, set next state – sets the current process into state s or state defined after the

current one;

• reset timer – set local time of the current process to 0;

• process p in state k – checks whether process p is in state kind k ∈ {active, inac-

tive,stop,error}.

Besides them, the following C-like constructs are used:

• C-like expressions;

• if-else statements;

• switch-case statements.

3. Static analysis

An increase in the number of VCs occurs in processing the following statements:

• process . . . – enumeration of different process states;

• timeout t . . . – checking cases when timeout t exceeded and when not;

• if (expr) . . . else . . . – checking cases when expr is true or false;

• switch (expr) {case . . . } – checking when expr corresponding to different cases;

In this paper we focus on the first two cases, and for the second one only analyze cases when

timeout parameter t is presented by a constant value. For example (Fig. 1), if in the process

of VC generation some process A starts another process B that contextually appears after the

first one, then, when process B will be processed, it must be in its first state.

Before the analysis program is transformed into canonical form with the conversion of short

forms of operators into full ones:

• restart −→ start p where p is the current process;

• stop −→ stop p where p is the current process;

• error −→ error p where p is the current process;

• set next state −→ set state s where s is the next state of the current process.

4 Ishchenko A.D. Enhancing Verification Condition Generation for Reflex Programs Through Simple Static Analysis

Figure 1: Possible and impossible paths. They are shown by green and red arrows correspond-

ingly

The result of static analysis is a set of attributes. They are used in verification condition

generation to avoid the creation of VCs for impossible paths. They are defined for declarations

of processes, process states and statements included in the bodies of process state declarations.

Let p.A means the value of the attribute A of the declaration of process p, p.s.A does the value

of attribute A of declaration of the state s of process p, p.s.st.A does the value of attribute A

after execution of the statement st of state s of process p.

The following list describes evaluated attributes:

1. p.state := s – contains the current state of process p;

2. p.reachE := true/false – shows whether process p ever reaches error state;

3. p.reachS := true/false – shows whether process p ever reaches stop state;

4. p.startS := true/false – shows whether process p could start in stop state;

5. p.s.st.procChange := f – contains the partial function from process to {start, stop or error}

where, for example, f(p′)=start means that process p′ was started after execution of state-

ment p of process state p of process p;

6. p.s.st.reset := true/false – shows whether timer was reset;

Attributes reachE, reach and reset have false value by default. Attribute startS has default

value false for the first process and true for other processes. Attributes state and procChange

are not defined initially.

A general static analysis scheme is presented in figure 2. The algorithm takes an abstract

syntax tree (AST) of the analyzed program and sets initial attribute values to corresponding

statements. Then, the lifting algorithm is applied to evaluate attributes of more general con-

structions. After that, attributes of more complex properties are set. In conclusion, AST with

set attributes and attributes compatibility rules are provided to the VC generation algorithm.

System Informatics (Системная информатика), No.25 (2024) 5

Figure 2: Static analysis scheme

3.1. Initial attribute arrangement

Firstly, we define attributes start, stop, error, reset. To do this we traverse AST of a

program and set attributes values in accordance on type of statement st:

if(st ≡ start p′) then

st.procChange.add(p′,start)

if (p ≡ p′) then st.reset := true

if(st ≡ stop p′) then

st.procChange.add(p′,stop)

if (p′≡p) then st.reset := true

if(st ≡ error p′) then

st.procChange.add(p′,stop)

if (p′≡p) then st.reset := true

if(st ≡ reset timer) then st.reset := true

if(st ≡ set state s′) then st.reset := true

where s and p are current state and process, respectively, and ≡ denotes syntactic coincidence.

Attributes reachE and reachS define whether a process ever reaches states stop and error

by being put into them by some processes. So initialization of these attributes is done by the

following algorithm:

if(∃p′∈processes(r)|∃s∈states(p′)|(error p∈body(s))

then p.reachE := true)

if(∃p′∈processes(r)|∃s∈states(p′)|(stop p∈body(s))

then p.reachS := true)

where r is a program, processes(r) returns list of processes of r, states(p) returns list of states

of process p and body(s) returns a list of all statements of state s.

3.2. Lifting algorithm

Lifting is an algorithm designed for evaluating more general properties by lifting attributes to

higher-level statements. Attributes may be lifted to them in two cases: if the attribute belongs

6 Ishchenko A.D. Enhancing Verification Condition Generation for Reflex Programs Through Simple Static Analysis

to a statement that is part of a linear sequence of statements, or if the attribute appears at all

branches of a statement with several paths: if-else, switch-case.

For a statement sequence st lifting is done by the following algorithm:

f := ⊥; reset := false;

for st′ in statements(st)

if (st ’. reset) then reset := true;

f := f ∪ st′.procChange;

st.reset := reset; st.procChange := f;

where statements(st) returns a sequence of statements of compound statement st.

For a branching statement st, the algorithm has the following form:

reset := true; procChange := (first(statements(st))).procChange;

for st′ in statements(st)

if (!st′.reset) then reset := false;

procChange := procChange ∩ st′.procChange;

st.reset := reset; st.procChange := procChange;

where first(l) returns the first element of the list l.

3.3. Additional attribute arrangement

The definition of the attribute startS depends on the value of this attribute in previous

processes and the process starting in them. It is done by the following algorithm:

for p in processes(r)

if (∃ p′ ∈ processes(r)| p′.id < p.id ∧ p′.startS = false ∧

p ∈ first(states(p′)).start) then p.startS := false;

where id is the field defining the number of the process in the order of definition in the program.

In the following example (Fig. 3) processes P2 and P4 become with attributes startS equal

to false because these processes will be start in the first iteration by process P1. Process P3

remains with startS equal to true because it is executed before P4, so statement {startP3}

will take effect only on the second iteration.

The value of attribute state is defined during the generation of VCs. If the generation

algorithm reaches the state s of process p, the attribute p.state is set into the s.

3.4. VC generation

After all attributes are set and lifted to the corresponding structure verification condition

generation starts. The original VC generation algorithm is described in [6] and realized on

GitHub 1. It traverses the abstract syntax tree building up the list of preconditions acc and
1https://github.com/bearhug15/ReflexVCG/tree/before_analysis_add

System Informatics (Системная информатика), No.25 (2024) 7

Figure 3: Attributes change due to start attribute

stack of marks made on statements which. Later when the formation of the current VC ends it

jumps to the next mark, drops excess preconditions, and continues VC generation from the new

place. Usage of attributes updates described algorithm. In addition to the acc, a passed list

is filled. Passed describes the passed path as a sequence of language constructs which allows

excluding some impossible continuations of this path, based on checking the compatibility of

values of attributes of the constructs. After the completion of VC generation and dropping of

excess preconditions excess path also dropped.

Updated VC generation function for statement st of state st of process p with checking of

VC possibility and filling of passed list of statements is done by the following algorithm:

if (checkComp(passed , p,s,st)) then

add(passed , st); updatePrec(st, acc);

else cutToMark(passed , acc);

where add adds structure st into passed list, checkComp checks whether attributes of st are

compatible with attributes of structures in passed path and return true if they are compatible,

cutToMark cuts passed and acc lists to last mark. updatePrec updates generated VC based

on the existing generation algorithm. The current realization of checkComp is done in table 1:

Realization of created algorithms is on Github 2.

4. Related works

The increasing complexity of programs has led to a significant rise in the number of ver-

ification conditions (VCs), posing a major challenge in deductive program verification. As

highlighted by Hähnle et al. [4] verification of cyber-physical systems, including programmable

logic controllers, is itself one of the modern challenges in the field of deductive verification,

and this issue only makes it harder. Additionally, various techniques aimed at simplifying VCs

2https://github.com/bearhug15/ReflexVCG

8 Ishchenko A.D. Enhancing Verification Condition Generation for Reflex Programs Through Simple Static Analysis

Condition Return value

p.reachE = false ∧ p.state = error false

p.reachS = false ∧ p.startS = false ∧ p.state = stop false

∃p′, s′, st′ ∈ passed. p ∈ p′.s′.st′.start ∧ p.state ̸= first(p) false

∃p′, s′, st′ ∈ passed. p ∈ p′.s′.st′.stop ∧ p.state ̸= stop false

∃p′, s′, st′ ∈ passed. p ∈ p′.s′.st′.error ∧ p.state ̸= error false

∃st′ ∈ passed. p′.s′.st′.reset = true ∧ st ≡ {timeout . . .} false

Otherwise true

Table 1: Table of checkComp rules.

can inadvertently exacerbate this problem. For instance, Leino et al. [7] propose a method

that involves splitting a verification condition into multiple separate conditions, where the con-

junction of these conditions remains equivalent to the original. While such techniques may

offer potential benefits for program verification, they can complicate the situation for Reflex

programs. This complexity arises from the finite state machine abstraction inherent in the

Reflex language, which generates a control flow graph characterized by high coupling and low

cohesion. Consequently, splitting a single condition can lead to the fragmentation of numerous

conditional paths, necessitating the automatic discarding of irrelevant conditions at generation

time, which relies on various forms of static analysis.

Couchot [2] introduces a graph-based technique for reducing verification conditions, utilizing

two types of graphs: the constant dependence graph and the predicate dependence graph. These

graphs facilitate the checking of VC satisfiability and the discharge of unsatisfiable conditions.

However, this approach has notable drawbacks, including the requirement to construct a com-

plete VC prior to checking and its reliance on SAT solvers. Such dependencies can significantly

extend the VC generation process, making program development less efficient. In contrast, our

approach focuses solely on syntax analysis, which is simpler and more time-efficient.

Another perspective on the challenges we address involves identifying unreachable states.

In this context, a combination of process state values and timeout invocations is treated as a

single state, with transitions between these combinations representing state transitions through

iterations of the control loop. Several methods have been proposed to tackle this issue [1, 9].

They are based on three steps: 1)reachable state space over-approximation; 2) debugging; and

3) spurious solution detection. Changing in the last step allows us to vary the accuracy of

System Informatics (Системная информатика), No.25 (2024) 9

methods to discard more unreachable states. The advantage of these methods is that they

may consider discrete time, which in our case is equivalent to loop iterations. However, these

methods require explicit state formulations, which can be memory-intensive and rely on slow

model-checking techniques. Modification for improvement in analysis accuracy also significantly

slows it.

Additionally, we can frame our problem as a context-free language (CFL) reachability prob-

lem and explore reachability analysis techniques [3, 8]. Given that the reachability of each

process state may be constrained by various statements from earlier parts of the program, this

approach resembles a variant of the all-pairs S-path problem. While applicable in scenarios

where unnecessary processing of stop and error states can be eliminated, this method lacks

completeness, as it does not adequately account for more complex program behaviors.

5. Conclusion

This paper presents our approach to reducing the amount of verification conditions corre-

sponding to the unreachable paths. We created a set of attributes associated with path elements

and a set of heuristics that detect incompatible combinations of attribute values on the paths.

In the future, we plan to expand this analysis with more attributes and heuristics to consider

more unreachable paths.

References

1. Berryhill Ryan, Veneris Andreas G. Methodologies for Diagnosis of Unreachable States

via Property Directed Reachability // IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems. — 2018. — Vol. 37. — P. 1298–1311. — URL:

https://api.semanticscholar.org/CorpusID:13169698.

2. Couchot Jean-François, Giorgetti Alain, Stouls Nicolas. Graph Based Reduction of Program

Verification Conditions // arXiv preprint arXiv:0907.1357. — 2009.

3. Fast algorithms for Dyck-CFL-reachability with applications to alias analysis / Qirun Zhang,

Michael R Lyu, Hao Yuan, Zhendong Su // Proceedings of the 34th ACM SIGPLAN con-

ference on Programming language design and implementation. — 2013. — P. 435–446.

4. Hähnle Reiner, Huisman Marieke. 24 challenges in deductive software verification // 1st

International Workshop on Automated Reasoning: Challenges, Applications, Directions,

Exemplary Achievements / EasyChair. — 2017. — P. 37–41.

10 Ishchenko A.D. Enhancing Verification Condition Generation for Reflex Programs Through Simple Static Analysis

5. Hähnle Reiner, Huisman Marieke. Deductive software verification: from pen-and-paper

proofs to industrial tools // Computing and Software Science: State of the Art and Perspectives. — 2019. —

P. 345–373. — URL: https://doi.org/10.1007/978-3-319-91908-9_18.

6. Ishchenko Artyom D., Anureev Igor S. Verification Condition Generator for Process-Oriented Programs

in Reflex Language Using Isabelle/HOL // 2024 IEEE 25th International Conference of Young

Professionals in Electron Devices and Materials (EDM). — 2024. — P. 1820–1825.

7. Leino K Rustan M, Moskal Micha l, Schulte Wolfram. Verification condition splitting //

Submitted manuscript, September. — 2008.

8. Reps Thomas. Program analysis via graph reachability // Information and software tech-

nology. — 1998. — Vol. 40, no. 11-12. — P. 701–726.

9. Suda Martin. Property directed reachability for automated planning // Journal of Artificial

Intelligence Research. — 2014. — Vol. 50. — P. 265–319.

10. Zyubin Vladimir Evgenievich, Liakh Tatiana Viktorovna, Rozov Andrei Sergeevich. Reflex

language: a practical notation for cyber-physical systems // System Informatics. — 2018. —

no. 12. — P. 85–104. — URL: https://doi.org/10.31144/si.2307-6410.2018.n12.p85-104.

System Informatics (Системная информатика), No. 25 (2024) 11

UDK 004.415.52

Pattern-based approach to automation of deductive

verification of process-oriented programs∗

Chernenko I. M. (Institute of Automation and Electrometry SB RAS)

Process-oriented programming is an approach to the development of control software

in which a program is defined as a set of interacting processes. PoST is a process-oriented

language that extends ST language from the IEC 61131-3 standard. In the field of control

software development, formal verification plays an important role because of the need to

ensure the high reliability of such software. Deductive verification is a formal verification

method in which a program and requirements for it are presented in the form of logical

formulas and logical inference is used to prove that the program satisfies the requirements.

Control software is often subject to temporal requirements. We formalize such requirements

for process-oriented programs in the form of control loop invariants. But control loop

invariants representing requirements are not sufficient for proving program correctness.

Therefore, we add extra invariants that contain auxiliary information. This paper addresses

the problem of automating deductive verification of process-oriented programs. We propose

an approach in which temporal requirements are specified using requirement patterns that

are constructed from basic patterns. For each requirement pattern the corresponding extra

invariant pattern and lemmas are defined. The proposed approach allows us to make the

deductive verification of process-oriented programs more automated.

Keywords: deductive verification, temporal requirements, requirement pattern, loop

invariant, control software, process-oriented programming

1. Introduction

Process-oriented programming [27] is a promising method for developing control software.

This programming paradigm allows one to describe a program as a set of interacting processes.

Each process is an extended finite state machine and is defined by a set of named states that

contain the program code. Besides the active states defined in the code, each process has

two inactive states: the normal stop state STOP, and the error stop state ERROR. Program

execution follows a cyclical pattern; in each iteration of the control loop, all program processes

are executed sequentially in their current states. The duration a process remains in its current

state is controlled by a timeout statement. A timer is associated with each process to control

∗ This work was supported by the Russian Ministry of Education and Science, project no. 122031600173-8.

12 Chernenko I. M. Pattern-Based Approach to Automation of Deductive Verification of Process-Oriented Programs

this time. The timer resets whenever the process transits to a different state, and it can also

be reset programmatically. Processes have the ability to start and stop other processes, as well

as to check whether another process is active or inactive. When starting, a process is in its

state defined first in the program text. When the program starts, its first process starts while

all subsequent processes remain in the state STOP.

PoST language [28] is a process-oriented language that extends ST language from the IEC

61131-3 standard [1]. A poST program consists of variable declarations and process definitions.

A variable declaration contains declaration of input variables VAR_INPUT whose values are

changed by the environment at each iteration of the control loop, output variables VAR_OUTPUT

that define control signals or local variables VAR. A process definition contains a sequence of

state definitions.

Control software requires formal verification because it has high reliability requirements.

Deductive verification [14] is one of the formal verification methods in which requirements are

formalized in the form of logical formulas, verification conditions that are logical formulas whose

truth guarantees the program correctness are generated, and then the verification conditions

are proved. For each loop in the program, a loop invariant must be specified that is true when

entering the loop and after each its iteration.

An important class of requirements for control software are temporal requirements. To spec-

ify temporal requirements for process-oriented programs, an approach in which requirements

are specified as control loop invariants is proposed in [2]. When describing requirements a

program is considered as a black box, i. e. the requirements do not contain information about

program structure (process states, values of process timers and local variables). However, such

information is needed for proving verification conditions. Therefore, we present a control loop

invariant in the form of conjunction of a formalized requirement and an extra invariant con-

taining information about the program structure. We specify requirements and extra invariants

in the previously developed temporal requirement language DV-TRL [8] that is a variant of

typed first-order logic. This language is based on the update state data type values of which

represent histories of all changes in a program. Specialized functions allow using variables val-

ues at different points in time in requirements. It gives the opportunity to specify temporal

requirements.

Only verification condition generation can be fully automated. The problems of loop invari-

ant synthesis and proving verification conditions are undecidable in general. Nevertheless there

System Informatics (Системная информатика), No. 25 (2024) 13

are approaches to solving these problems in particular cases.

Earlier we developed a set of temporal requirement patterns in our language DV-TRL

[7]. For each requirement pattern, a corresponding extra invariant pattern used for speci-

fying requirement-dependent invariants and a set of lemmas needed for proving verification

conditions were defined. We also developed a set of requirement-independent extra invariant

patterns. This allows automating deductive verification of process-oriented programs with re-

quirements satisfying these requirement patterns. However there are requirements that do not

satisfy previously developed patterns. It has been noted that previously developed patterns

and patterns that could describe new classes of requirements can be made up of a small num-

ber of basic patterns. This paper presents an approach to automation of deductive verification

of process-oriented programs in which requirement patterns can be constructed by combining

basic patterns and corresponding extra invariant patterns and lemmas with their proofs can be

generated automatically.

This paper has the following structure. Section 2 describes our approach to automation of

deductive verification. Section 3 demonstrates our approach on an example. Section 4 discusses

related works on automated loop invariant generation. Section 5 summarizes the results.

2. Approach to Automation of Deductive Verification

This section describes our approach to automation of deductive verification of process-

oriented programs based on patterns and lemmas. The relationship between different kinds

of patterns and lemmas is shown in Figure 1. In this approach, patterns are used to repre-

sent requirements and extra invariants. We use requirement patterns to specify requirements

and extra invariant patterns to specify extra invariants. Extra invariants and their patterns

are divided into requirement-dependent and requirement independent ones. For each pro-

gram, several requirement-independent extra invariants can be defined. For each requirement,

one requirement-dependent extra invariant is defined. Requirement patterns and requirement-

dependent extra invariant patterns are divided into basic and derived ones. All derived re-

quirement patterns and extra invariant patterns are defined by combining basic requirement

and extra invariant patterns respectively. Each basic (derived) requirement pattern has a cor-

responding basic (derived, respectively) extra invariant pattern and a set of lemmas associated

with it. Lemmas for derived patterns are proved using lemmas for basic patterns and used for

proving verification conditions. This allows automatically constructing the derived extra invari-

14 Chernenko I. M. Pattern-Based Approach to Automation of Deductive Verification of Process-Oriented Programs

Extra invariant
pattern

Requirement-
independent

extra invariant
pattern

Requirement-
dependent

extra invariant
pattern

Requirement
pattern

Basic
requirement

pattern

Basic extra
invariant
pattern

1 1

Derived
requirement

pattern

Derived extra
invariant
pattern

1 1

Lemma

Lemma for
basic pattern

Lemma for
derived
pattern

1

* *

11

* *

Requirement

is instance of

constructed
from

*

*

constructed from
*

*

Requirement-
dependent

extra invariant

is instance of

1

* *

1

Process-
oriented
program

Requirement-
independent

extra invariant

1

*

*

1

is instance of

Fig. 1. Relationship between different kinds of patterns and lemmas.

ant pattern corresponding to the derived requirement pattern and lemmas using the definition

of the requirement pattern as well as automatically proving these lemmas. Thus, an extra

invariant is a conjunction of requirement independent invariants and a requirement dependent

invariant. For proving verification conditions, we define proof scripts. These scripts, together

with the lemmas allow automatically proving verification conditions.

Earlier we developed a verification condition generator for programs in poST language [28].

In this work, we have developed algorithms for constructing extra invariant patterns for derived

requirement patterns, generating lemmas for them and proving these lemmas. We plan to

develop a verification tool based on these algorithms and the verification condition generator.

User interaction with the verification tool is shown in Figure 2. First, the user determines

requirement-independent extra invariants based on the process-oriented program being verified.

To specify each invariant, the user selects a requirement-independent extra invariant pattern and

System Informatics (Системная информатика), No. 25 (2024) 15

User

Specify parameters
for requirement-

independent extra
invariants

Select requirement

No

Yes

Is there an appropriate derived
requirement pattern?

Define a new derived
requirement pattern

Generate the derived
requirement-

dependent extra
invariant pattern

Generate lemmas

Prove lemmas

Verification tool

Specify parameters
for requirement

pattern and extra
invariant pattern

Generate verification
conditions

Generate proof
scripts

Execute proof scripts

No

Yes

Proven?Refine patterns
parameters

Yes

No

Are there any
unverified

requirements?

Isabelle/HOL

Refine parameters for
requirement-

independent extra
invariants

Choose and save necessary new
pairs of derived requirement pattern

and dependent extra invariant pattern
with associated lemmas

Fig. 2. User interaction with the verification tool.

specifies parameter values for it. Then the fol-

lowing actions are performed for each require-

ment to be verified. The user selects a de-

rived requirement pattern or creates it using

basic patterns if there is no appropriate pat-

tern. In the latter case, the verification tool

generates the corresponding derived extra in-

variant pattern and lemmas that are proved in

Isabelle/HOL [20]. For each derived require-

ment pattern, there is a natural language de-

scription of behavior that can be specified us-

ing this pattern and examples of known uses.

For each basic requirement pattern, there is a

natural language description of propositions

specified by this pattern and examples of de-

rived patterns in the definitions of which this

basic pattern is used. This information al-

lows a user to identify similar requirements

and choose a pattern.

Each basic pattern is parameterized by two

update states: s1 (an update state in which

the pattern instance should be true) and s

(the update state in which the loop invariant

should be true). The definition of a basic re-

quirements pattern R has the following form:

R ≡ λs.λ(s1, p1, ..., pm, A1, ..., An).

R′(s1, s, p1, ..., pm, A1(s, rj1), ..., An(s, rjn)),

where p1,..., pm are constant parameters, R′

is a parameterized formula of the DV-TRL

language without negations in which the for-

mula parameters A1,..., An do not appear in

premises of implications, rji (i=1,..., n) are

16 Chernenko I. M. Pattern-Based Approach to Automation of Deductive Verification of Process-Oriented Programs

variables of the update state data type bound

by quantifiers in R′ such that rji ≤ s and A1,..., An are formula parameters whose values are

requirement parameter formulas defined as follows: 1) atomic formulas and their negations are

requirement parameter formulas, 2) if A1 and A2 are requirement parameter formulas, then

λ(s, s1).A1(s, s1)∧A2(s, s1) and λ(s, s1).A1(s, s1)∨A2(s, s1) are requirement parameter formu-

las, 3) if P is a requirement pattern with m′ constant parameters and n′ formula parameters,

p1,..., pm′ are constants of the appropriate types and A1,..., An′ are requirement parameter

formulas, then λ(s, s1).P (s, s1, p1, ..., pm′ , A1, ..., An′) is a requirement parameter formula.

The definition of a derived pattern has the following form:

R ≡ λs.λ(p1, ..., pm, A1, ..., An).R
′(s, p1, ..., pm, Ah1 , ..., Ahu , Aj1(s), ..., Ajv(s)),

where s is the update state in which the requirement should be fulfilled; p1,..., pm are constant

parameters; Aj1 ,.., Ajv are formula parameters that are requirement parameter formulas; Ah1 ,...,

Ahu are formula parameters whose values are pattern parameter formulas that are defined as

follows: 1) atomic formulas parameterized by one update state and their negations are pattern

parameter formulas, 2) if A1 and A2 are pattern parameter formulas then λs1.A1(s1) ∧ A2(s1)

and λs1.A1(s1)∨A2(s1) are pattern parameter formulas; R′ is a parameterized formula that has

the form P (s, p1, ..., pm′ , A1, ..., An′) where P is a derived requirement pattern with m′ constant

parameters and n′ formula parameters, p1,..., pm′ are constants of the appropriate types and

A1,..., An′ are parameterized formulas of the appropriate types. A derived requirement pattern

can also be combined with other patterns. But in general, the value of not every parameter

of a derived pattern may contain nested patterns. In this scheme, only the values of the the

parameters Aj1 ,..., Ajr ({j1; ...; jr} ⊂ {1; ...;n} can contain nested patterns. Values of other

formula parameters Ah1 ,..., Ahu (r + u = n) cannot contain nested patterns.

Next, the user specifies parameter values for these patterns. After the requirement has been

formalized and a requirement-dependent extra invariant has been defined using patterns, the

verification tool generates verification conditions based on the process-oriented program and

proof scripts for proving the verification conditions. These proof scripts are executed in the

Isabelle/HOL. If the verification conditions have been proved, the user proceeds to verification

of another requirement, if any. If some verification conditions are not proved, the user refines

pattern parameters, and the verification tool proceeds to re-generation of verification conditions.

If there are no unverified requirements, the verification tool saves necessary pairs of derived

System Informatics (Системная информатика), No. 25 (2024) 17

requirement and extra invariant patterns with associated lemmas, and the verification of the

program is completed.

We refer a reader to our report1 for more details about our approach. In this paper, we only

demonstrate our approach on an example.

3. Example

PROGRAM Controller
 VAR_INPUT
 hands : BOOL;
 END_VAR
 VAR_OUTPUT
 dryer : BOOL;
 END_VAR
 PROCESS Ctrl
 STATE waiting
 IF hands THEN
 dryer := TRUE;
 SET NEXT;
 ELSE
 dryer := FALSE;
 END_IF
 END_STATE
 STATE drying
 IF hands THEN
 RESET TIMER;
 END_IF
 TIMEOUT T#1s THEN
 SET STATE waiting;
 END_TIMEOUT
 END_STATE
 END_PROCESS
END_PROGRAM

Fig. 3. Hand dryer

control program in

poST language.

In this section, we consider an example of constructing a derived re-

quirement and the corresponding extra invariant pattern and specifying a

requirement and extra invariants according the patterns.

Let us consider a hand dryer control program as an example. The

hand dryer includes a sensor indicating whether there are hands, a fan

and a heater. The program receives the input signal from the sensor and,

depending on the input signal, controls the fan heater. If the hands appear,

the fan heater turns on. If the hands are removed, then after a certain

time the fan heater turns off.

The hand dryer control program is presented on Figure 3:

Two variables are declared in the program: the input variable hands,

which shows the presence of hands under the fan heater, and the output

variable dryer, which determines whether the fan heater is turned on.

One process Ctrl is defined. It has two states waiting and drying. In

the state waiting, the presence of hands is checked. If there are hands,

the fan heater turns on and the process Ctrl transits to the state drying. If the hands are

absent, the fan heater turns off. In the state drying, the presence of hands is also checked.

If there are hands, the timer of the process is reset. The timeout is set in this state. After 1

second, the process Ctrl transits to the state waiting.

The following requirement on the hand dryer control program is needed to be verified: "If

there are no hands, then the fan heater should turn off after no more than 1 second if the hands

do not reappear during this time".

The following designations are used in the patterns discussed below:

• s, s1 . . . sn, r, r1 . . . rm are states;

• A1,A2,A3 are arbitrary logical formulas;

1https://github.com/ivchernenko/PSSV2024-report

18 Chernenko I. M. Pattern-Based Approach to Automation of Deductive Verification of Process-Oriented Programs

• p(s) returns the previous external state. An external state is a state at the point of transfer

of variable values from controller to control object in the control loop. Otherwise, the

state is internal ;

• s ≤ r returns true if s = r, or s ≤ p(r);

• s1 ≤ . . . ≤ sn is short for s1 ≤ s2 ∧ . . . ∧ sn−1 ≤ sn;

• s < r returns true if s ≤ r and s ̸= r

• e(s) returns true if state s is external;

• n(s1, s2) returns the number of external states between states s1 and s2;

• s[x] is a value of program variable x in state s;

• getPstate(s, p) is the state of process p in update state s;

• ltime(s, p) is the value of the timer of process p in state s;

• consecutive(s1, s2) returns true if e(s1) ∧ e(s2) ∧ s1 ≤ s2 ∧ n(s1, s2) = 1.

Let us describe verification of the program step by step.

The first step of verification is determining requirement independent extra invariants. One

of the requirement-independent extra invariant patterns states that if process p is in state q,

variable x has value v. This pattern is defined as follows:

λs.getPstate(s, p) = q −→ s[x] = v

The following property of the hand dryer control program can be specified using this pattern:

"If the process Ctrl is in the state drying, the variable dryer has the value TRUE". The

parameters have the following values:

p ≡ Ctr l ; q ≡ drying ; x ≡ dryer ; v ≡ True .

Next, the verification of the requirement formulated above is performed. This requirement

satisfies the following derived requirement pattern: "If event A1 has occurred, then event A3

should occur no more than after time t and after the occurrence of A1 and before the occurrence

of A3, the condition A2 should be true". This pattern is defined as follows:

DRP (s, t, A1, A2, A3) ≡

BRP2(s, s, (λr2r1.¬A1(r1) ∨BRP1(r2, r1, t, A2, A3))) .

Here, s is an update state in which the requirement should be satisfied, t is a constant

parameter, A1, A2 and A3 are formula parameters, and a value of A1 cannot contains nested

patterns and values of A2 and A3 can. In this definition, the following two basic requirement

patterns BRP1 and BRP2 defined in the knowledge base are used.

The first pattern BRP1 defined below asserts that no later than time t after the start of the

System Informatics (Системная информатика), No. 25 (2024) 19

time counting in state s1, event A2 will occur and from the start of the time counting to the

occurrence of event A2, condition A1 is fulfilled.

BRP1(s, s1, t, A1, A2) ≡

n(s1, s) ≥ t −→

(∃r2.e(r2) ∧ s1 ≤ r2 ≤ s ∧ n(s1, r2) ≤ t ∧A2(s, r2)∧

(∀r1.(e(r1) ∧ s1 ≤ r1 ≤ r2 ∧ r1 ̸= r2 −→ A1 (s, r1)))) ,

In this definition, s and s1 are the update states in which a control loop invariant and the

pattern instance are satisfied respectively, t is a constant parameter, and A1 and A2 are formula

parameters. The inequality n(s1, s) ≥ t in the premise is necessary because if time t has not

passed since the start of the countdown in state s1, then event A2 may not occur until the final

state s. This definition asserts that there is an external state r2 between the states s1 and s

such that the time elapsed from state s1 to state r2, no more than t and A2 is satisfied in the

state r2. Moreover, for each external state r1 between the states s1 and r2, including s1, but

excluding r2, the condition A1 is satisfied.

The second pattern BRP2 defined below asserts that a condition A1 should always be true

between iterations of the control loop up to the current state s1.

BRP2(s, s1, A1) ≡

∀r1.e(r1) ∧ r1 ≤ s1 −→ A1(s, r1)

In this definition, s and s1 are the update states in which a control loop invariant and the

pattern instance are satisfied respectively, A1 is a formula parameter. This definition asserts

that the condition A1 is satisfied in each external update state up to the state s1.

In the definition of the derived requirement pattern DRP, the instance of the pattern BRP2 is

satisfied in the state s because the instance is the control loop invariant. The bound variables

r2 and r1 correspond to the update states in which the control loop invariant and the parameter

A1 of the pattern BRP2 are satisfied respectively. The value of the parameter A1 of the basic

pattern BRP2 is the disjunction. Its first disjunct is the negation of the derived requirement

pattern parameter A1. The second disjunct is an instance of the pattern BRP1 that is satisfied in

the update state r1 and the values of the parameters t, A1 and A2 of which are the parameters

t, A2 and A3 of the derived pattern respectively.

The basic extra invariant pattern BIP1 corresponding to the basic requirement pattern BRP1

is defined as follows:

BIP1(s, s1, t, t1, A1, A2)

(∃r2.e(r2) ∧ s1 ≤ r2 ∧ r2 ≤ s ∧ n(s1, r2) ≤ t ∧A2(s, r2)∧

(∀r1.e(r1) ∧ s1 ≤ r1 ∧ r1 < r2 −→ A1(s, r1)))∨

20 Chernenko I. M. Pattern-Based Approach to Automation of Deductive Verification of Process-Oriented Programs

n(s1, s) < t1(s)∧

(∀r1.e(r1) ∧ s1 ≤ r1 ∧ r1 ≤ s −→ A1(s, r1))

An instance of this extra invariant pattern asserts that the corresponding instance of the re-

quirement pattern is fulfilled, but it also additionally asserts that the maximum waiting time

for the event A2 in state s is t1(s). In this definition, s and s1 are the update states in which

a control loop invariant and the pattern instance are satisfied respectively, t is a constant pa-

rameter, its value in an instance of the pattern BIP1 is equal to the value of the parameter t in

the corresponding instance of the pattern BRP1, t1 is an additional parameter that is a function

depending on s, A1 and A2 are formula parameters, their values are not equal in general, but

related to the values of the parameters A1 and A2 respectively in the corresponding instance

of the pattern BRP1. This definition asserts that either there is an external state r2 between

the states s1 and s such that the time elapsed from state s1 to state r2 is no more than t, A2 is

satisfied in the state r2 and for each external state r1 between the states s1 and r2, including s1,

but excluding r2, the condition A1 is satisfied or the time t1(s) has not passed after the start

of the countdown in the state s1 and for each external state r1 between s1 and s, the condition

A1 is satisfied in r1.

The basic extra invariant pattern BIP2 corresponding to the basic requirement pattern BRP2

coincides with BRP2 for s1 = s, i. e., BIP2 is defined as follows:

BIP2(s,A′
1) ≡

∀r1.e(r1) ∧ r1 ≤ s −→ A′
1(s, r1)

This pattern is parameterized by one update state s because an instance of this pattern is an

extra invariant, and it is satisfied in the state s. The value of the parameter A1 in the pattern

BIP2 is not equal in general, but related to the value of the parameter A1 in the corresponding

instance of of the pattern BRP2.

After the user has defined the derived requirement pattern, the corresponding derived extra

invariant pattern DIP is constructed. It is defined as follows:

DIP (s, t, t1, A1, A2, A3) ≡

BIP2(s, (λr2r1.¬A1(s1) ∨BIP1(r2, r1, t, t1, A2, A3)))

In this definition, s is the update state in which the extra invariant is satisfied, t is a constant

parameter, its value is equal to the value of the parameter t in the corresponding instance of the

pattern DRP, t1 is an additional parameter that is a function depending on the update state s,

A1, A2 and A3 are formula parameters, and the value of the parameter A1 is equal to the value

of the parameter A1 in the corresponding instance of the pattern DRP and the values of A2 and

System Informatics (Системная информатика), No. 25 (2024) 21

A3 are not equal in general, but related to the values of the parameters A2 A3 respectively in

the corresponding instance of the pattern DRP. The instance of the pattern BIP2 is satisfied in

the state s. The bound variables r2 and r1 correspond to the update states in which the control

loop invariant and the parameter A1 of the pattern BIP2 are satisfied respectively. The value

of the parameter A1 in the pattern BIP2 is the disjunction. The first disjunct is the negation of

the deriverived pattern parameter A1. The second disjunct is the instance of the pattern BIP1

that is satisfied in the state r1. The values of the parameters t, t1, A1 and A2 in the pattern

BIP1 are parameters t, t1, A2 and A3 in the derived pattern DIP.

After defining the derived requirement and extra invariant patterns, the user specifies the

following pattern parameters:
A1 ≡ λ(s, r1).r1[hands] = False;

A2 ≡ λ(s, r2).r2[dryer] = True ∧ r2[hands] = False;

A3 ≡ λ(s, r3).r3[dryer] = False ∨ r3[hands] = True;

t ≡ 10;

t1 ≡ λs. i f getPstate(s, Ctrl) = drying then ltime(s, Ctrl) e l s e 10 .

Next, lemmas for these derived patterns are generated and proved in Isabelle/HOL, verifi-

cation conditions and proof scripts for them are generated. These proof scripts are executed in

Isabelle/HOL, and all verification conditions are proved. Since this derived requirement pattern

is common, it is saved to the knowledge base along with the associated derived extra invariant

pattern and the lemmas.

4. Related Work

There is a wide variety of methods of finding loop invariants. These include abstract inter-

pretation [10], induction-iteration method [26], template-based methods [9], recurrence analysis

[15], using failed proof attempts [25] and invariant strengthening on demand [16], dynamic anal-

ysis [21] and machine learning [22]. Abstract interpretation and template-based methods are

the most common approaches to the static loop invariant inference [12]. Let us consider the

works closest to this one on the automatic generation of loop invariants.

Template-based methods of loop invariant generation are most successfully applied within

the domain of linear arithmetic [6]. In [9], a method of linear loop invariants generation based

on templates is proposed. Invariants have the form of linear inequalities. The authors generate

constraints on the template parameters that are coefficients in the inequality. These constraints

ensure that the invariant is true when the program enters the loop and after an iteration if it

was true before the iteration. Farkas’ Lemma is used to generate the constraints. The obtained

22 Chernenko I. M. Pattern-Based Approach to Automation of Deductive Verification of Process-Oriented Programs

constraints can be solved by quantifier elimination. But because quantifier elimination is a

costly process, the authors simplify the constraints using various techniques. In our work, extra

invariants are not linear inequalities relating the values of program variables in one point, but

formulas relating the values of the variables at different points in time and containing quantifiers

over update states (in patterns). Currently the values of pattern parameters are specified

manually, but our lemmas can be used to generate constraints on our pattern parameters.

In this case, the constraints will be quantifier-free. We plan to investigate the problem of

generating the constraints in the future.

To find the values of template parameters, SMT solvers can be used. In [24], an approach

based on user-defined templates is proposed. The authors reduce the problem of searching the

template parameters values to satisfiability solving, that allow using off-the-shelf solvers. The

values of template parameters are not constants, but expressions and predicates. To find such

values, the authors make assumptions about the domain that allow them to reduce this problem

to finding constants. An SMT solver is used to obtain these values. In our work, the values

of the pattern parameters are conditional expressions including not only constants, but also

terms containing process timers. To reduce the problem of finding such expressions to finding

constants, we could consider instances of constraints for different paths in the program.

In STeP [17], two approaches to invariant generation are used: the bottom-up approach in

which invariants are generated by static analysis of the program and the top-down approach

that is goal-oriented. In the top-down approach, unproven verification conditions are used to

strengthen invariants. If some verification condition cannot be proven, the weakest precondition

with respect to the invariant to be proven and the transition that the verification condition

corresponds to is computed. The strengthened invariant is the conjunction of the original in-

variant to be proven and this weakest precondition. In our work, we also use both bottom-up

and top-down (i. e., requirement-dependent) invariants. We could also use invariant strength-

ening. This approach would need to be used together with the heuristic of replacing a constant

with a term. But it was noted that extra invariants needed for proving requirements satisfying

the same pattern are similar and can also be described by a pattern.

This study [3] is devoted to the deductive verification of programs written in the LD language

from the IEC 61131-3 standard. Temporal requirements for LD programs are specified using

timing charts. The verification process employs the Why3 deductive verification system. The

authors formalized LD instructions as functions within Why3. In this framework, an event

System Informatics (Системная информатика), No. 25 (2024) 23

and the subsequent stable state in a timing chart are modeled as a loop in Why3, where

the loop’s body corresponds to one iteration of the LD program’s control loop, and the loop

guard represents the condition that the input must meet at the moment of the event and

during the stable state. The verified requirements are framed as invariants of this loop. To

model fixed-duration sequences of events, a time counter is introduced, which increments with

each iteration. If certain verification conditions cannot be established, counterexamples are

generated for further analysis. Since the invariants are insufficient, the authors use automatic

generation of additional loop invariants. The authors use the abstract interpretation method to

automatically generate loop invariants. A former prototype for Why3 system does not support

boolean variables that appear in programs representing LD programs and timing charts in

Why3. The authors encode Boolean variables as integer variables with constraints that allow

using existing methods to generate loop invariant with Boolean variables. In our work, we

verify programs in more expressive process-oriented languages. To specify requirements, we use

first-order logic instead of timing charts. We represent a program as one infinite control loop,

not as several loops. We have also noted that extra invariant patterns can be defined to specify

auxiliary properties and use these patterns instead of the abstract interpretation.

The paper [5] explores the auto-active method for automating deductive verification. This

approach requires users to supply supplementary guiding annotations, such as assertions, ghost

code, and lemma functions, to achieve a higher degree of proof automation. As a result, it en-

ables the use of automatic solvers in scenarios where interactive provers employed traditionally.

The authors implement auto-active verification for C programs within the Frama-C framework.

In our study, we do not use ghost code and lemma functions. However, we can incorporate

formalized requirements as annotations in the program. For instance, the control loop invari-

ant INV at the start of an iteration can be expressed with the annotation ASSUME INV, while

the invariant at the end can be represented with ASSERT INV. Additionally, we can use the

annotation ASSERT to add extra assertions at any point in the program.

In [19], an approach that allows one to make requirement specifications reusable using object-

oriented concepts. In this approach, in addition to declarative specifications, a subset of the

programming language is used to set requirements. To specify temporal requirements, loops

with loop invariants and variants are used. The authors chose Eiffel as a programming lan-

guage. Their approach is based on the specification drivers that are routines provided with con-

tracts and capture some behavioral properties of their formal parameters through the contracts.

24 Chernenko I. M. Pattern-Based Approach to Automation of Deductive Verification of Process-Oriented Programs

Then the authors describe requirement patterns using classes called seamless object-oriented

requirement templates. Each such class contains a specification driver and deferred features

corresponding to the requirement pattern parameters. To create a requirement from a pattern,

a class presenting the requirement and called "seamless object-oriented requirement" inheriting

from the class representing the requirement pattern and implementing the deferred features is

created. In our work, we verify programs in process-oriented languages, not object-oriented

languages. We also define requirement patterns, but define their in the typed first-order logic

and do not use a programming language in requirements. We specify temporal requirements

as invariants of the control loop that is a concept in control software.

In [13], a template-based method is combined with abstract interpretation and dynamic

analysis to generate loop invariants. A template is a Boolean combination of linear inequalities.

Each path in the program satisfies the inductiveness condition: if the corresponding template

instance is true at the beginning of the path, the corresponding template instance must be

true at the end of the path. This inductiveness condition is translated into a constraint.

Constraints are non-linear and difficult to solve. Therefore, static and dynamic analysis is used.

Test executions for the dynamic analysis are generated by other tools. Concrete or symbolic

execution can be used in the dynamic analysis. In the dynamic analysis, program variables in

templates are replaced with their values. This allows one to obtain linear constraints. First,

abstract interpretation is applied to generate some invariant that are not sufficient, and then

other invariants are generated in a goal directed way. In our work, we use only pattern-

based method without combining it with other methods. Similar to that work, we use both

requirement-independent invariants that are not goal directed and the requirement-dependent

invariants that are goal directed.

The paper [4] presents a template-bas4ed approach to loop invariant generation in the com-

bined theory of linear arithmetic and uninterpreted function symbols. First, the authors apply

purification, i. e., replacing subterms that are application of an uninterpreted function to ex-

pressions with a new variable with saving the definition of this variable. Then constraints are

generated and solved. Our invariants are in the theory of update states possibly combined with

the theory of arithmetic. Using our lemmas and some heuristics that we plan to develop, we

could generate constraints that do not contain update states.

In [23], a method of loop invariant generation combining template-based approach and pred-

icate abstraction is proposed. The authors developed three algorithms: two algorithms itera-

System Informatics (Системная информатика), No. 25 (2024) 25

tively compute fixed-points, and one algorithm uses constraint solving. An invariant solution

is a mapping each unknown in templates to some set of predicates such that the verification

conditions are true. The authors use SMT solvers to find invariant solutions.

5. Conclusion

In this paper, we have presented an approach to deductive verification of process-oriented

programs in which temporal requirements are specified using combination of basic patterns.

In this approach, a set of basic requirement patterns is defined. For each such basic pat-

tern, the corresponding basic extra invariant pattern and lemmas are defined. Then the basic

requirement patterns can be combined to define derived requirement patterns. For each de-

rived requirement pattern, the corresponding extra invariant pattern and lemmas for proving

verification conditions are constructed.

The approach proposed in this paper will allow one to automatically determine the extra

invariant pattern and lemmas needed to prove verification conditions for a given requirement

and prove these lemmas. Having generalized previously developed strategies for proving veri-

fication conditions so that the strategies are parameterized by the appropriate lemma, we can

automate proving verification conditions. Thus the only task that has not yet been automated

is finding values of parameters of an extra invariant pattern.

Currently, our basic requirement pattern set contains 9 patterns. Using them, we have

defined 11 common derived patterns defining classes including at least two requirements and 4

special derived patterns. This patterns have allowed us to specify and verify all requirements

from our collection containing 76 requirements. However, our pattern system currently does

not allows one to specify some classes of requirements, for example, requirements that state

that some event should or should not happen within a time interval after or before some other

event considered in [18] as well as requirements stating that some event should not happen after

(before) some delay after (before) some other event. Also requirements stating that an event

must occur k times considered in [11] cannot be easily specified. We plan extend our pattern

system in the future to cover these classes of requirements.

In the future, we also plan to develop tools for generation of the derived extra invariant

patterns, the lemmas and scripts for proving these lemmas as well as scripts for proving veri-

fication conditions. We also plan to develop a heuristic algorithm for finding the value of the

parameters of extra invariant patterns.

26 Chernenko I. M. Pattern-Based Approach to Automation of Deductive Verification of Process-Oriented Programs

References

1. Programmable Controllers—Part 3: Programming Languages, document IEC 61131-3, Interna-

tional Electrotechnical Commission, 2013.

2. Anureev I., Garanina N., Liakh T. et al. Two-step deductive verification of control software using

Reflex //Perspectives of System Informatics: 12th International Andrei P. Ershov Informatics

Conference, PSI 2019, Novosibirsk, Russia, July 2—5, 2019, Revised Selected Papers 12. — Springer

International Publishing, 2019. — P. 50-63. https://doi.org/10.1007/978-3-030-37487-7_5

3. Belo Lourenço C., Cousineau D., Faissole F. et al. Automated formal analysis of temporal properties

of Ladder programs //International Journal on Software Tools for Technology Transfer. — 2022.

— Vol. 24. — №. 6. — P. 977-997. https://doi.org/10.1007/s10009-022-00680-0

4. Beyer D., Henzinger T. A. Majumdar R., Rybalchenko A. Invariant synthesis for combined theories

//International Workshop on Verification, Model Checking, and Abstract Interpretation. — Berlin,

Heidelberg : Springer Berlin Heidelberg, 2007. — P. 378-394. https://doi.org/10.1007/978-3-540-

69738-1_27

5. Blanchard A., Loulergue F., Kosmatov N. Towards full proof automation in Frama-C using auto-

active verification //NASA Formal Methods Symposium. — Cham : Springer International Pub-

lishing, 2019. — P. 88-105. https://doi.org/10.1007/978-3-030-20652-9_6

6. Breck J., Cyphert J., Kincaid Z., Reps T. Templates and recurrences: better together //Proceedings

of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation.

— 2020. — P. 688-702. https://doi.org/10.1145/3395656

7. Chernenko I. M. Requirements patterns in deductive verification of process-oriented pro-

grams and examples of their use //System Informatics. — 2023. — №. 22. — P. 11-20.

https://doi.org/10.31144/si.2307-6410.2023.n22.p11-20

8. Chernenko I., Anureev I. S., Garanina N. O., Staroletov S. M. A temporal requirements language

for deductive verification of process-oriented programs //2022 IEEE 23rd International Conference

of Young Professionals in Electron Devices and Materials (EDM). — IEEE, 2022. — P. 657-662.

https://doi.org/10.1109/EDM55285.2022.9855145

9. Colón M. A., Sankaranarayanan S., Sipma H. B. Linear invariant generation using non-linear con-

straint solving //Computer Aided Verification: 15th International Conference, CAV 2003, Boulder,

CO, USA, July 8-12, 2003. Proceedings 15. — Springer Berlin Heidelberg, 2003. — P. 420-432.

https://doi.org/10.1007/978-3-540-45069-6_39

10. Cousot P., Cousot R. Abstract interpretation: a unified lattice model for static analysis

of programs by construction or approximation of fixpoints //Proceedings of the 4th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages. — 1977. — P. 238-252.

https://doi.org/10.1145/512950.512973

11. Dwyer M. B., Avrunin G. S., Corbett J. C. Patterns in property specifications for finite-state

verification //Proceedings of the 21st international conference on Software engineering. — 1999. —

P. 411-420. https://doi.org/10.1145/302405.302672

System Informatics (Системная информатика), No. 25 (2024) 27

12. Furia C. A., Meyer B., Velder S. Loop invariants: Analysis, classification, and exam-

ples //ACM Computing Surveys (CSUR). — 2014. — Vol. 46. — №. 3. — P. 1-51.

https://doi.org/10.1145/2506375

13. Gupta A., Rybalchenko A. Invgen: An efficient invariant generator //Computer Aided Verification:

21st International Conference, CAV 2009, Grenoble, France, June 26-July 2, 2009. Proceedings 21.

— Springer Berlin Heidelberg, 2009. — P. 634-640. https://doi.org/10.1007/978-3-642-02658-4_48

14. Hähnle R., Huisman M. Deductive software verification: from pen-and-paper proofs to industrial

tools //Computing and Software Science: State of the Art and Perspectives. — 2019. — P. 345-373.

https://doi.org/10.1007/978-3-319-91908-9_18

15. Kovács L. Reasoning algebraically about P-solvable loops //International Conference on Tools and

Algorithms for the Construction and Analysis of Systems. — Berlin, Heidelberg : Springer Berlin

Heidelberg, 2008. — P. 249-264. https://doi.org/10.1007/978-3-540-78800-3_18

16. Leino K. R. M., Logozzo F. Loop invariants on demand //Asian symposium on programming

languages and systems. — Berlin, Heidelberg : Springer Berlin Heidelberg, 2005. — P. 119-134.

https://doi.org/10.1007/11575467_9

17. Manna Z., Bjørner N., Browne A. et al. STeP: The stanford temporal prover //TAPSOFT’95:

Theory and Practice of Software Development: 6th International Joint Conference CAAP/FASE

Aarhus, Denmark, May 22—26, 1995 Proceedings 20. — Springer Berlin Heidelberg, 1995. — P.

793-794. https://doi.org/10.1007/3-540-59293-8_237

18. Mekki A., Ghazel M., Toguyeni A. Patterns-Based Assistance for Temporal Requirement

Specification //Proceedings of the International Conference on Software Engineering Re-

search and Practice (SERP). — The Steering Committee of The World Congress in Com-

puter Science, Computer Engineering and Applied Computing (WorldComp), 2011. — P.

1. https://www.researchgate.net/profile/Armand-Toguyeni/publication/260420194_Patterns-

Based_Assistance_for_Temporal_Requirement_Specification/links/549a90c30cf2d6581ab16f9c/Patterns-

Based-Assistance-for-Temporal-Requirement-Specification.pdf (online; accessed: 02.10.2024)

19. Naumchev A. Seamless object-oriented requirements //2019 International Multi-Conference on

Engineering, Computer and Information Sciences (SIBIRCON). — IEEE, 2019. — P. 0743-0748.

https://doi.org/10.1109/SIBIRCON48586.2019.8958211

20. Paulson L. C., Nipkow T., Wenzel M. From LCF to isabelle/hol //Formal Aspects of Computing.

— 2019. — Vol. 31. — P. 675-698. https://doi.org/10.1007/s00165-019-00492-1

21. Perkins J. H., Ernst M. D. Efficient incremental algorithms for dynamic detection of likely invariants

//proceedings of the 12th ACM SIGSOFT twelfth International Symposium on Foundations of

Software Engineering. — 2004. — P. 23-32. https://doi.org/10.1145/1029894.1029901

22. Si X., Dai H., Raghothaman M. et al. Learning loop invariants for program veri-

fication //Advances in Neural Information Processing Systems. — 2018. — Vol. 31.

https://proceedings.neurips.cc/paper_files/paper/2018/file/65b1e92c585fd4c2159d5f33b5030ff2-

Paper.pdf (online; accessed: 02.10.2024)

23. Srivastava S., Gulwani S. Program verification using templates over predicate abstraction //Pro-

28 Chernenko I. M. Pattern-Based Approach to Automation of Deductive Verification of Process-Oriented Programs

ceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation. — 2009. — P. 223-234. https://doi.org/10.1145/1542476.1542501

24. Srivastava S., Gulwani S., Foster J. S. Template-based program verification and program synthesis

//International Journal on Software Tools for Technology Transfer. — 2013. — Vol. 15. — P. 497-518.

https://doi.org/10.1007/s10009-012-0223-4

25. Stark J., Ireland A. Invariant discovery via failed proof attempts //International Workshop on Logic

Programming Synthesis and Transformation. — Berlin, Heidelberg : Springer Berlin Heidelberg,

1998. — P. 271-288. https://doi.org/10.1007/3-540-48958-4_15

26. Suzuki N., Ishihata K. Implementation of an array bound checker //Proceedings of the 4th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages. — 1977. — P. 132-143.

https://doi.org/10.1145/512950.512963

27. Zyubin V. E. Hyper-automaton: A model of control algorithms //2007 Siberian

Conference on Control and Communications. — IEEE, 2007. — P. 51-57.

https://doi.org/10.1109/SIBCON.2007.371297

28. Zyubin V. E., Rozov A. S., Anureev I. S. et al. poST: A process-oriented extension of the

IEC 61131-3 structured text language //IEEE Access. – 2022. – Т. 10. – С. 35238-35250.

https://doi.org/10.1109/ACCESS.2022.3157601

System Informatics (Системная информатика), No. 25 (2024) 29

UDK 004.4’42

An Exact Schedulability Test for Real-time Systems with

an Abstract Scheduler

Garanina N.O. (A.P. Ershov Institute of Informatics Systems SB RAS)

In this paper, we formally describe real-time systems with an abstract scheduler using

Kripke structures. This formalization allows us to refine the abstract scheduler in its

terms. We illustrate this approach with a non-preemptive global fixed priority scheduler

(NE-GFP). We also formulate a safety property for real time systems using linear temporal

logic LTL. We implement our formalization of real-time systems with a NE-GFP scheduler

in language Promela used in the SPIN verification tool and make experiments for proving

or disproving the safety property to evaluate the effectiveness of our approach.

Keywords: real-time systems, exact schedulability test, Kripke structures, model checking,

Promela, SPIN

1. Introduction

Classical real-time systems proposed in [11] are a set of tasks that occur from time to time

with period P or more, have a deadline D and execution time C. In the modern world, such

systems arise literally at every step – these are embedded systems, and Internet of Things

systems, and technological processes, business processes, and automatic control systems in

the automotive industry, avionics, space industry, etc. These tasks can use the resources of

one or more processors. As a rule, there are significantly fewer processors than tasks, so the

question of scheduling their execution naturally arises. There are different ways to specify

schedulers depending on the subject domain. For example, in some cases it is possible to allow

interruption of low-priority tasks, while in other cases such an approach can lead to a system

failure. The main question for real time systems described in terms of execution time, deadline

and periodicity is the question of safety: is it true that in a given set of tasks with fixed features

and a given scheduler, no task will ever miss its deadline?

This problem has been solved for many years for various real time systems and various

schedulers. For systems with only one processor, the problem has been studied quite well [11].

However, for multiprocessor systems, the problem of a very large number of task behavior vari-

ants arises, and exact methods for checking the safety property turn out to be poorly applicable

in an explicit form. Approaches based on near-optimal scheduling have been proposed [2], but

30 Garanina N.O. Formal Methods for Exact Schedulability Test

exact schedulers are preferable and exact approaches continue to develop [3, 4, 8, 12, 17].

In addition to the development of specialized methods for precise schedulability verification,

there is a small number of works using general formal methods for analyzing programs and sys-

tems. In particular, [9, 16] proposes the representation of static-priority global multiprocessor

scheduling and non-Preemptive self-suspending real-time tasks using timed automata, which

make the verification of the safety of real time systems rather resource-consuming. In [13], a

special case of a real time system was modeled in the Promela language of the SPIN verification

tool [7], and in [15] authors present a Promela model for real-time system on a single-processor.

In [6], graph games is used to make easier the reachability problem in exact shedulability test.

In our work, we formally represent real-time systems with an abstract scheduler as Kripke

structures, which are used to verify parallel and distributed systems using model checking.

Such formalization allows us to refine the abstract scheduler in terms of the proposed Kripke

structure and obtain specific real-time systems. We present an example of refining the abstract

scheduler to a non-preemptive GFP scheduler. In addition, we formulate the safety property

in terms of liner temporal logic LTL [5]. We model our formalization of real-time systems with

a non-preemptive GFP scheduler in the Promela language of the SPIN and conduct a series of

experiments to prove or disprove the safety property to clarify the performance of our method.

The rest of the paper has the following structure. In Section 2, we recall base definitions of

real-time systems and scheduling and formalise real-time systems as Kripke structures. Section

3 considers features of the Promela and describes the Promela model for a real-time system

with the non-preemptive global fixed priority scheduler. The conclusion is given in Section 4.

2. A Real-time Kripke Structure

We consider that a real-time system is a set of tasks T = (T1, ..., Tn), where each task

Ti = (Ci, Di, Pi) has an execution time Ci, a relative deadline Di, and a minimum period Pi.

Each task Ti ∈ T can generate a potentially infinite number of jobs, every of which requires

Ci units of time. These jobs must be completed before Di time units after the release time.

Release time instants are separated by at least Pi time units. If there are no other restrictions

on jobs’ releases, these tasks are refereed as sporadic tasks. In this paper, we study the base

case of real-time systems in which all task parameters are integers. All jobs are executed on m

processors. If the number processors is less then number of tasks (m < n), we need a scheduler

to decide which task’s job to run next. We assume that scheduling decisions are taken at

System Informatics (Системная информатика), No. 25 (2024) 31

discrete time instants starting from 0. The schedulability test problem is to detect if every jobs

of every task in the real-time system is finished before its deadline. For the rest of the paper

we fix above real-time system T .

We would like to deal with real-time system T as with a finite model to apply model checking

techniques. Inspired by the paper [1], we introduce current values of task parameters as follows.

For every task i ∈ T , let tuple si = (i, C ′
i, D

′
i, P

′
i , reli, badi) be a state of task i, where

• C ′
i ≤ Ci is time left until a job of this task ends;

• D′
i ≤ Di is time until the deadline of a job of this task;

• P ′
i ≤ Pi is time until the the next admissible release of a job of this task;

• reli ∈ B is boolean variable which marks a job release: it becomes true when task i

release a job, and it becomes false when the job is completed.

• badi ∈ B is boolean variable which marks that a job misses the deadline soon: it is false

if C ′
i ≤ D′

i, and it becomes true otherwise.

For brevity, we refer to boolean constants true and false as 1 and 0, respectively. For rep-

resenting the processors’ load, we also introduce variable busy: a number of jobs currently

executing at some moment (busy ≤ m).

A scheduler must exactly define conditions under which each task can execute its job and

conditions for permitting a job execution. There are many types of schedulers, for example,

• Global fixed priority (GPF). The set of tasks are ordered: T1 has the highest priority, Tn

has the lowest priority and a major task job has priority over a minor task job;

• Earliest deadline first (EDF). The task with the closest deadline has the highest priority;

• Non-preemptive. No job can be interrupted by other job (even from a major task);

• Preemptive. A job can be interrupted by other job from a major task.

In our Kripke structure, for modeling an abstract scheduler we use an abstract predicate

go(i, s, t) that is true if task i can execute the job at state t which is a successor of state

s, and false otherwise. Further, we specify go(i, s, t) for the non-preemptive GPF scheduler.

For calculating the change of processor load busy, we also need to compute a modification

number – a quantity of tasks which jobs are just finished or released and just admitted to

execution by the scheduler. For this, we introduce predicate fin(i, s) for just finished jobs that

is true if task i finishes its job in state s, i.e. s.C ′
i = 0, and false otherwise. To compute the

modification number, we treat go(i, s, t) and fin(i, s) as integer numbers (1 for true and 0 for

false).

32 Garanina N.O. Formal Methods for Exact Schedulability Test

Let Prop be a set of propositions consisting of arithmetic comparisons of current values of

task parameters and propositions about a number of running jobs.

Now, we define real-time system T with an abstract scheduler as a real-time structure MT =

(ST , sT0 , R
T , LT), where

• the finite set of states ST =
∏n

i=1({i} × [0..Ci]× [0..Di]× [0..Pi]× B× B)× [0..m];

for global state s ∈ ST , si = (i, C ′
i, D

′
i, P

′
i , reli, badi) is a projection of s on task i, and

s.C ′
i, s.D′

i, s.P ′
i , s.reli, s.badi and s.busy are projections of s on its components;

• the initial state sT0 =
∏n

i=1{(i, Ci, Di, Pi,0,0)} × {0};

• the total transition relation RT ∈ ST × ST is defined by composing relations for i-task

projections of global states s and t. (s, t) ∈ RT iff t.busy = s.busy +
∑n

i=1(go(i, s, t) −

fin(i, s)) and one of the following points holds:

1. si = (i, Ci, Di, Pi,0,0), and

(a) ti = (i, Ci, Di, Pi,0,0) – task i do nothing;

(b) ti = (i, Ci, Di − 1, Pi − 1,1,0), and ¬go(i, s, t) – task i releases the job and it is

not started;

(c) ti = (i, Ci − 1, Di − 1, Pi − 1,1,0), and go(i, s, t) – task i releases the job and it

is immediately started;

2. si = (i, C ′
i, D

′
i, P

′
i ,1,0), ti = (i, C ′

i, D
′
i − 1, P ′

i − 1,1,0) with s.D′
i > 0, and ¬go(i, s, t)

– task i is waiting for permitting its job;

3. si = (i, C ′
i, D

′
i, P

′
i ,1,0), ti = (i, C ′

i − 1, D′
i − 1, P ′

i − 1,1,0) with 0 < s.C ′
i < Ci,

0 < s.D′
i < Di, s.C ′

i ≤ s.D′
i, and go(i, s, t) – task i executes a job;

4. si = (i, 0, D′
i, P

′
i ,1,0), or si = (i, Ci, D

′
i, P

′
i ,0,0), or si = (i, Ci, Di, P

′
i ,0,0), and

(a) if s.P ′
i = 0

i. ti = (i, Ci − 1, Di − 1, Pi − 1,1,0), and go(i, s, t) – task i finishes its job

normally, and it is releasing and starting its job at this moment;

ii. ti = (i, Ci, Di−1, Pi−1,1,0), and ¬go(i, s, t) – task i finishes its job normally,

and it is releasing and not starting its job at this moment;

iii. ti = (i, Ci, Di, Pi,0,0) – task i finishes its job normally, and it is not releasing;

(b) if s.D′
i = 0 and s.P ′

i > 0 then ti = (i, Ci, Di, P
′
i − 1,0,0) – task i finishes its job

normally and waiting for the next release;

(c) if s.D′
i > 0 then ti = (i, Ci, D

′
i − 1, P ′

i − 1,0,0) – task i finishes its job normally

and waiting for the next release;

System Informatics (Системная информатика), No. 25 (2024) 33

5. si = (i, C ′
i, C

′
i − 1, P ′

i ,1,0) and ti = (i, C ′
i, C

′
i − 1, P ′

i ,0,1) – a job of task i will miss

the deadline definitely;

6. si = (i, C ′
i, C

′
i − 1, P ′

i ,0,1) and ti = (i, C ′
i, C

′
i − 1, P ′

i ,0,1) – task i is in the bad state

forever.

• evaluation function L : Prop −→ 2S
T is standard: it assigns comparison propositions to

those states in which they are true.

To refine the abstract scheduler, we need to specify predicate go(i, s, t). This predicate for

all types of schedulers uses information about the load of processors busy and the system tasks:

their parameters, priorities, time from releases, time until deadlines, etc. All this information

is available at the system states s and t, hence go(i, s, t) can be formulated in terms of our

real-time Kripke structures. For example, in the case of non-preemptive global fixed priority

scheduler, predicate go(i, s, t) = (|Maji| + s.busy < m), where Maji = {j ∈ [1..n] | j <

i ∧ ((s.relj = 1 ∧ s.Cj = Cj) ∨ (s.relj = 0 ∧ t.relj = 1))} is a set of released jobs with higher

priority that have not yet started.

We mark a state of real-time system T with D′
i = C ′

i−1 for some task i as a bad state because

in this case there is no time left to meet the deadline. Bad states in the Kripke structure MT

is a set Bad_States = {s ∈ ST | ∃i ∈ [1..n] : s.badi = 1}. Let proposition bad be true in state

s if
∨n

i=0(s.badi = 1) is true, and be false otherwise. Hence, the exact schedulability test for

real-time system T is to check if LTL formula ΦT = G(¬bad) is satisfiable in MT : the real-time

systems never reaches a state in which some task in its bad state.

3. A Real-time System with a Non-preemptive Global Fixed Priority

Scheduler in Promela

In this section, we describe implementation of real-time structure MT for real-time system

T in Promela – an input language of model checker SPIN. Promela language is used to describe

parallel communicating processes based on the CSP formalism [10]. Promela program consists

of parallel processes communicating through channels or shared variables. The execution of

a set of Promela parallel processes exploits the interleaving semantics. Interleaving can be

bounded by atomic and d_step statements, which permit interruption of specified sequence

of process actions. The Promela language includes blocking control-flow statements if and

do. Promela model can be verified by model checker SPIN against LTL requirements, hence it

assumes only finite types for model variables. Our real-time structure MT has a finite number

34 Garanina N.O. Formal Methods for Exact Schedulability Test

of states and its representation in Promela does not require data abstractions.

We model MT in Promela to perform exact schedulability test, i.e. to detect if every jobs

of every task is completed before its deadline. We specify an abstract scheduler of MT as a

non-preemptive global fixed priority scheduler. For simplicity, we also set the period Pi be equal

to Di for every i. Below, we give the implementation details skipping some code for brevity.

The initial Promela process starts the scheduler and NumPrc number of tasks with synthetic

parameters Ci and Di naming each task by its number i. Specific non-synthetic real-time

systems can be modelled by operator run task(i, C_i, D_i) for particular Ci and Di.
1 init{
2 atomic{
3 run scheduler ();
4 for (i : 0 .. NumPrc -1){ run task(i, i+1, 2*(i+2)); }}
5 }

Listing 1: Promela-process for launching the system

Following the definition of MT , we describe tasks that release and execute their jobs as

Promela processes that implement transition relation RT almost directly. For example, the

Promela code for Point 2 of the definition is given in Listing 2 (lines 8–20). In green comments

of this listing, we give explanations of the task actions. If a task fails its deadline, it sets special

boolean variable BAD to true (line 26).
1 proctype task (byte me; byte C; byte D) {
2 bool go = false; // predicate go(i,s,t) computed by the scheduler
3 bool release = false; // a variable for marking job realeases
4 byte C_cur = C; // C’ -- time left until a job ends
5 byte D_cur = D; // D’ -- time until the deadline
6 do
7 :: atomic{ C_cur == C && D_cur == D && !release -> // can release a job
8 if
9 :: release = true; // releases a job

10 request ! me // requests the scheduler for job execution
11 work ++; // action for synchronization step
12 responce[me] ? go // receives the responce from the scheduler
13 if
14 :: go ->
15 C_cur --; D_cur --; busy ++; // executes the job , point 2.c
16 :: else -> D_cur --; // waits , point 2.b
17 fi
18 :: work ++; // do nothing , point 2.a
19 fi
20 responce[me] ? _ // action for synchronization step
21 }
22 :: atomic{ C_cur == C && D_cur > 0 && D_cur < D && C_cur <= D_cur && release

-> // release and not started
23 ...
24 :: atomic{ C_cur > D_cur && release -> // fails deadline
25 BAD = true; // point 6
26 break;
27 }
28 od
29 }

Listing 2: Promela-process for tasks

System Informatics (Системная информатика), No. 25 (2024) 35

In our model, the scheduler gives permission for job executions and synchronises Promela

processes for tasks to prevent unwanted interleaving. First, the scheduler collects requests

for job executions in boolean array req_prc (lines 4–6). Second, following non-preemptive

and GFP settings, the scheduler knowing the number of free processors (line 10) scans the

array of requests from its first element in the order (line 11). If it finds that the next in

line task i asks for its job execution and there are free processors (line 13), it sends signal

go to this task (lines 14) and decreases the number of free processors (lines 15). When the

number of free processors becomes zero (line 16), the scheduler sends the rest of requesting

tasks the message with the prohibition of its job execution (line 17). After scheduling actions,

this Promela process performs synchronization between tasks, resetting the number of work

tasks executing their step and sending them permission to continue working (line 24). The

scheduler’s scanning, communication and synchronisation actions are placed in an atomic block,

the sequence of actions of which is treated by SPIN as a single computational step. This placing

provides synchronisation between the tasks and the scheduler and decreases the model checking

computational complexity.
1 proctype scheduler (){
2 ...
3 do
4 :: atomic{ work > 0 && !end -> ...
5 request ? num; req_prc[num] = true; // collects requests
6 ... }
7 :: atomic{ work == NumPrc && empty(request) -> ...
8 if
9 :: NumReqs > 0 -> // there are some requests

10 free = MAX - busy; // number of free processors
11 for (i : 0 .. NumPrc - 1){
12 if
13 :: req_prc[i] && free != 0 ->
14 responce[i] ! true; ... // go!
15 free --;
16 :: req_prc[i] && free == 0 ->
17 responce[i] ! false; ... // don’t go!
18 :: else -> skip;
19 fi
20 } ...
21 :: else -> skip; // no requests
22 fi
23 // actions for synchronization step:
24 work = 0; for (i : 0 .. NumPrc - 1){ responce[i] ! true }
25 }
26 :: BAD -> break;
27 od
28 }

Listing 3: Promela-process for the scheduler

To exactly test a real-time system for schedulability, we check LTL formula []!BAD in SPIN

tool. If this formula is satisfiable in the real-time system, no its task misses its deadline.

We made some experiments with SPIN model checker (version 6.5.1), on a CPU with 4 cores

36 Garanina N.O. Formal Methods for Exact Schedulability Test

and 8 GB RAM. We definitely prove the safety of our real-time system for 5 tasks and 4

processors. When we increase the number of tasks by one, the SPIN verification time becomes

too long (more then an hour) for proving safety. But if a real-time system is unsafe, SPIN

discovers it very quickly: for 40 tasks and 20 processors it takes only 0.074 seconds to find the

counterexample (the sequence of task releases leading to missing some deadline).

The complete Promela model for real-time systems with the non-preemptive global fixed

priority scheduler is located in the repository [18].

4. Conclusion

In this paper, we formalise real-time systems with an abstract scheduler as a Kripke structure

– the real-time Kripke structure. We show that this abstract scheduler can be refined in terms

of a real-time Kripke structure. In particular, we present a non-preemptive global fixed priority

scheduler by specifying conditions under which tasks’ jobs are started.

In future, we plan to refine the abstract scheduler for other types of schedulers, i.e. preemp-

tive GPF scheduler, preemptive and non-preemptive EDF scheduler, etc. These specifications

can used for modeling real-time systems in input languages of model checkers in order to perform

exact schedulability tests and for teaching. We also plan to use our formalisation of real time

systems to develop new effective algorithms for the exact schedulability test, e.g. backtracking

based algorithms.

References

1. V. Bonifaci and A. Marchetti-Spaccamela, Feasibility analysis of sporadic real-time multi-

processor task systems. // Algorithmica, 2012.

2. B. B. Brandenburg and M. Gul, Global scheduling not required: Simple, near-optimal

multiprocessor real-time scheduling with semi-partitioned reservations. // Proceedings of

Real-Time Systems Symposium (RTSS). IEEE, 2016.

3. Artem Burmyakov, Enrico Bini, and Eduardo Tovar. 2015. An exact schedulability test for

global FP using state space pruning. // In Proceedings of the 23rd International Conference

on Real Time and Networks Systems (RTNS ’15). Association for Computing Machinery,

New York, NY, USA, 225–234. https://doi.org/10.1145/2834848.2834877

4. A. Burmyakov, E. Bini and C. -G. Lee, Towards a Tractable Exact Test for Global Multi-

processor Fixed Priority Scheduling. // in IEEE Transactions on Computers, vol. 71, no.

System Informatics (Системная информатика), No. 25 (2024) 37

11, pp. 2955-2967, 1 Nov. 2022, doi: 10.1109/TC.2022.3142540.

5. Clarke E.M., Henzinger T. A., Veith H., and Bloem R. Handbook of model checking.

Springer, 2018. 1210 p.

6. G. Geeraerts, J. Goossens and T. -V. -A. Nguyen, A Backward Algorithm for the Multi-

processor Online Feasibility of Sporadic Tasks. // 2017 17th International Conference on

Application of Concurrency to System Design (ACSD), Zaragoza, Spain, 2017, pp. 116-125,

doi: 10.1109/ACSD.2017.9.

7. Holzmann G. J. The SPIN Model Checker, Primer and Reference Manual. Addison-Wesley:

2003.

8. Pourya Gohari, Jeroen Voeten, and Mitra Nasri. Reachability-Based Response-Time Anal-

ysis of Preemptive Tasks Under Global Scheduling. In 36th Euromicro Conference on Real-

Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs),

Volume 298, pp. 3:1-3:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

https://doi.org/10.4230/LIPIcs.ECRTS.2024.3

9. Guan, N., Gu, Z., Deng, Q., Gao, S., Yu, G. Exact Schedulability Analysis for Static-

Priority Global Multiprocessor Scheduling Using Model-Checking. // Software Technologies

for Embedded and Ubiquitous Systems. SEUS 2007. Lecture Notes in Computer Science,

vol 4761. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75664-4_26

10. Hoare C. A. R. Communicating sequential processes. Prentice-Hall: 1985.

11. Jane W. S. Liu, Real-Time Systems. Prentice Hall, 2001. 610 p.

12. Ranjha, S., Gohari, P., Nelissen, G. et al. Partial-order reduction in reachability-based

response-time analyses of limited-preemptive DAG tasks. Real-Time Syst 59, 201–255

(2023). https://doi.org/10.1007/s11241-023-09398-x

13. Staroletov, S. A Formal Model of a Partitioned Real-Time Operating System in Promela.

// Proceedings of the Institute for System Programming of the RAS (2020): Volume 32,

Issue 6, Pages 49–66, DOI: https://doi.org/10.15514//ISPRAS-2020-32(6)-4

14. Sun, Y., Lipari, G. A pre-order relation for exact schedulability test of sporadic tasks on

multiprocessor Global Fixed-Priority scheduling. // Real-Time Syst 52, 323–355 (2016).

https://doi.org/10.1007/s11241-015-9245-9

15. P. Sukvanicha, A. Thongtak and W. Vatanawood, Formalizing Real-Time Embedded Sys-

tem into Promela // MATEC Web of Conferences 35 03003 (2015) DOI: 10.1051/matec-

conf/20153503003

38 Garanina N.O. Formal Methods for Exact Schedulability Test

16. B. Yalcinkaya, M. Nasri and B. B. Brandenburg, An Exact Schedulability Test for Non-

Preemptive Self-Suspending Real-Time Tasks. // 2019 Design, Automation & Test in

Europe Conference & Exhibition (DATE), Florence, Italy, 2019, pp. 1228-1233, doi:

10.23919/DATE.2019.8715111.

17. Q. Zhou, G. Li, C. Zhou and J. Li, Limited Busy Periods in Response Time Analysis

for Tasks Under Global EDF Scheduling. // in IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 40, no. 2, pp. 232-245, Feb. 2021, doi:

10.1109/TCAD.2020.2994265

18. URL: https://github.com/GaraninaN/RealTimeSystems/blob/main/np-gfp-rts.pml, 2024.

System Informatics (Системная информатика), No. 25 (2014) 39

UDK 004

Policy Based Interval Iteration for Probabilistic Model

Checking

Mohagheghi M. (Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran)

Khademi A. (Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran)

Reachability probabilities and expected rewards are two important classes of properties

that are used in probabilistic model checking. Iterative numerical methods are applied to

compute the underlying properties. To guarantee soundness of the computed results, the

interval iteration method is used. This method utilizes two vectors as the upper-bound

and lower-bound of values and uses the standard value iteration method to update the

values of these vectors. In this paper, we use a combination of value iteration and policy

iteration to update these values. We use policy iteration to update the values of the lower

bound vector. For the upper-bound vector, we use a modified version of value iteration

that marks useless actions to disregard them for the remainder of the computations. Our

proposed approach brings an opportunity to apply some advanced techniques to reduce the

running time of the computations for the interval iteration method. We consider a set of

standard case studies and the experimental results show that in most cases, our proposed

technique reduces the running time of computations.

Keywords: Probabilistic model checking, Sound iterative methods, Policy iteration

1. Introduction

Value iteration (VI) and policy iteration (PI) are two well-known iterative numerical methods

that are used to approximate the required values in the analysis of Markov decision processes. In

reinforcement learning, VI and PI are used to compute the optimal expected rewards (or costs)

for an intelligent agent. In formal verification, these two methods are also used to compute

the optimal reachability probabilities: the minimal or maximal probability of reaching a goal

state. In both cases, linear programming (LP) can be used to compute exact values. Because

of the scalability of this technique, LP can not be used for large models. VI and PI are

used instead to approximate the required values. These techniques compute iteratively until

satisfying a stopping criterion[1, 5]. In reinforcement learning, a discount factor is considered

to guarantee the convergence of computations. The iterative computations terminate when the

maximal difference between two consecutive iterations drop below a threshold [5, 6]. In formal

40 Mohagheghi M, Khademi A. Policy Based Interval Iteration for Probabilistic Model Checking

verification, where the optimal probabilities or expected rewards until reaching a goal state is

needed, some pre-computations are applied to disregard those states for which, the accumulated

expected rewards converge to infinite. For the remaining states, VI or PI can be applied. Both

approaches iteratively update state-values until reaching the case where the difference between

values drops the threshold. Although in most cases, this stopping criterion is sufficient to

verify the correctness of a given specified property, there is not any guarantee for the precision

of the computed values. There are some cases in probabilistic model checking where VI or

PI terminate and the reported reachability probability (or expected reward) is far away from

the exact value [2, 9]. To overcome this deficiency, the interval iteration method has been

proposed as an extension to the standard value iteration and is implemented in most model

checker tools. In interval iteration (II), two vectors of values are considered as an upper-bound

and lower-bound of the state-values. These vectors are updated iteratively until reaching a case

where the maximal difference of state values between these two vectors drop the threshold. In

such case, it is guaranteed that the exact value is between the two ones and maximal error is

controlled [4, 9, 15].

The running time of the standard iterative methods for probabilistic model checking is an

important challenge that affects their application on large models. While the number of states

of a model can grow exponentially in the number of components, that causes the state explosion

problem, a modern model checker should control the total number of numerical computations.

Several approaches have been proposed to accelerate the VI and PI methods. The results of [13]

demonstrate that the modified and improved versions of PI can outperform VI for most standard

case study models. For the interval iteration method, using two vectors of values brings more

computations and the running time is more than the VI and PI methods. For this method, it is

important to utilize improved techniques to reduce the overall running time. In most previous

works, VI is mainly used to update the values of these vectors, i.e., in each iteration, VI is used

to update the upper-bound and lower-bound values of each state. Appropriate state ordering for

VI has been used as an approach to accelerate the interval iteration method [8]. This approach

is applied in [2, 15] to reduce the overall running time of the computations. To the best of our

knowledge, no other work has considered more advanced techniques to accelerate the iterative

computations for the II method. In this paper, we focus on the problem of accelerating II

and select PI as the standard method for updating the state-values of this method. We utilize

several accelerating methods for PI to improve the performance of II. The main benefit of these

System Informatics (Системная информатика), No. 25 (2014) 41

accelerating methods is that in most iterations, they disregard less important computations

and focus on more important ones.

1.1. Related work

Value iteration and policy iterations have been used as the standard iterative methods in

probabilistic model checking [1, 3, 5]. However, the soundness of these methods was studied

for the first time in [7] where a counterexample is proposed that shows VI may terminate and

return a result that is far away from the exact value. To cover this problem and guarantee

the soundness of the computed values, the interval iteration method is proposed in [7] for the

extremal reachability probabilities. The extension of II for the extremal expected rewards is

proposed in [2] where some approaches are suggested for computing the upper-bound vector of

values. In some cases, the computed upper-bounds are far away from true values that causes a

large number of iterations in the computations of the II method. To reduce the overall running

times and start from better upper-bounds, the sound value iteration[15] and optimistic value

iteration[10] methods are proposed for computing the minimal and maximal expected rewards.

The possibility of applying policy iteration for the interval iteration method is studied in [9]. It

has only considered the standard PI method and do not studied the impact of modified policy

iteration or other improved technique on the performance of computations.

2. Preliminaries

In this section, we review some important concepts of probabilistic model checking. More

details are available in [2, 3, 8]. For a finite set S and vectors x = (xs)s∈S ∈ R|S| and y =

(ys)s∈S ∈ R|S|, we write x ≤ y if xs ≤ ys for all s ∈ S and we write x < y if xs < ys for all

s ∈ S.

2.1. Markov Decision Process

Definition 1. A Markov Decision Process (MDP) is a tuple M = (S, s0, Act, P,R) where:

• S is a finite set of states,

• s0 ∈ S is the initial state,

• Act is a finite set of actions.

• P : S × Act × S → [0, 1] is a probabilistic transition function such that for each state s

and the action α ∈ Act we have
∑

s′∈S P (s, α, s′) ∈ {0, 1}.

42 Mohagheghi M, Khademi A. Policy Based Interval Iteration for Probabilistic Model Checking

• R : S × Act → R is a reward function.

An action α is enabled in state s, if
∑

s′∈S P (s, α, s′) = 1. The operational semantics of MDP

M is as follows. M is initiated with state s0. Assume that M is in state s. First, one of

the enabled actions of s is selected non-deterministically. According to the selected action α,

the reward R(s, α) is collected by the system. Then due to probabilistic transition function

P , one of the α-successor states of s (a state for which there is a transition from s via action

α) is chosen. That is, s′ is the next state with probability P (s, α, s′). A discrete-time Markov

chain (DTMC) is an MDP in which every next state is selected just probabilistically, i.e. it has

exactly one enabled action [1].

The minimal (or maximal) probability of reaching one of the goal states is called extremal

reachability probability. Extremal expected rewards are defined as the minimal (or maximal)

expectation of accumulated rewards until reaching a goal state. For a state s ∈ S, we use Emax
s

to denote the maximal expected reward. Some graph-based methods are exploited to detect

the set of states that the extremal reachability probability is one [1, 3]. These sets are used to

computing the maximal or minimal expected rewards [8].

A standard way to resolve non-deterministic choices in MDPs is to define and use policies.

A deterministic policy (also called adversary) is function π : S → Act that maps each state of

the MDP to one of its enabled actions. A policy is memory less where it decide the actions

only based on the last visited state [8]. For unbounded reachability probabilities and expected

rewards, the optimal action of each state s ∈ S is determined based of the probability dis-

tribution of the outgoing transitions and the computed values of the successor states and it

is not important which states have been visited before reaching s. Hence, for these classes of

properties, that are the topic of the current work, it is sufficient to consider deterministic and

memory-less policies [1, 3].

Iterative numerical methods are used to approximate the values of the expected rewards.

Value iteration, as a well known method uses a vector xk to store the approximated values of

the maximal expected rewards in iteration k. The values of xk
s determines the approximated

value of Emax
s after k iterations. In each iteration k the value of xk is computed according to the

computed value of xk−1 from the previous iteration. Theoretically, value iteration can finally

converge to the exact expected values, that is, limk→∞ xk
s = E

max
s ; but practically, a convergence

criterion is exploited to terminate the iterations. To do so, the maximum difference of computed

values between two consecutive iterations are compared with a threshold ϵ in which the value

System Informatics (Системная информатика), No. 25 (2014) 43

iteration method terminates when maxs∈S1
min

(xk
s − xk−1

s) < ϵ [8]. In the literature, several

methods are proposed to accelerate the standard iterative methods using state prioritizing

approaches [8, 13]. Policy iteration (PI) is another option for approximating the extremal

reachability probabilities or expected reward[5]. This method follows a set of rounds. In each

round, PI considers a policy to select one action for each state. Based on the selected actions

a DTMC is induced and a set of iterations is applied to update the state values. For the first

round, the policy is defined by randomly selecting the actions of each state. For the other

rounds, policies are defined by considering the best action of each state by considering the

computed values of the previous round. The computations continue until reaching a stable

policy, where the last two policies are the same [9].

2.2. Interval Iteration for Expected Accumulated Rewards

Value iteration with the standard termination criterion can not guarantee the precision of

approximated values [6]. Interval iteration methods are proposed to guarantee the precision

of computed values for the extremal reachability probabilities [4, 6] and for extremal expected

rewards [2]. Two vectors x and y are utilized to approximate the lower and upper bound of the

extremal expected reward values. In this case, vectors x and y can finally converge from below

and above to Emax.

Considering ϵ for the precision of computations, the interval iteration method iterates until

the maximum difference of values between two vectors for all states drops below 2ϵ, that is in

an iteration k, if maxs∈S1
min

(yks − xk
s) < 2ϵ holds. After termination we have |y

k
s+xk

s

2
−Emax

s | < ϵ

for each state s ∈ S1
min. Algorithm 1 computes the interval iteration for the maximal expected

rewards. To avoid some redundant computations, a modified version (called separate interval

iteration) is proposed in [12].

Several methods are available for pre-computation to calculate the starting values for x and y.

In the case of non-negative rewards, 0 is trivially a starting point of x. For y, several techniques

are presented in [2] to calculate the starting point. A main drawback of these techniques to

compute an initial value for the vector y is that in come cases, the proposed initial values are

far away from the exact values. This drawback increases the running time of computations.

To have better initial values for y several techniques have been proposed in [10, 12, 15]. The

idea of these techniques is to consider the computed values for the vector x to approximate

the initial value for y. In the proposed approaches in [10, 12], the standard value iteration

44 Mohagheghi M, Khademi A. Policy Based Interval Iteration for Probabilistic Model Checking

Algorithm 1 Interval iteration for Emax
s .

input: an MDP M = (S, s0, Act, P,R), a set G of goal states, the set S1
min, a threshold ϵ

and two initial vectors x and y for the lower and upper bound of values

output: Approximation of Emax
s for all s ∈ S with the precision of ϵ

repeat

for all s ∈ S1
min do

xs = max
α∈Act(s)

(R(s, α) +
∑

s′∈S P (s, α, s′) · xs′) ;

ys = min{ys, max
α∈Act(s)

(R(s, α) +
∑

s′∈S P (s, α, s′) · ys′)} ;

end for

until maxs∈S1
min

(ys − xs) ≤ 2ϵ;

return (ys+xs

2
)s∈S1

min
;

method is applied to update the values of x. After terminating value iteration, the initial value

for y is computed by considering the computed values for x. In this step and for each state

s ∈ S, the proposed approach considers ys = c · xs where c > 1 is a constant. To check the

soundness of the computed vector y several number of iterations of the VI method is applied

on this vector. If after these iterations, the value of all states decrease, it is guaranteed that the

computed vector is correctly an upper-bound of the values and can be used for the remainder

computations. Otherwise, several other iterations are applied on the vector x and a higher

value for c is considered. The process continues until getting a sound vector y. More details

about this approach is available in [10].

3. The Proposed Method

The possibility of using PI to update the values of the vectors x and y for the interval

iteration method has been recently investigated in [9]. It is not trivial to apply the PI method

to update the values of the upper-bound vector and [9] proposes an example where the PI

method picks some non-optimal policies and the II method with it terminates with some values

far away from the exact one. This case may happen for both extremal reachability probabilities

and expected rewards. Instead, a hybrid approach is mentioned in [9] to use a combination of

VI, PI and action elimination. The experimental evaluation of [9], however, does not cover this

case and only reports the results for the optimistic version of II[10] where the standard VI is

used to update values. It also considers PI when it uses II to resolve each induced DTMC. In

System Informatics (Системная информатика), No. 25 (2014) 45

this section, we provide our approach to apply PI as a solver for the interval iteration method

and discuss the possibility of applying some advanced techniques to reduce the overall running

time.

3.1. Sound Interval Iteration with Policy Iteration and Action

Elimination

In this section, we explain how to use PI and VI with action elimination for the interval

iteration method in a sound way. We propose this approach in Algorithm 2. It gets a MDP

model M , a constant K > 1, a threshold ϵ for terminating the computations and an initial

value for the vector x. The threshold ϵ can be considered as is in VI, PI and II[5]. For the

initial value of x the values for all states can be set to 0. For better explanation, we divide the

algorithm to three steps. The first step, contains a while loop and follows an approach similar to

the optimistic VI to compute a sound vector for upper-bound. However, our algorithm applies

PI to update the states of the vector x. After terminating PI, the initial value for the vector

x is computed by considering the constants c > 1 and d > 0. Then the algorithm updates the

values of y by applying K iterations of VI. If the value of all states decrease, the current values

for y provide a correct upper bound. Otherwise, several additional iterations of PI is applied

by considering smaller values for the threshold ϵ. It is guaranteed that these process will finally

terminate while has computed a sound vector y for upper-bounds [10, 12].

The second step, for each state s ∈ S considers the computed values for xs and label those

actions that give under-approximation for ys. Such actions can not give a correct value for the

upper-bound and should be disregarded for the remainder of the computations.

The third step updates the value of the vectors x and y until reaching a point where the

difference of the upper-bound and lower-bound for all states is less than ϵ. It uses PI to update

the values of the lower-bound and VI with non-disabled actions for the upper-bound.

Using PI to update the values of x and mark some actions as disabled can bring several

opportunity to improve the performance of the II method. There are some cases where the

standard version of PI outperform VI and hence, the former method can be a better option than

the later. In addition, the modified and improved versions of PI as are discussed in [9, 12, 13]

are faster than VI in most cases. Eliminating non-optimal actions avoids useless computations

and reduces the overall running time of the computations. The soundness of this algorithm

relies on the fact that PI will always converge to the true values from below if it uses sufficient

46 Mohagheghi M, Khademi A. Policy Based Interval Iteration for Probabilistic Model Checking

Algorithm 2 II with Policy Iteration for Emax
s .

input: an MDP M = (S, s0, Act, P,R), a set G of goal states, the set S1
min, a threshold ϵ

and an initial vectors x for the lower bound of values

output: Approximation of Emax
s for all s ∈ S with the precision of ϵ

flag = True;

while flag == True do

Apply PI on the vector x considering ϵ for termination of computations.

for all s ∈ S do

ys = c · xs + d;

end for

iters = 1;

while iters < K do

for all s ∈ S do

ys = min{ys, max
α∈Act(s)

(R(s, α) +
∑

s′∈S P (s, α, s′) · ys′)} ;

end for

iters = iters + 1;

end while

if ∃ s ∈ S1
min where ys has never decreased then

ϵ = ϵ/2;

else

flag = false;

end if

end while

for all s ∈ S1
min, α ∈ Act(s) do

if xs > R(s, α) +
∑

s′∈S P (s, α, s′) · ys′ then

Mark α as disabled.

end if

end for

repeat

for all s ∈ S1
min do

Update xs using PI;

Update ys considering non-disabled Actions;

end for

until maxs∈S1
min

(ys − xs) ≤ 2ϵ;

return (ys+xs

2
)s∈S1

min
;

System Informatics (Системная информатика), No. 25 (2014) 47

number of iterations, i.e., it never gets stuck in wrong state values. For the upper-bound the

soundness is provided when we apply the standard VI method [15] or disregard those actions

that do not surely give the optimal values.

4. Experimental Results

To analyse the running time of the proposed method in this paper with the standard one,

we consider a set of standard case studies that are widely used in the previous works [5,

9]. We use the PRISM model checker [11] to run the experiments. We also implemented

Algorithm 2 in PRISM. To do so, we consider the interval iteration [2] method (called II),

sound value iteration [15] (called SVI) and optimistic value iteration wthod[10] (called OVI)

from the previous works. We also consider Algorithm 2 with the standard PI method (PII), its

modified version [14] (MPII) and its improved version (IPII)[13]. The results of the experiments

are reported in Table1. For each method, we report the running time of iterative computations

and the total number of computations. All reported times are in seconds.

Table 1

The running time of the evalutaed methods.

Model Name Parameter Number of II SVI OVI PII MPII IPII

(parameters) Values states time iters time iters time iters time iterations

Coin 4,6 63616 89.7 67791 48.6 37750 41.3 30123 42 42056 33 30158 32.8 30147

(K,N) 4,10 104576 475 191473 226 93589 184 78495 154 85345 138 78538 139 78545

6,2 1258240 832 20811 509 13840 475 11624 663 31445 339 11642 342 11675

Zeroconf 6 798471 23.2 1491 12.6 747 10.7 635 11.7 647 11.5 1086 9.78 794

(K) 10 3001911 96 1546 49.6 850 40.9 695 38.8 695 39,7 695 40.2 697

14 4427159 174 1822 76.6 812 69.7 746 63.1 746 67.2 782 749 64

Wlan 200 171542 15.4 6502 12.2 4709 11 4391 11.3 6092 9.24 4394 9.75 4719

(ttm) 800 409142 102 16509 96.2 15117 93.7 14668 85.4 17464 77.3 14671 78.6 14742

1600 725942 426 35841 367 31482 343 29016 293 32003 286 29019 288 29022

In most cases, our proposed method with modified policy iteration works better than the

optimistic value iteration method. In some cases, even the proposed method with the standard

policy iteration is faster than OVI. Altough in these cases, the overall number of iterations

increases, but because they consider only one action in most iterations, they are faster than

OVI. There are also some cases where the proposed method with improved policy iteration

outperforms the other cases.

5. Conclusion

In this work, we propose an approach to use PI for updating the values of states for the II

method. Experimental results demonstrate that our proposed technique with modified policy

48 Mohagheghi M, Khademi A. Policy Based Interval Iteration for Probabilistic Model Checking

iteration outperforms the best known previous work for optimistic value iteration. For the

future works, we plan to consider several improvements for policy iteration to reduce the overall

running time of the proposed technique.

References

1. Baier, Christel, and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

2. Baier, Christel, Joachim Klein, Linda Leuschner, David Parker, and Sascha Wunderlich. "Ensuring

the reliability of your model checker: Interval iteration for Markov decision processes." In Inter-

national Conference on Computer Aided Verification, pp. 160-180. Cham: Springer International

Publishing, 2017.

3. Baier, C., Hermanns, H., Katoen, JP. (2019). The 10,000 Facets of MDP Model Checking. In:

Steffen, B., Woeginger, G. (eds) Computing and Software Science. Lecture Notes in Computer

Science, vol 10000. Springer, Cham. DOI: 10.1007/978-3-319-91908-9_21

4. Br?zdil, Tom??, Krishnendu Chatterjee, Martin Chmelik, Vojt?ch Forejt, Jan K?et?nsk?, Marta

Kwiatkowska, David Parker, and Mateusz Ujma. "Verification of Markov decision processes using

learning algorithms." In Automated Technology for Verification and Analysis: 12th International

Symposium, ATVA 2014, Sydney, NSW, Australia, November 3-7, 2014, Proceedings 12, pp. 98-

114. Springer International Publishing, 2014.

5. Vojt?ch Forejt, Marta Kwiatkowska, Gethin Norman and David Parker. Automated Verification

Techniques for Probabilistic Systems. In M. Bernardo and V. Issarny (editors), Formal Methods

for Eternal Networked Software Systems (SFM’11), volume 6659 of LNCS, pages 53-113, Springer.

June 2011.

6. Haddad, Serge, and Benjamin Monmege. "Interval iteration algorithm for MDPs and IMDPs."

Theoretical Computer Science 735 (2018): 111-131. DOI: 10.1016/j.tcs.2016.12.003

7. S. Haddad and B. Monmege. Reachability in MDPs: Refining convergence of value iteration. In

8th International Workshop on Reachability Problems (RP), volume 8762 of Lecture Notes in

Computer Science, pages 125137. Springer, 2014.

8. Kwiatkowska, Marta, David Parker, and Hongyang Qu. "Incremental quantitative verification for

Markov decision processes." In 2011 IEEE/IFIP 41st International Conference on Dependable

Systems & Networks (DSN), pp. 359-370. IEEE, 2011.

9. Hartmanns, Arnd, Sebastian Junges, Tim Quatmann, and Maximilian Weininger. "A practitioners

guide to MDP model checking algorithms." In International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, pp. 469-488. Cham: Springer Nature Switzerland,

2023.

10. Hartmanns, Arnd, and Benjamin Lucien Kaminski. "Optimistic value iteration." In International

Conference on Computer Aided Verification, pp. 488-511. Cham: Springer International Publishing,

2020.

11. Kwiatkowska, M., Norman, G., and Parker, D. (2011a). Prism 4.0: Verification of probabilistic real-

System Informatics (Системная информатика), No. 25 (2014) 49

time systems. In International conference on computer aided verification, pages 585591. Springer

12. Mohagheghi, Mohammadsadegh, and Khayyam Salehi. "Accelerating Interval Iteration for Ex-

pected Rewards in Markov Decision Processes." In ICSOFT, pp. 39-50. 2020.

13. Mohagheghi, Mohammadsadegh, Jaber Karimpour, and Ayaz Isazadeh. "Improving modified policy

iteration for probabilistic model checking." Computer Science 23, no. 1) (2022): 63-80.

14. Puterman, Martin L., and Moon Chirl Shin. "Modified policy iteration algorithms for discounted

Markov decision problems." Management Science 24, no. 11 (1978): 1127-1137.

15. Quatmann, Tim, and Joost-Pieter Katoen. "Sound value iteration." In International Conference

on Computer Aided Verification, pp. 643-661. Cham: Springer International Publishing, 2018.

