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Memory model describes the memory consistency requirements in a multithreading

system. Compiler optimizations may violate the consistency requirements due to bugs, and

the program behavior will differ from the required one. The bugs in compiler optimizations,

like incorrect instruction reordering, are very difficult to detect, because they may occur

with a very low chance in real execution on a hardware.

There are different approaches of formal verification for memory consistency require-

ments, but the challenge is that the approaches are not scalable for industrial software. In

the paper we present the MCC tool that was evaluated on the industrial virtual machine

ARK VM and was able to find a real bug in a compiler optimization.

The MCC is a static tool, which allows to check all possible executions of a particular

test, not relying on a hardware execution. The approach also includes test suite generation

and specification of memory consistency properties.
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1. Introduction

Nowadays processors have one or more layers of cache memory, which improves performance.

However, their use also throws up new challenges. Hardware memory model defines necessary

and sufficient conditions to guarantee that memory writes by other processors will be visible to

the current processor, and that the current processor’s writes will be visible to other processors.

There exists a strong memory model, which guarantees that all processors always see exactly

the same values for any given memory location. An opposite case is a weaker memory model.

There is different software, which can be executed over different hardware architectures. So,

languages, like C++ or Java, specify its own memory models, which describe software behaviour

independently from hardware. Java Memory Model (JMM) [1] provides strong guarantees, for

example, if Java program does not have data races the programmer may assume sequentially

consistent behavior.

ARK VM1 is a general virtual machine, which is a part of a unified operating system Har-

1https://gitee.com/openharmony-sig/arkcompiler_runtime_core.git
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Shared variable: var.x ; local variables: sum, r...

loop:

wait()

sum += var.x

...

Before optimization

...

r = var.x

loop:

wait()

sum += r

...

After optimization

Fig. 1. Example of a program in pseudocode before and after optimization

monyOS 2. Like the other virtual machines ARK VM supports running multithreaded programs.

Such programs consist of threads concurrently executing VM instructions, e.g. writing to or

reading from the memory. Some instructions have a special memory consistency semantics

providing guarantees for a programmer when the other threads will see memory updates. For

example, for Java there are strong guarantees that threads will see the results of writing to

and reading from volatile variables in a sequentially consistent order. This memory consistency

guarantees are specified in JMM. ARK VM has its own memory model (MM).

ARK VM should satisfy the requirements of MM, i.e. both ARK interpreter and ARK

compiler. In our method we focused on the latter, i.e. verifying that the ARK compiler fulfills

memory consistency requirements. More specifically we are interested in correctness of opti-

mization transformations performed in Just-in-Time (JIT)/ Ahead-of-Time (AoT) of the ARK

VM compiler. The method checks that ARK compiler optimizations generate code in target

hardware instruction set architecture (HW ISA) which does not break memory consistency

requirements of the input program.

The main contribution is an approach to detect memory consistency violations in the indus-

trial software. The approach is more general and may be applied to other VMs or compilers.

2. Motivating example

Consider the following example (in pseudocode) in Fig. 1.

Here in the loop there are two actions: wait and access to a shared memory var.x. A

compiler optimization transforms the code and extracts the read of the shared variable from

the loop to the local variable r. The transformation modifies the program logic. Imagine, for

example, a second thread, which updates var.x and then wakes the initial thread. Then the

2https://www.harmonyos.com/en/
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code after optimization will be able to read shared var.x before wake, but it is not possible

before optimization.

The task of proving that the left program is not equivalent to the right, is very complicated,

especially due to the presence of a loop. Also, dynamic tools likely may not reproduce the

problem, because it requires both a specific interleaving sequence between threads and specific

cache updates in a hardware. Thus, we have a task to develop an approach to detect such kind

of bugs.

3. Method Overview

The MCC approach breaks into three major parts:

• MCC-props - specifications of consistency properties;

• MCC-testgen - a test generator (OTK tool [2]);

• MCC-core - a core verification engine.

The main workflow is presented in Fig. 2. One has to specify constraints, or invariants,

which should be hold on the all program executions. MCC-testgen provides a test suite for

a specified property. When the test is compiled, the compiler optimizations are triggered.

MCC-core verifies, that the specified property holds on each compiled test (in native code).

Fig. 2. MCC approach overview.

4. MCC properties

As it was already written, in the approach we have two representations of program: before

compiler optimizations and after it. The first one is in the form of source code with the

corresponding VM MM. The second one is in the form of native code with corresponding HW

MM.

On each representation we can define a set of possible executions including sequence of
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events defined by the program order and the relation between written and read values, i.e.

which writes are seen by which reads. In general, we want to check that any execution in the

native code should be possible in the source code.

MM defines a set of synchronization events which significantly restricts the relation between

reads and writes. In many cases MM forbids to transfer reads and writes through synchroniza-

tion events. In our work we rely on this fact and specify our properties in terms of the sequence

of events along the execution.

In general, we formulate our properties in terms of sequence of events with modalities refer-

ring to time, similar to Linear Temporal Logic, but for the sake of effectiveness we introduced

a simple language in the form of source code model comments presented later. The language

is used to specify MM properties of ARK VM, namely ordering and existence specifications.

4.1. Ordering specification

There are different kinds of events in program: synchronization events (sync), non-synchroni-

zation events (unsync) and others. Synchronization events used for synchronization between

threads, they provide some guarantees for user, for example, access to Java volatile variable

or acquire of a lock. Thus, synchronization events cannot be reordered. Non-synchronization

events are accesses to the shared data, they depends from synchronization events, but may not

depend to each other. Thus, non-synchronization events can be reordered with each other, but

cannot be reordered with synchronization events.

So, this is ordering specification:

• synchronization events cannot be reordered;

• non-synchronization events cannot be reordered with synchronization events.

As it was already written, operations with volatile variables are an example of synchroniza-

tion events in JMM. In ARK VM there are intrinsic calls. The intrinsics have different flags,

related to optimizations. And a specific set of flags means, that the intrinsic call cannot be

optimized and can be expressed as a synchronization event. Reads and writes of a memory cell

are non-synchronization events. For ARK VM they are expressed as load/store into memory.

Thus, we have a set of non-synchronization events, each of them can not be reordered through

any synchronization event.

An example of specification is presented in Fig. 3. It contains a call of wait - a sync event

and a read of shared data - an unsync event.
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...

loop:

// MODEL: sync

wait()

// MODEL: unsync

sum += var.x

...

Fig. 3. Example of a program with a specification inside

So, intrinsics with the flags are synchronization event, and can not be optimized. In the

opposite case, it is possible to optimize and even remove the call.

4.2. Existence specification

One more generic property is that synchronization event cannot be totally removed by

optimization. Actually, this is very strong condition and dead code optimization can remove

the synchronization events. However, the check is rather important and in our experiments we

found a bug with missing flag using this property.

5. MCC test generator

MCC-testgen is built upon a method for test generation using extended ISA model (OTK) [2].

We extend this method by supporting model of situations with data types related to MCC-

props. We base on the model of situations which are being developed for generating tests

covering logic of optimizations in ARK compiler. We extend them with situations related to

MCC-props. For example, MCC-testgen model of situations introduces synchronization data

types which are combined with general models. Thus, MCC-testgen generates tests for covering

both general logic of optimization and a memory consistency property.

Currently, MCC-testgen provides model of situations for five optimizations: loop-invariant

code motion (LICM), LICM for conditions (LICMCond), loop peeling (LP), redundant loop

elimination (RLE), loop unrolling (LU). It means, that MCC-testgen generates tests specifically

to trigger the corresponding optimizations. Then, it combines the test with memory actions.

Every test is a sequence of actions, which trigger the optimization. For example, it may

have loops with different number of iterations, depth and so on. Between the actions, related

to optimization, there are actions, related to memory model events.



6 Andrianov P.S., Mutilin V.S. Static Memory Consistency Constraints Checking

Every memory action consists from three parts: pre-action, target action and post-action.

Target action may be a write to a local register, a write to a shared object or an empty action.

Pre-action and post-action can contain sync events, read/write to a shared object or an empty

action. There may be several memory action triples in a single test.

The testgen randomly iterates different kinds of memory actions and generate a specified

number of tests. For each test generated with the MCC-testgen the MCC-core verifies that

ARK compiler optimizations satisfy memory consistency requirements stated in MCC-props.

6. MCC core

MCC-core is a verifier of MCC properties on a VM program. It may be an any program,

but we used tests, provided by MCC-testgen. Actually, MCC needs not only an HW assembly

program with a specification, which operations are sync and unsync events. The relation is

extracted from a compiler dump with debug information.

The MCC-props specification is written inside a VM program using model comments. We

just need to mark synchronization and non-synchronization events inside source code of a test.

Then MCC-core checks that every specification constraint in terms of VM instructions is fulfilled

in the HW program. For every model event in terms of VM instructions, MCC-core finds its

HW assembler representation. And then it checks that the specified relation is the same. For

example, assembler instructions for event A are before assembler instructions for event B.

MCC-core result is a verdict saying, whether it has detected a scenario of execution of HW

variant which does not satisfy a specification property.

MCC-core takes a VM program (or directory) and configuration as input. Internally, it

performs the following steps:

• Model extraction – extracts a model of events: synchronization and non-synchronization

with relation to the origin source code.

• Preparation – obtains an assembly dump from the compiler.

• Assembler parser – obtains a relation of assembler instructions to the origin source code,

that is performed using the compiler dump information.

• Constraint checker – checks, that every synchronization event is not reordered or removed

in the assembler code.

Model extraction is performed just by model comments: if a line is marked as sync, it is

considered as a synchronization event. And unsync means non-synchronization event. There
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is also a possibility to specify constraints directly, for example, A > B, meaning the event A

must be after B. In general case the model comments should be set manually. However, as we

use a test generator, it performs all the work. So, the model comments are a part of OTK test

templates.

Preparation stage takes a source code, produces a bytecode file and then runs compiler to get

a compiler dump in Intermediate Representation (IR). A compiler dump file contains different

information, but we use it to extract relation from IR assembler operations to origin source

lines.

To extract the relation, we search pattern:

< IRoperation > ...(< filename >:< sourceline >)

However, not all IR operations has the information, thus it may be not complete. As source

lines are marked with sync and unsync events, using the relation, we may obtain the same

information about the assembler operations.

The constraint checker is implemented as a model checker based on Configurable Program

Analysis (CPA) [3, 4]. We implemented Sync CPA which checks MCC ordering and existence

properties. Its limitation still is false alarms due to dead code.

7. Discussion on method completeness

MCC approach performs static checks, and allows to consider all executions (see soundness

of CPA approach). So, for a particular test and a particular property the MCC approach is

able to be sound. For dynamic methods executing HW assembly on the processor the most

tricky part is reproducing bugs, because they have a low probability and require rare cache

coherence protocol states to occur.

The sources of incompleteness come from the techniques used in the components.

First, since we are basing on MCC-testgen and rely on the concrete set of generated tests.

The tests reach some coverage of model of situations and we can measure progress related to

the consistency model. However, we are dealing with tests, hence 100% coverage does not give

100% guarantee of covering all situations in the implementation.

Second, the set MCC properties elaborated from a memory model may not be complete.

Here we rely on our expert knowledge.

8. Evaluation
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To evaluate the MCC tool we used a machine with Ubuntu 22.04, Intel Core i5-6600K CPU

@ 3.50GHz × 4 and 32 Gb RAM. We generated 100 tests for the LICM optimization and then

checked MCC properties with MCC core. We run the tests on the origin ARK VM and on the

ARK VM with bug introduced. The bug is related to incorrect intrinsic flag, which potentially

may enable a compiler optimization in forbidden cases. The results are presented in Table 1.

Stage Wall Time CPU Time Passed Failed

Test generation 8 m 14 s 21 m 31 s - -

Normal run

MCC-core 45 s 45 s 100 0

A bug introduced

MCC-core 42 s 43 s 86 14

Table 1

Evaluation

Current version of the test suite for one LICM optimization achieves about 42% of line

coverage in compiler directory. Anyway, we are mostly interested in coverage of target code,

which works with memory events. Usually the target code is represented as conditions checking

the properties of instructions, i.e. whether it is a sync event or not. It not a big number in line

of code, but important for memory consistency. We manually inspected the collected coverage

and found that we covered such conditions.

With the MCC tool there was found a real bug. It has been existed for a long time in

optimization of intrinsic calls3. Some operations can be reordered with the call, which may

lead to unexpected behaviours.

9. Related work

For checking JMM requirements there exists benchmark sets, like JCStress4, which targets on

concurrency bugs, including memory model violations. The benchmark set allows to reproduce

MM bugs indeed, however, the chance is very low. For example, an introduced bug in volatile

processing was fixed after several months5, and test failure rate was about 0,0001%.

3https://gitee.com/openharmony-sig/arkcompiler_runtime_core/pulls/1389
4https://github.com/openjdk/jcstress
5https://gitee.com/openharmony-sig/arkcompiler_runtime_core/pulls/993
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One more approach for memory consistency verification is formal prove with Alloy [5]. The

approach requires to describe memory models of language and hardware, and also a mapping

from one to another (a model of compiler). Then, it is possible to prove with Alloy model

checker, if there is no forbidden execution found after “compilation”. The main problem of the

approach is performance, as with all formal methods. Authors used a rather powerful machine

with four 16-core 2.1 GHz AMD Opteron processors and 128 GB of RAM. However, proving

that compilation from C11 to x86 takes about 3 hours for an execution with 5 synchronization

events. Need to say, that comparison of memory models (without “compilation” task) takes less

time, especially, if a counterexample was found.

DoItYourself tool [6] allows to generate litmus tests for a specific hardware memory model.

Power and x86 are supported. Memory model specification is written on Coq, and then the tool

generates the test with a potential forbidden execution. If the forbidden execution is observed on

a real test run, it means, that the hardware does not fulfill its specification. The approach suits

for checking hardware memory model in case we have a complete memory model specification.

However, it does not consider compilation level and, moreover, compiler optimizations. Thus,

it solves another task.

10. Conclusion

We presented an approach for practical detection of memory consistency violations. It was

applied to an industrial virtual machine and found a complicated bug in compiler optimization.
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process-oriented programs and examples of their use

Chernenko I. M. (Institute of Automation and Electrometry SB RAS)

Process-oriented programming is a promising approach to the development of control

software. Control software often has high reliability requirements. Formal verification

methods, in particular deductive verification, are used to prove the correctness of such

programs regarding the requirements. Previously, a temporal requirements language [2] was

developed to specify temporal requirements for deductive verification of process-oriented

programs. It was also shown that a significant part of the requirements falls into a small

number of classes. Requirements patterns was developed for these classes. In this paper, we

present a collection of process-oriented programs and requirements for them. Requirements

are formalized in the temporal requirements language and classified according the set of

patterns. We also define a new requirement pattern. These results can be used in the

research of formal verification methods for process-oriented programs, in particular in the

research of methods of proving verification conditions.

Keywords: deductive verification, temporal requirements, control software, process-

oriented programs

1. Introduction

Formal verification is a crucial part in the development of safety-critical software, in par-

ticular, control software. Deductive verification is one of formal verification methods in which

program properties are formalized in the form of logical formulas expressing relations between

program variables (preconditions, postconditions and invariants) and added to the programs

as annotations. Then for this annotated program, the generation and proving of verification

conditions are performed.

Process-oriented programming [11] is one of approaches to control software development. A

process-oriented program is defined as a sequence of interacting processes which is executed in

the control loop. Each process is represented by a set of named executable codes called process

states.

Control software often has temporal requirements. Previously, we developed a deductive

verification approach [1] for process-oriented programs with temporal requirements. This ap-

proach entails utilizing control loop invariants and storing the history of changes in variable
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values to specify temporal requirements. In our work [2], we introduced the DV-TRL annota-

tion language oriented to deductive verification for formalizing requirements to process-oriented

programs. We also formalized a set of 45 requirements for 10 case studies and discovered that

a considerable portion of these requirements can be classified into a few distinct classes. Based

on these findings, we established four requirement patterns.

To verify temporal requirements, model checking is a commonly used method where temporal

properties are specified using temporal logic formulas (e.g., LTL or CTL). Model checking tools

then automatically check if the program model satisfies the specified requirements. However,

one limitation of model checking is the state explosion problem. Hence, deductive verification

is also employed to verify temporal requirements.

Deductive verification is typically used to verify functional requirements [5, 6]. In deductive

verification, requirements are described by assertions at certain points in the program linking

the current values of variables at these points [4]. Nevertheless, deductive verification is also

used to verify temporal requirements. For example, in STeP [8], verification rules are used to

reduce the proof of correctness of a program in the SPL language with respect to a temporal

formula to a set of verification conditions that are formulas of first-order logic. In [7] the

deductive verification of control software with temporal properties specified using timing charts

is presented. The Why3 system is used for verification. Events and stable states of the timing

chart are represented in Why3 by loops, the body of which corresponds to the iteration of

the control loop, and the guard specifies the stable state of the timing chart. In our work,

we define temporal properties in the form of invariants of the control loop. Unlike STeP, we

do not develop special verification rules for temporal formulas, but use the rules of axiomatic

semantics, similar to the rules of Hoare logic.

Temporal specification of requirements plays a crucial role in the development of critical con-

trol software. However, this process is often burdensome and prone to errors. To address these

challenges, research is being undertaken to simplify the temporal specification. For instance,

in [9], the authors introduce a classification encompassing commonly encountered temporal

requirements in specification tasks. Similarly, we have developed our own classification and

established patterns. While our classification may be incomplete, it incorporates requirement

classes identified in real control system specifications.

This paper aims to expand the set of temporal requirements and establish control programs in

the process-oriented language poST [12]. Additionally, we enhance the collection of requirement
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patterns to align with the extended set of requirements.

The rest of the paper has the following structure. We describe the temporal requirements

language in Section 2 and requirement classification in Section 3. In Section 4, we present the

set of case studies.

This work is supported by the Russian Ministry of Education and Science, project no.

122031600173-8.

2. Temporal Requirements Language DV-TRL

The temporal requirement language DV-TRL introduced in [2] is based on state date type

storing the history of all changes of program variables and the set of specialized functions over

this data type. The state data type is defined by the following set of constructors:

• emptyState : state the initial empty state of the control system;

• toEnv : state → state inputs to the environment

• setV ar : state× variable× value → state sets values to variables;

• setPstate : setPstate : state× process× pstate → state sets process states;

• reset : state× process → state resets local clocks of processes.

A corresponding constructor is defined for each type of changes in programs.

Following domain-specific functions over the state data type are used in program annota-

tions:

• getV ar : state× variable → value returns values of variables;

• getPstate : state× process → pstate returns current states of processes;

• substate : state×state → bool checks that the first state is a substate of the second state.

A state s′ is a substate of s if s′ = s, or there exist a state s′, a constructor c, and values

v1, ..., vn such that s′ = c(s′′, v1, . . . , vn), and s′′ is a substate of s;

• toEnvNum : state× state → nat returns a number of application of constructor toEnv

for getting the second state from the first substate. The score starts anew if the reset

constructor meets;

• toEnvP : state → bool checks whether the state has the form toEnv(s) for some s;

These functions allow describing the requirements for process-oriented programs in a natural

way.

Here the value type is a union of types bool, nat and int. Types bool, nat and int describe

sets of logical constants (true and false), natural numbers and integers numbers, respectively.
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The variable, process, and pstate types are used to encode the names of variables, processes,

and process states of a process-oriented program respectively.

3. Requirements Patterns

In this section, we will be discussing 5 temporal requirements patterns. These patterns

are formulated as parametric formulas in the DV-TRL language. The initial 4 patterns were

previously introduced in [2]. We add one more pattern and present the formula only for it.

The first pattern establishes requirements that specify that event E2 should occur no later

than τ after event E1. An example of this is the first requirement for the turnstile control

program, which we will discuss further below.

The second pattern describes requirements that state that a specific event will occur after

one iteration of the loop. An example of this is the first requirement for the thermopot control

program, which we will presented on later.

The third pattern describes requirements that assert that events should occur at one specific

point within the control loop. An example of this is the sixth requirement for the revolving

door control program, which we will examine in more detail below.

The fourth pattern for requirements combines the first and second patterns. If event E1

occurs, event E2 must occur within a time interval of τ . In this scenario, the formula that

describes E1 imposes restrictions on the variable values in two different states, separated by

one iteration of the control loop. An example of this class is the first requirement for the

pedestrian crossing light control program that will be discussed later.

The fifth pattern describes requirements that state that if event E1 occurs, event E2 can

only occur after a minimum time interval of τ . The formula that describes event E1 imposes

restrictions on variable values in two distinct states, with the time between them being one

iteration of the control loop. The requirements pattern for this class can be expressed as

follows:

E1 has happened, then event E2 does not happen for at least τ .

p5(s, τ, vc1, vc2) ≡

toEnvP s∧

(∀s1s2s3. substate s1 s2 ∧ substate s2 s3 ∧ substate s3 s ∧ toEnvP s1 ∧ toEnvP s2∧

toEnvP s3 ∧ toEnvNum s1 s2 = 1 ∧ toEnvNum s2 s3 < τ ∧ vc1(s1, s2) −→ vc2(s3),

where variable constraint vc1 describes the event E1, vc2 describes the event E2. This class
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includes, for example, the fourth requirement for the fridge control program considered below.

4. Case Studies

This section presents the set of case studies. We provide descriptions of the case studies

and requirements for them as well as classify these requirements according to the patterns and

provide examples of their formalization. The poST programs can be found on GitHub [13].

4.1. Turnstile

In this case study, we examine a turnstile as a controlled device. The turnstile is equipped

with a coin acceptor, doors operated by a signal (open), an LED (enter) indicating the possibility

of passage, and two sensors to detect the presence of a user (PdOut) and the opening of the

doors (opened). The doors remain locked until a payment signal (paid) is received from the

coin acceptor, after which they open. If the user does not pass through within 10 seconds after

the doors open, they will automatically close. After a successful payment, the coin acceptor is

locked. The coin acceptor is unlocked by a reset signal once the turnstile is closed.

For the turnstile control program, we propose the following 7 requirements:

1. The open signal should remain true for a maximum of 10 seconds.

2. If the turnstile has been closed and the payment has not been made, it will not open until

the payment is made.

3. After receiving the paid signal from the coin acceptor, the open signal should be given

immediately.

4. After receiving the PdOut signal indicating the passage of a user, the turnstile must be

closed within a maximum of 1 second.

5. The open signal should remain true for a minimum duration of 1 second.

6. After the opened signal appears and until it is reset, the enter LED should be lit.

7. After the turnstile is closed, the signal reset should be given to unlock the coin acceptor.

The requirement 1 belongs to the 1st class. The requirements 2, 3 and 7 belong to the 2nd

class. The requirement 4 belongs to the 4th class. The requirement 5 belong to the 5th class.

The requirement 6 belong to the 3rd class. For example, the first requirement is formalized as

the following annotation:

toEnvP s∧

(∀s1. substate s1 s ∧ toEnvP s1 ∧ toEnvNum s1 s ≥ 100 ∧ getVarBool s1 open′ −→



16 Chernenko I.M. Requirements patterns in deductive verification of process-oriented programs and examples of ...

(∃s3. toEnvP s3 ∧ substate s1 s3 ∧ substate s3 s∧

toEnvNum s1 s3 ≤ 100 ∧ ¬ getVarBool s3 open′∧

(∀s2. toEnvP s2 ∧ substate s1 s2 ∧ substate s2 s3 ∧ s2 ̸= s3 −→ getVarBool s2 open′)))

4.2. Pedestrian Crossing Light

In this case study, a pedestrian crossing light with a button installed at the crossing is

considered as a controlled device. Its regular state is "red". When a pedestrian appears at the

crossing, he presses the button. If the green signal of the pedestrian crossing light was on more

than 10 seconds ago, then the green signal will turn on 5 seconds after pressing the button.

If the green light was on no more than 10 seconds ago, then the green will turn on after the

timeout between transitions equal to 15 seconds. If green is turned on, it will be on for 30

seconds, then red turns on.

Thus, there is one input signal ("the button is pressed") and one control signal ("green is

on"). The program gets the input signal and, depending on it, controls the traffic light signal.

This program should satisfy the following requirements:

1. If the red light is on and the button is pressed, the green light will be activated within a

maximum of Tr seconds.

2. If the green light just has turned on, then the green light will be on for at least Tg seconds.

3. Once the green light has just been activated, it will transition to red within a maximum

of Tg seconds.

4. If the red light just has turned on, then the red light will be on for at least Tr seconds.

Here Tr is the maximum time during which a pedestrian waits for the green signal of the

traffic light to turn on after pressing the button, equal to 15 seconds, Tg is the duration of the

green signal of the traffic light, equal to 30 seconds.

The requirements 1 and 3 belong to the 4th class. The requirements 2 and 4 belong to the

5th class. For example, the first requirement is formalized as the following annotation:

toEnvP s∧

(∀s1s2. substate s1 s2 ∧ substate s2 s ∧ toEnvP s1 ∧ toEnvP s2 ∧ toEnvNum s1 s2 = 1∧

toEnvNum s2 s ≥ Tr ∧ getVarBool s1 trafficLight = RED∧

getVarBool s1 requestButton = NOT_PRESSED∧

getVarBool s2 requestButton = PRESSED −→

(∃s4. toEnvP s4 ∧ substate s2 s4 ∧ substate s4 s ∧ toEnvNum s2 s4 ≤ Tr∧
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getVarBool s4 trafficLight = GREEN∧

(∀s3. toEnvP s3 ∧ substate s2 s3 ∧ substate s3 s4 ∧ s3 ̸= s4 −→

getVarBool s3 trafficLight = RED)))

4.3. Revolving Door

In this case study, a revolving door is considered as a controlled device. Revolving doors

are installed at the entrances to buildings with a large flow of visitors. The device consists of

a three- or four-section door rotating around a vertical axis, a motor and a brake for instant

stop of the door.

In the absence of users, the door is stationary, and when the user approaches, it begins to

rotate. The rotation continues while the user is inside the rotation space. The approach of the

user and his presence inside the rotation space is registered by the motion sensor (user). If the

user leaves the rotation space, then after a certain time the rotation stops.

The pressure sensor registers the pressure on the sectional partitions. Rotation is suspended

for a short time when pressure is exerted to the partitions.

We offer the following requirements for this program:

1. When a user enters, the door starts to rotate if pressure is not detected.

2. Rotation continues while the user is inside the rotation space if pressure is not detected.

3. If the user has left the rotation space, then the rotation should stop after no more than

1 second if users do not reappear during this time.

4. If pressure is detected, then rotation should be suspended for at least 1 second.

5. If pressure is no longer detected then rotation should resume no more than 1 second.

6. Simultaneous appearance of rotation and brake signals is prohibited.

Here the requirements 1 and 2 belong to the 2nd class. The requirements 3 and 5 belong to

the 4th class. The requirement 4 belongs to the 5th class. The requirement 6 belongs to the

3rd class. For example, the sixth requirement is formalized as the following annotation:

toEnvP s∧

(∀s1. substate s1 s ∧ toEnvP s1∧

getVarBool s1 brake = True −→ getVarBool s2 rotation = False)

4.4. Fridge

In this case study, a fridge is considered as a controlled device. The fridge consists of a

fridge and a freezer and has two compresses. The temperature in the fridge is registered by the
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fridgeTempGreaterMin and fridgeTempGreaterMax sensors, showing whether the temperature

exceeds the minimum and maximum values, respectively. To control the temperature in the

freezer, the device has sensors freezerTempGreaterMin and freezerTempGreaterMax. The fridge

maintains the temperature in the range between the minimum and maximum values. When

the temperature in the fridge is exceeded, the compressor (fridgeCompressor) turns on, which

turns off when the temperature reaches the minimum value. The freezer Compressor is used

for the freezer. When the fridge door is opened, the lighting turns on, which turns off when

it is closed. If the fridge door is open for more than 30 seconds, a sound signal (dorsignal) is

given.

We offer the following requirements for this program:

1. When the fridge door is opened, the lighting turns on.

2. When the fridge door is closed, the lighting turns off.

3. If the fridge door is open, the signal is given after no more than 30 seconds if the user

does not close the door during this time.

4. The sound signal is not given spontaneously. The signal is given only if the door is open

for at least 30 seconds.

5. If the temperature in the fridge exceeds the maximum, the compressor turns on.

Here the requirements 1, 2 and 5 belong to the 2nd class. The requirement 3 belongs to the

1st class. The requirement 4 belongs to the 5th class. For example, the fourth requirement is

formalized as the following annotation:

toEnvP s∧

(∀s1s2s3. substate s1 s2 ∧ substate s2 s3 ∧ substate s3 s ∧ toEnvP s1 ∧ toEnvP s2∧

toEnvP s3 ∧ toEnvNum s1 s2 = 1 ∧ toEnvNum s2 s3 < OPEN_DOOR_TIME_LIMIT

getVarBool s1 fridgeDoor = CLOSED′ ∧ getVarBool s2 fridgeDoor = OPEN −→

¬ getVarBool s3 doorSignal)

4.5. Thermopot

In this task, a thermopot is considered as a controlled device. A thermopot is the device

that combines the functions of a kettle and a thermos. The thermopot has three temperature

modes. It heats the water to the temperature corresponding to the selected temperature mode

(selectedTemp), and maintains this temperature. The device contains a housing with a sealed

flask, which allows it to maintain the required temperature for a long time, a lid and a heating
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element (heater). There is a control panel with three buttons (button1, button2, button3) on

the lid that allow you to select the desired temperature mode. The boiling button (boiling-

Button) is used to turn on the boiling. During boiling, the lid is locked. Output signal lid

controls the lid locking. After boiling, the thermopot switches to the temperature maintenance

mode. In the temperature maintenance mode, the heating element turns on when the water

temperature becomes more than 5 degrees less than the set temperature. The boilingMode and

maintainingMode indicators show whether the thermopot is in the boiling and temperature

maintenance mode, respectively.

We propose the following requirements for this program:

1. Until the required temperature is reached, the lid is locked.

2. When the set temperature is reached, the heating element turns off.

3. The heating element turns on when the water temperature becomes more than 5 degrees

less than the set temperature.

4. When one of the temperature mode selection buttons is pressed, the corresponding re-

quired temperature is set.

item If the boiling button is not pressed, the heating will not turn on.

Here the requirements 1, 2, 3 and 5 belong to the 2nd class. The requirement 4 belongs to

the 3rd class. For example, the first requirement is formalized as the following annotation:

toEnvP s∧

(∀s1s2. substate s1 s2 ∧ substate s2 s ∧ toEnvP s1 ∧ toEnvP s2 ∧ toEnvNum s1 s2 = 1∧

getVarBool s1 boilingMode′ ∧ getVarInt s2 temperature′ < BOILINGPOINT ′ −→

getVarBool s2 lid′ = LOCKED′)

5. Conclusion

In this paper, we proposed a collection of control programs in process-oriented poST lan-

guage. We formulated a set of temporal requirements for each program. These requirements

have been classified according previously developed requirements patterns. This classification

confirmed that most of the requirements belong to previously introduced classes, but some

requirements form a new class. We defined the pattern for this requirements class. The devel-

oped collection of process-oriented programs can be used in the research of methods of formal

verification of such programs, in particular, in the development of a methodology for proving

verification conditions.
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In the future, we plan to investigate the possibility of automation of proving verification

conditions for requirements belonging to developed classes.
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The process-oriented programming is a paradigm based on the process concept where

each process is a concurrent finite state machine inside. The paradigm is intended for PLC

(programmable logic controllers) developers to write Industry 4.0-enabled software. The

poST language is a promising process-oriented extension of the IEC 61131-3 Structured

Text (ST) language designed to provide a conceptual consistency of the PLC source code

with technological description of the process under control. This language combines the

advantages of FSM-based programming with the standard syntax of the ST language.

We propose transformational semantics of poST providing rules for translation of poST

language statements to Promela – the input language of the SPIN model checker. Following

these semantic rules, our Xtext-based translator outputs a Promela model for the poST

program. Our contribution is a method for automatic generation of the Promela code from

poST control programs. The resulting Promela program is ready to be verified with SPIN

model checker against linear temporal logic requirements to the source poST program.

Keywords: control software, model checking, process-oriented programming, LTL,

SPIN, Structured Text

1. Introduction

With the significant progress in formal methods for proving program models, the question

of their applicability to real software remains. It can be stated that the application of such

methods to general programs does not seem appropriate due to the laboriousness of translating

language constructs with ambiguous semantics, a large state space, and the uncertainty or

inexpressibility of requirements.

In the field of control software, the situation is twofold: on the one hand, the cost of an

error is high, and control programs need formalization and proving correctness with respect

to formalized requirements, on the other hand, programs for PLC (Programmable Logic Con-
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trollers) designed to implement industrial process control algorithms are concise, the languages

themselves contain a small number of constructions, the requirements are expressible as there

are few key control variables. These features of PLC languages makes applicability of formal

methods more promising.

Currently, the languages of the IEC 61131-3 standard [11] are used for programmable indus-

trial controllers. They differ in program representation: in text, ladder diagrams, function block

diagrams and instruction lists. In this work, we focus on a textual representation in Structured

Text (ST) language. This language is Pascal-like and has a simple syntax with some features

(e.g. timers, intervals) specific to PLC programs [10, 11]. However, most control programs are

cyclical and state dependent, resulting in a large number of switch statements.

Exploiting this feature and presenting developers with convenient means of operating with

states and transitions, we introduce the concept of process as the main logical entity of the pro-

gram. We call programming according to this methodology process-oriented, and the language

that adds such syntactic sugar is called process-oriented programming language. Note, that

it is reasonable to extend standardized ST language, since the development, simulation and

firmware creation environments for real controllers are already adapted for this language. The

poST (process-oriented Structured Text) language is one of such extensions, which is compiled

into the ST language. The source-to-source compiling is also called transpiling, and nowadays

it is a convenient means to switch between various languages [8].

The use of formal verification methods for PLC programs is justified primarily by the fact

that such programs can work with expensive equipment of some plant and the incorrect behavior

of the program can lead to both financial losses and serious consequences for the environment

and plant personnel. Therefore, it is necessary to provide as many means as possible for static

checks of such programs in the early stages of their production.

In this paper, we present an automatic translation of poST programs into programs in the

input language of a program verifier which use the model checking method. A review of the

practices of applying the model checking for such systems is presented in the paper [9].

In our series of previous works, we used the SPIN verification tool [7] coming with the

Promela input language (Protocol Meta-Language), which corresponds to the CSP approach

[6], that is, it has the ability to describe systems as interacting processes. This is close to

process-oriented, but not quite the same: the language does not work with process states by

language means, although states, processes and switching between them can be represented
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in the form of conditional structures, additional variables, and passing the progress through

channels.

In this paper, we describe, the code transformation from poST to Promela as well as the

issues of formalizing and implementing such transpiling. The implementation is a solution

based on the Eclipse Xtext parser tool in Java and Xtend.

The rest of the paper has the following structure. In Section 2, we consider features of the

poST and Promela languages. Section 3 defines rules for the transformational semantics for

the poST language and the conclusion is given in Section 4.

This work is supported by the Russian Ministry of Education and Science, project no.

122031600173-8.

2. The poST and Promela languages

The poST language is a novel process-oriented extension of the IEC 61131-3 Structured Text

(ST) language which provides conceptual consistency of the PLC source code with technolog-

ical description of the process under control. The language combines the advantages of FSM

based programming with the conventional syntax of the ST language which would facilitate its

adoption.

Inspired by a general PLC scan cycle, a poST program includes processes whose activity is

orchestrated into a cycle in order of their appearance in the program code. This scheme expects

PLC models that abstract from a scan cycle time [5]. Each process is specified by an ordered

set of process states. To describe process states, we use standard ST constructs (variable dec-

larations, control-flow statements, etc.) and specific process-oriented features: process states

statements (START/STOP PROCESS, SET NEXT and other) and timeout statements. The seman-

tics of the poST language assumes an automatic implementation of low-level constructions for

mapping I/O signals to program variables, process states, timeout statements, and cyclic time-

triggered control. The grammar of the poST language in the Xtext format is available in the

repository [15].

Promela language [13] is used to describe parallel communicating processes based on the CSP

formalism [6]. Promela program consists of parallel processes communicating through channels

or shared variables. The execution of a set of Promela parallel processes exploits the interleaving

semantics. Interleaving can be bounded by atomic and d_step statements, which permit

interruption of specified sequence of process actions. The Promela language includes blocking
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control-flow statements if and do, unlike standard non-blocking poST control-flow statements.

Promela model can be verified by model checker SPIN [7] against LTL requirements, hence it

assumes only finite types for model variables. This causes the main difficulty of translation

poST programs to Promela models because poST types for real numbers cannot be directly

translated to Promela types.

The poST language specifies control algorithms which interact with some environment.

Hence, we suppose that the source poST code may contain the control program and the con-

trolled object program. Translating this code, we construct the Promela model that corresponds

to the order of processes activation, the structure of process states, timeout management, and

variable types up to abstracting from real types.

3. poST Language Transformation Rules

In this section, we describe representative translations from poST language to Promela

language. We start from common constructs as types, variables, standard operations and

control-flow statements (Sections A and B). Further, we present special process-oriented fea-

tures, namely, a scan cycle, process states, timeouts, and special LTL forms for requirements.

The complete formal transformational semantics for poST is located in the repository [14].

3.1. Naming, Types, Declarations, and Operations

poST has global, program, and process namespaces, while Promela only has global and

process namespaces. To avoid name collisions, we form the full entity names in the Promela

model of a poST program taking care of (1) the entity name; (2) the entity kind (process,

variable, etc.); and (3) the name of the entity owner. To improve program readability, we use

the default naming mode which takes into account just entity kinds enriched with counters if

there are several equal names in the global Promela namespace.

Variable types are translated trivially in most cases. We consider poST programs without

real variables, since Promela does not have real types, and data type abstraction is beyond

the scope of this paper. Translation of the TIME type is discussed below when describing the

translation of the TIMEOUT expression.

Following this naming and type policy, all renamed poST variables are declared in Promela

model as global variables, and poST constants are trivially translated using Promela directive

#define.
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Promela includes the same operations as poST except exponentiation which can be modeled

bit-wise shift Promela operations.

3.2. Control-Flow Statements

In Table 1 we give translation two kinds of poST control-flow statements to Promela code.

Let code′ be the Promela image of the poST code made by our translation algorithm. We use

the Promela else branch and the skip statement in the translation of the poST IF statement

because the Promela if statement is blocking and the process cannot proceed further if con-

dition cond is false. Following the Promela semantics, else branch is chosen when no other

condition in if statement is satisfiable. The skip statement in this branch just does noth-

ing. The poST CASE statement is translated in the similar way. The Promela do statement is

also blocking, hence in modeling poST DO statement we need the else branch with the break

statement to model the termination of a loop in Promela.

Table 1

Control-Flow statements

poST Promela poST Promela
IF cond THEN if :: cond′ -> { body′ } WHILE cond do :: cond′ -> { body′ }

body :: else -> skip; DO body :: else -> break;
END_IF fi; END_WHILE od;

3.3. Process-oriented features

A control system is specified in poST by a set of poST programs. Hence, we should translate

several poST programs into a single Promela model. A particular poST program consists of

processes which activated cyclically one after another. Several poST programs run in a joint

scan cycle in the order of their appearance in the source code. In Promela, we model this

cyclic activation sequentially passing a move message from a process to a process through a

Promela channel in the order in which poST processes appear in the source programs. Promela

channels support blocking reads and writes. We use the channel turn of capacity 1 to pass

nicknames of processes in move messages. Every process is initially blocked until reading its

nickname from this channel. After execution of its body, a process pushes the nickname for

the next process into the channel to pass the move. The Promela process for the last poST

process turns the move to the service process Gremlin which represents the non-deterministic
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environment generating input values. This process is the first process of the resulting Promela

model. Due to sequential activation semantics of poST programs, we use Promela atomic

statement for the body of every translated poST process. This statement permits interleaving

execution of other processes and significantly simplifies verification. The left block of Table 2

gives translation of the upper process structure of poST programs to Promela.

Table 2

Process-oriented features

poST Promela poST Promela
PROGRAM prog1 mtype : P = PROCESS id mtype:S_id′ =
PROCESS id11 { p_id′11, ... } STATE s1 {s_s′1,...,s_Error′}

body11 chan turn=[1]of{mtype:P} body1 mtype:S_id′

END_PROCESS END_STATE c_id′ = s_Stop′;
... active proctype id′11(){ ... active proctype id′(){

END_PROGRAM do :: turn ? p_id′11 -> STATE sn do :: turn ? p_id′->
... atomic { bodyn atomic {
PROGRAM progm body′11; END_STATE if
PROCESS id1m turn ! p_id′21;} END_PROCESS :: c_id′==s_s′1->

body1m od; { body′1 }
END_PROCESS } ...
... ... :: else ->skip;

END_PROGRAM active proctype id′nm(){ fi;
... turn ! nx_pr;}
} od;

}

A body of a poST process consists of states, including special states of inactivity STOP and

ERROR. At every iteration of the scan cycle, the poST process executes the code corresponding

to some of its states except states STOP and ERROR when it does nothing. In Promela, we use a

special state counter for every translated process to keep the name of the current state. At the

start of a poST program, its first declared process is in its first state and all other processes are

in state STOP. The right block of Table 2 gives translation to Promela for a particular poST

process.

poST processes can check an activity status of other processes with statement ACTIVE and

INACTIVE. Also each process can force itself or anther process to change its state with state-

ments RESTART, STOP, START PROCESS, STOP PROCESS, and others. These poST statements are

translated trivially to Promela if the goal state do not include TIMEOUT statement. Please, see

examples in the right block of Table 3.

poST process states can have a TIMEOUT block as the last state block. Instructions of this
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block is executed after the time specified in the timeout has elapsed since the process entered

this state. To model this behaviour in Promela, we introduce a counting time variable — one

per each process that contains states with TIMEOUT.

To reduce the size of the Promela model, we provide the following optimisation for model

time counters. First, we use the value of poST scan cycle (INTERVAL) to reduce all timeout

values to the nearest multiple of this interval. Second, we divide all timeout values by their

greatest common divisor. In addition, we choose the minimum sufficient size nb of the unsigned

type for the time counters. For example, we add one time counter with a size of 4 bits if a

resulting Promela process has two states with timeouts that count 5 (101b) and 9 (1001b) units

of time.

At every scan cycle, if a process in a state with a timeout, its time counter is incremented.

A process counter sets to zero when (1) the process resets the timeout; (2) the process moves

to other state; and (3) timeout happens. Following poST semantics, we use the > sign in

the Promela timeout if statement because the execution of the timeout block begins at the

next cycle after the timeout time has passed. We give the representative model constructs for

timeouts in the left block of Table 3.

Table 3

State and Timeout Statements

poST Promela poST Promela
IF (PROCESS id if PROCESS id1 unsigned t_id′1 : nb

INACTIVE) :: c_id′ == s_Stop′ || STATE s1 active proctype id′1()
THEN body c_id′ == s_Err′ -> body1 { ...
END_IF { body′ } TIMEOUT T#tt :: c_id′1 == s_s′1 ->{
PROCESS id :: else -> skip; fi; THEN bodyt body′1
STATE s1 active proctype id′(){ END_TIMEOUT if

body1 do :: turn ? p_id′-> END_STATE :: t_id′1 > tt′ ->
SET NEXT atomic { ... body′t

END_STATE if END_PROCESS :: else ->t_id′1++;
STATE s2 :: c_id′==s_s′1 -> fi;}

body2 { body′1 ... }
END_STATE c_id′ = s_s′2; } PROCESS id2 active proctype id′2()
... :: c_id′==s_s′2 -> STATE s2 { ...
END_PROCESS { body′2 } body2 :: c_id′2 == s_s′2 ->{

... START body′2
:: else -> skip; PROCESS id1 c_id′1 = s′1;
fi; END_STATE t_id′1 = 0; }
turn ! next;} ... ...

od; } END_PROCESS }
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Table 4

The Promela model for poST programs

poST Promela
PROGRAM prog1 V ar_Declaration′

1

V ar_Declaration1 ...
PROCESS name11 V ar_Declaration′

m

... Service_Declarations
PROCESS namen1 init{ turn ! p_Gremlin; }

END_PROGRAM active proctype Gremlin(){...}
... active proctype OutInput(){...}
PROGRAM progm active proctype BOC(){...}
V ar_Declarationm active proctype name′11(){...}
PROCESS name1m ...
... active proctype name′nm(){
PROCESS namenm do :: turn ? p_name′nm ->

END_PROGRAM atomic { ...
turn ! p_Gremlin; }

od;
}

3.4. Overall Promela model for poST programs

In general, our translation algorithm takes as input several poST program that describe

a control system in one file. This control system may include the control algorithm and its

environment: controlled and uncontrolled objects. In Table 4, we give the resulting Promela

model, which includes three service processes and processes corresponding the source poST pro-

cesses. Non-deterministic service process Gremling models uncontrolled object. Service process

OutInput cares about proper corresponding of inputs and outputs of programs composing the

source program. Service process BOC captures the beginning of the scan cycle for checking

requirements. Activity of these processes forms a scan cycle by passing move messages between

them starting from the Gremling process modeling initial inputs from uncontrolled object and

ending with the last source poST process which pass move message to Gremlin again. Inside

the cycle, the processes activity is ordered as described in Table 2.

4. Discussion and Conclusion

In this paper, we have considered approaches to formalization and implementation of the

source-to-source compiling (transpiling) process. For PLC programming languages with a small

number of statements, such a process is justified, since all constructs of the input language

can be converted into language constructs for which methods of formal program verification
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have already been well developed (in this case, we use the model checking method and SPIN

verification system). This allows us to make examples of PLC programs intended for verification

and not to write repetitive code constructs in Promela related to the semantics of process

switching, transitioning through states, exchanging variable values and generating an impulse

for checking program properties w.r.t. scan cycles. The project is publicly available in our

repository [12]. Among the shortcomings of the current approach, we note the incomplete

support for data types, in particular, real variables are not supported. This can be eliminated

by implementing libraries of both fixed-point and floating-point arithmetic, however, this will

entail a huge number of states and the verification of resulting programs cannot be done without

manual abstraction methods. Also, library functions are not implemented.

As a result, with the development of the considered transpiler, we are approaching the

development of a toolchain for writing verifiable programs in the process-oriented style.
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SSA (static single-assignment) form is an intermediate representation for compiling

imperative programs where every variable is assigned to only once. Properly defined, SSA

form gives rise to the family of purely syntactic categories with some nice properties. We

hope this lays out the groundwork for categorical approach to compiler optimization.

Keywords: formalisms for program semantics, category theory, program synthesis and

transformation

1. Introduction

In compilers of imperative languages, a program is usually represented as a control flow

graph (CFG) where every block is a sequence of assignments and, notably, reassignments. SSA

(static single-assignment) is a special form of CFG where every variable is assigned to exactly

once. SSA form is useful because it opens up many possibilities for optimization of programs:

pruning, constant folding, register allocation, language-dependent optimizations etc.

Here we argue that it is also a suitable basis for a categorical framework to judge about

compiler optimizations, too. First, we define a base category SSA; then we try to define a

product in SSA and arrive at an important equivalence relation for programs. Finally, we

provide categorical definitions of optimization and compilation. Main results are presented

as theorems in bold.

2. Related work

SSA is a hot and thoroughly studied research topic; while there already is a comprehensive

book on SSA-based compiler design [1], new papers keep coming out [2, 3]. This paper, however,

is not in the tradition of previous SSA works because we focus on the formal, mathematical,

categorical side of things.

Applying category theory to programming languages has a long history; it is extensively used

to model execution of programs either inside Kleisli category [4] or via Curry-Howard-Lambek

correspondence [5]. Unfortunately, it is impossible to express the notion of optimization in these

categories; our approach allows one to judge about optimization inside a categorical

framework.
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3. The categories of SSA programs

For the language of expressions of an SSA program, let us use the set of expressions E = Σ[N]

in arbitrary algebraic signature Σ where variables are taken from the set of natural numbers

starting from 0. The following definition is useful:

Definition 1. An expression e ∈ E is said to be bound by n iff n ∈ N and, for all variables

x ∈ N mentioned in e, x < n.

Now, we consider SSA programs to be a sequence of assignments where, for new binding

xi, one can refer to one of m inputs and to one of i previous assignments using variables

{0, . . . ,m− 1} and {m, . . . ,m+ i− 1}, respectively.

Definition 2. Let Pm→n ⊆ E∗ ×Nn be the set of valid SSA programs for language Σ with m

inputs and n outputs, that is, a set of pairs (O,R) where, for every r ∈ R, r < m + |O| and,

for every i < |O|, Oi is bound by m+ i.

Lists of operations O can be concatenated as lists with (++); same goes for output tuples

R. To turn concatenated lists back into valid programs, we use substitution which is applied to

natural numbers and substitutes them according to the first matching predicate. An example

of how substitution works on an expression in the language with binary (+):

(x1 + x3 + x0)[i < 2 7→ i+ 1 || i 7→ i− 1] = x2 + x2 + x1

Notable examples of SSA programs include:

Definition 3. For every natural n, there is the identity SSA program with no operations:

idn = (ε, (0, . . . , n− 1)) ∈ Pn→n

Definition 4. For every permutation σ ∈ Sn, there is an SSA program which reorders the

inputs according to σ:

pσ = (ε, (σ0, . . . , σn−1)) ∈ Pn→n

Definition 5. Given SSA programs f : Pm→n and g : Pk→m, composition f ◦ g : Pk→n is a

program which feeds outputs of g into f , that is,

Of◦g = Og ++Of [i < m 7→ Rg
i || i 7→ i−m+ k + |Og|] (1)

Rf◦g = Rf [i < m 7→ Rg
i || i 7→ i−m+ k + |Og|] (2)
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Our first main result is that this turns out to be a category:

Theorem 1. There is a category SSA(Σ) of SSA programs in language Σ with Ob = N and

Hom(m,n) = Pm→n.

The proof goes as follows: id and f ◦ g are given above. Their properties are proven by

obvious induction on the lengths of programs.

Now, the problem with this category is that SSA programs might contain expressions they

never even reuse. It might be useful if the compiled language has side-effects; but we can

model effectful programs by threading some extra variables through IO operations, as is done

in languages with linear typing like Clean [6]. To get rid of truly unused expressions, we

(informally) define

Definition 6. Let prune : Pm→n → Pm→n be a function which, for every SSA program,

removes operations not reachable from the output and patches indices accordingly.

Statement 1. There is a category PrunedSSA of pruned SSA programs with Hom(m,n) =

{prune(p) | p ∈ Pm→n}.

The proof goes as follows: let id(n) = idSSA(n) and f ◦ g = prune(f ◦SSA g). The following

are obvious:

prune(idSSA(n)) = idSSA(n); (3)

prune(f ◦ prune(g ◦ h)) = prune(f ◦ g ◦ h) = prune(prune(f ◦ g) ◦ h). (4)

Statement 2. In PrunedSSA, 0 is a terminal object with ! = (ε, ()).

To get into products, we first have to define another operation on programs.

Definition 7. Given SSA programs f : k → m and g : k → n, their parallel composition

f |g : k → (m+ n) is a program which computes both f and g from the same inputs, that is,

Of |g = Of ++Og[i < k 7→ i || i 7→ i+ |Of |] (5)

Rf |g = Rf ++Rg[i < k 7→ i || i 7→ i+ |Of |] (6)

Statement 3. In PrunedSSA, for every f : k → m and g : k → n, f |g commutes with f , g,

π1 = (ε, (0, . . . ,m− 1)) and π2 = (ε, (m, . . . ,m+ n− 1)) as a product.
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Note that f |g is not unique as a product arrow: operations from both f and g can be freely

intertwined and the result would still satisfy the product property. Furthermore, both f and g

might contain the same expressions which can be reused in a product arrow, which, actually, is a

well-known CSE (common subexpression elimination) problem [7]. Finally, composing effectful

programs like this is slightly wrong. The following equivalence helps with the first problem:

Definition 8. Two SSA programs p, q : Pm→n are called equivalent (or p ∼ q) iff l = |Op| =

|Oq| and there exists a permutation σ ∈ Sl such that the following holds:

Op
j = Oq

σ(j)[i < m 7→ i || i 7→ σ(i−m) +m] (7)

Rp = (σ(Rq
1), . . . , σ(R

q
n)) (8)

Theorem 2. p ∼ q is an equivalence relation; f ◦ g and f |g respect it.

The proof goes as follows: equivalence follows from properties of permutations; respect of

f ◦ g and f |g can be proven by taking permutations that act on parts of f ◦ g and f |g.

4. Optimization, compilation and semantic functors

In this framework, optimization and compilation procedures become functors of SSA which

act on morphisms in the semantic-preserving way. Reserving study of semantics of effectful

programs for further work, here we outline the definitions and properties of such functors via

semantic functors:

Definition 9. Given a structure S of signature Σ, semantic category Sem(S) is a category

with Ob = N and Hom(m,n) = (Sm → S)n.

Definition 10. A semantic functor FS : SSA(Σ) → Sem(S) is a functor with FS(n) = n

which interprets SSA programs as functions on vectors over S.

In terms of semantic functors, optimization and compilation can be defined like this:

Definition 11. An endofunctor Q : SSA(Σ) → SSA(Σ) is an optimization with respect to S

iff FS ◦Q ≃ FS.

Definition 12. Given a functor G : Sem(S) → Sem(T ), where S is a structure of Σ and

T is a structure of Ξ, a functor C : SSA(Σ) → SSA(Ξ) is a compilation with respect to G iff

FT ◦ C ≃ G ◦ FS.
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Note that, in the case of compilation, G (and, consequently, C) might not keep the objects

(sizes of inputs/outputs) intact. This is reserved for the case where a single s ∈ S is represented

by a vector of values from T .

Study of the properties of optimization and compilation functors is reserved for further work.
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Generative artificial intelligence systems should be carefully tested because they can

generate low-quality content, but the testing challenges the test oracle problem. Metamor-

phic testing helps to test programs without test oracles. In this study, we consider an AI

system that generates personalized stickers. Personalized sticker is a thematic picture with

a person’s face, some decorative elements and phrases. This system is stochastic, complex

and consists of many parts. We formulate requirements for the whole system and check

them with metamorphic relations. The requirements focus on dependency on input images

quality and resulting quality of generated stickers. Our testing methodology helps us to

identify major issues in the system under test.

Keywords: metamorphic testing, generative artificial intelligence systems, quality con-

trol

1. Introduction

Nowadays artificial intelligence (AI) systems are commonly used for content generation, for

example, Midjourney project and other diffusion neural networks [12]. Generative AI systems

affect the users, and such content may have inappropriate quality or even be harmful. So,

verification of the requirements for these systems should be precise.

One of the challenges is the test oracle problem [2]: difficulty or impossibility to compute

if the program’s output is correct. Generative AI can produce a lot of different items for one

generation request, and every item may be called correct, so we only can check some metrics

or use human supervision. Thus, verification of the quality requirements is complicated.

There are some methods to verify programs without test oracles, one of them is metamorphic

testing [3]. In this study, we apply metamorphic testing to a generative AI system for picture

generation. We consider an image-generation system [7], formulate two requirements, propose
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two metamorphic relations, test the system and find major issues.

The article has the following structure. Section 2 provides the background on the problems

of testing AI systems. Section 3 describes the system under test. Section 4 gives metamorphic

relations for the system. Then Section 5 describes the experiment. Section 6 concludes our

work.

2. Related work

Many methods for image generation exist [6], for example: stylization, style transfer and

animation, image composition, generating images from text (Adversarial Networks (GANs),

Transformers and Diffusion Models). All these methods have their specific advantages and

limitations.

There are many validation approaches for AI [13]: classification-based [8], model-based,

learning-based [9], rule-based [4] and non-oracle (metamorphic [15]). Metamorphic testing [3]

is one of the testing methods for programs with the test oracle problem. It allows us to easily

generate test inputs and automate the test process. This method uses so-called metamorphic

relations instead of verifying every test output or calculating metrics.

The metamorphic relation for a program can be represented as a function

R(x1, x2, . . . , xn, f(x1), f(x2), . . . , f(xn)) −→ {0, 1}, (1)

where n ≥ 2 is the total number of test inputs, xi as a i-th program input and f(xi) is a i-th

output.

Algorithm of metamorphic testing is quite simple. The system is run on several test inputs,

for which some relation holds. Then, we check the presence of the corresponding relation

between the test outputs. Thus, we consider the evolution in the system response when we

change the input data. There is no need for checking every single test output for correctness.

Metamorphic testing is used for testing different stochastic AI systems like machine transla-

tors [10], web systems [1], image classifiers [5], image recognition systems [16], etc. Metamorphic

testing is also used for testing stochastic systems. In this case, statistical methods are used for

verifying the relations (for example, criteria [1], correlation [17], ANOVA [10]).

3. System under test

We consider a sticker-generating system (SGS) [7] as a system under test (SUT). We call a

"sticker" a thematic picture with a person’s face, some decorative elements and maybe praising
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phrases on it (Fig. 1). For example, a sticker can be presented to a user after finishing an

online course. However, some input images cannot be transformed into stickers because they

lack some parts of the face, have poor quality, etc. In this situation SGS does not generate

anything and raises exceptions.

Fig. 1. Original image and a “programming” thematic sticker.

Previously [7], this system was compared with the simple basic solution. The users decided

that generated stickers were more interesting and aesthetically pleasing. Unfortunately, this

method is not automatic.

SGS contains many components: a neural network (NN) for face segmentation (MediaPipe),

a NN for determining the topic of the sticker description (SpaCy), and auxiliary tools for

blending, adding glasses, multification (AnimeGAN), style transfer and quality control.

Of course, NN components of SGS can be tested with metamorphic testing individually.

But the whole system is much more complex, and good quality of the components does not

guarantee the good quality of the system. Our purpose is to verify requirements for the whole

system. So, we consider it as a “black box” and do not use its internal structure.

4. Proposed method

4.1. Requirements and Metamorphic relations

Let us consider SUT as a stochastic function F (x, t) where x denotes an input image and t

denotes a text description.

We choose two requirements from different areas to test the SUT.

The first requirement relates to the user’s needs. Any user should recognize his or her face

on the sticker. Also, this sticker can be used as a profile photo. So, SUT should preserve the

face in such a way that the face on the sticker should look almost the same as the face on

the original image. So, if we use the sticker as an input for generating a new sticker, this new
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sticker should be generated. We interpret this as a

Requirement 1: every sticker is an ideal input and new stickers can be produced from every

sticker.

So, we formulate metamorphic relation:

MR1: count(F (xi, t)) = count(F (F (xi, t), t)), 1 ≤ i ≤ n

which means that the number of successfully generated stickers is not reduced after repeated

generation.

The second requirement origins in mathematical models of SUT components. Segmentation

NN should work worse on images with the poor quality (e.x. with noise and low contrast). We

can decrease the quality of the image until SUT rejects it. And if we decrease the quality even

more, this image also will be rejected by SUT. So, image quality should affect the number of

generated stickers.

Requirement 2: the worse the image quality, the less the number of successfully generated

stickers.

If we sequentially degrade the input images’ quality, the number of successfully generated

stickers should decrease monotonously.

MR2: count(F (xi,0, t)) ≥ count(F (xi,1, t) ≥ · · · ≥ count(F (xi,m, t)), 1 ≤ i ≤ n.

Due to the stochasticity, the monotonicity may be violated. So, we use a statistical criterion

to verify it. We check MR2 using B-spline interpolation method [14]. We slightly modify it

(https://gitlab.com/mlrep/mldev-metamorphic).

4.2. Experiment

We conduct an experiment in order to check MR1 and MR2.

For the MR1 we use 36 open-source portrait images of different ages and races. We try

to create 100 stickers from every image and then try to create a sticker from every generated

sticker. The number of stickers is determined automatically as the number of generated files.

After that, we compare the number of generated stickers and number of stickers generated from

stickers.

For the MR2 we use the same 36 images. We repeatedly apply gaussian noise to get a

sequence of 30 gradually blurred images. Then, we try to generate 30 stickers from each image.

We apply a criterion of monotonicity for each sequence to check if it decrease monotonously.
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4.3. Results

Table 1 represents the result. MR1 fails completely and MR2 fails in a small percent of

cases. This means that the system does not preserve faces well, but almost corresponds it’s

mathematical model.

Table 1

Results for SUT.

MR Proportion of fulfilled MRs Proportion of failed stickers

MR1 0.07 0.16

MR2 0.97 -

The experiment shows that SUT has major problems with face preserving and some minor

issues with dependency on image quality. We can assume that NN components of the system

work well, but the system in general has quality problems. So, proposed metamorphic relations

are useful for testing and detecting problems.

4.4. Other observations

Our tests show that SUT changes input images a lot. So, if we use the output sticker as

input, the second output will look less like the original image. If we repeat this many times, we

will get an image with an unrecognizable face on it. Example of this transformation is provided

on Figure 2.

Fig. 2. 4 steps to get an image with unrecognizable face

Table 2 provides information about a small experiment with an image on Figure 1. We take

the original image and lower its quality with three different methods. Then, we repeat sticker

generation until possible.

This experiment shows that after 7 or 8 iterations all the stickers contain unrecognizable

faces. So, we can estimate the number of steps to get such images. If we decrease image
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Table 2

Number of stickers which are successfully generated from stickers

Number of repetitions 1 2 3 4 5 6 7 8 9

Original 100 79 39 21 7 1 0

Darkened 100 82 37 16 6 2 1 0

Low-contrast 100 81 36 15 5 2 0

White-black 100 81 37 16 7 2 1 1 0

quality (blur, change the contrast, add color filter, etc.), the number of steps will decrease. So,

potentially such series can be used for metamorphic testing too.

5. Conclusion

In this paper, we apply metamorphic testing to a generative AI system. We study the

problem of AI testing, choose a generative system, propose two metamorphic relations, test the

system and detect some major issues. Our metamorphic relations are derived from different

groups of requirements: user and technical. Thus, we show that a metamorphic testing method

is useful for verifying the requirements and testing such systems.

In this paper, we consider a relatively simple sticker generation system. Application to more

complex systems could be a direction of future work.
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The Riehl-Shulman type theory for synthetic ∞-categories is a new theory building

on Homotopy Type Theory (HoTT). The experimental proof assistant Rzk offers an

automated proof checker for this theory. With the goal of making this theory more

accessible to mathematicians and computer scientists, we present in this paper a work-

in-progress on a collection of command line and interactive tools for Rzk. These tools

comprise a language server, an accompanying Visual Studio Code (VS Code) extension,

and a list of smaller satellite tools offering minor conveniences. Although we focus on the

support of VS Code, the language server is also compatible with other popular editors that

support the Language Server Protocol (LSP), such as Emacs and Vim.

Keywords: Language Server Protocol, Visual Studio Code extension, proof assistant,

homotopy type theory, category theory

1. Introduction

Proof assistants, also known as interactive theorem provers (ITPs), are software tools used

in mathematics, computer science, and formal methods to assist in the development and

verification of mathematical proofs. These tools play a crucial role in ensuring the correctness

and reliability of complex mathematical statements and software systems. Examples of such

tools include Agda [1], Coq [2], and Lean [3].

Although similar to typechecking in programming languages, proof checking is normally

seen as an interactive process between the mathematician and a proof assistant. To this end,

most proof assistants provide some interactive features either through specialized IDEs (e.g.

CoqIDE1), integrating via Proof General [4], or Visual Studio Code (via the Language Server

Protocol (LSP) [5]). Most well-established proof assistants support several of these options.

Rzk [6] is a new proof assistant that is based on Riehl-Shulman’s type theory for synthetic

∞-categories [7]. The proof assistant is experimental but has been successfully used recently

to formalize some fundamental results for ∞-categories, including the ∞-categorical Yoneda

1https://coq.inria.fr/refman/practical-tools/coqide.html



46 Abounegm A., Kudasov N.D. Implementing a Language Server for the Rzk Proof Assistant

Fig. 1. The motivation behind LSP, from Microsoft’s website. 2

lemma [8].

1.1. Language Servers

A few years ago, when a new code editor was introduced, it needed to support the most

popular programming languages, and depended on plugins written specifically for this editor

to support languages not built into the editor. This led to a lot of repetitive work to provide

useful language feature for the same language on multiple editors, and an inconsistency between

the provided language features on different editors. The idea of language servers is Microsoft’s

attempt to solve this problem by standardizing a protocol for communication between a code

editor (the client) and a background process (the server) that provides the language features

for a certain language. This protocol is known as Language Server Protocol (LSP) [5]. With

LSP, a language author need only implement the server once and would automatically get

language support on any editor that supports LSP. Likewise, an editor that supports LSP would

automatically get language support for any programming language that has an LSP server.

Examples for the language features in question include providing diagnostic messages, jumping

to the location an identifier is introduced, text completion, semantic syntax highlighting, and

much more.

This protocol is particularly useful for interactive theorem provers since they rely on the

editing experience much more than a command line interface. This is due to the fact that

theorem provers generally do not need to compile to any kind of executable file and only need

the type-checking stage of compilers, which can be easily performed by a language server.

However, this also adds extra work on the language server since it needs to support more

2https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
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features than a regular compiler would, including listing variables in context along with their

types, supporting Unicode symbols, and most importantly allowing for an interactive step-by-

step proof walkthrough.

1.2. Related Work

Specification Language Server Protocol. While LSP has greatly improved the experience

of developing language servers, it still leaves a bit to be desired. LSP was mainly designed with

general purpose programming languages in mind, but theorem provers (or more generally,

specification language) have slightly different requirements that are unmet by LSP. This is why

[9] attempts to extend the original LSP specification with features that are especially useful for

specification languages. The authors call the protocol extension Specification Language Server

Protocol (SLSP). Simply speaking, it defines a set of new LSP requests/notification along with

their payloads, and extends VS Code’s interface with a view that displays proof information in

a way similar to Proof General [4].

VS Code extension for Lean 4. Lean 4 [3] is a programming language and proof assistant

by Microsoft Research3 from which we draw much inspiration. In particular, the primary way to

develop Lean programs is using its VS Code extension that provides a user interface for working

with Lean interactively. This extension uses LSP to communicate with the Lean server and

provides a lot of useful features, the most notable of which is the Info View panel that displays

information about current proof state and allows interacting with it [10].

Proof General. Proof General [4] is a tool for developing interactive theorem provers that

has been used for many widely-known proof assistants such as Coq and Isabelle. It is based

on the Emacs editor and provides an interactive GUI with relative ease for theorem provers

developed with its help.

1.3. Contribution

In this paper, we report on the work-in-progress on the implementation of utility and

interactive tools around Rzk proof assistant, focusing on the language server and VS Code

extension support.

3https://www.microsoft.com/en-us/research/project/lean/
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2. Rzk Language Server and VS Code extesion

In this section, we describe design and implementation of the language server and the

VS Code extension for Rzk proof assistant. The language server has direct access to the

proof assistant internals, including the typechecking algorithm and the internal abstract syntax

representation, and provides an interface conforming to the Language Server Protocol. The VS

Code extension then acts as a buffer between the editor (VS Code) and the language server, to

bring the interactive capabilities to the user.

We subject the language server to support the features specified below.

Intuitive Interface and Syntax Highlighting. The VS Code extension introduces an

intuitive interface that aligns with the expectations of mathematicians and computer scientists.

Users benefit from clear and accessible navigation, enabling efficient exploration of HoTT-based

structures. Furthermore, the extension provides syntax and semantic highlighting, enhancing

code readability, and facilitating error detection.

Code Completion and Suggestions. Rzk’s VS Code extension leverages the LSP to offer

intelligent code completion and context-aware suggestions. As users work with Rzk, the

extension assists in writing code more efficiently by providing relevant suggestions, reducing

the likelihood of syntax errors, and accelerating the development process.

Real-time Error Checking. One of the extension’s notable strengths lies in its ability

to perform real-time error checking. As users input and modify code, the language server

continuously analyzes it, reporting back any type errors or other issues with the proof. This

proactive error checking mechanism empowers users to identify and rectify issues promptly,

fostering the creation of mathematically sound programs.

2.1. VS Code extension

To bring about these features to the users, a thin wrapper around the language server in the

form of a VS Code extension is necessary. Additionally, the extension manages the installation

of the language server itself on all major operating systems (Windows, macOS, and Ubuntu)

powered by pre-built binaries attached to releases on GitHub, in addition to facilitating building

the language server from source on platforms for which pre-built binaries are not available. It

is also worth mentioning that the language server is designed to be compatible with any other
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editor that supports LSP. In particular, users have reported success in integrating it with the

NeoVim editor, and it is planned to be tested with other editors as well.

2.2. Rzk Language Server

At the core of the Rzk tool suite is the language server that powers all the editor features

that make it pleasant to develop proofs in Rzk. In particular, it currently supports semantic

highlighting, diagnostic messages, and text completion. Additionally, progress reporting for

long-running processes (such as type-checking for large projects) is currently under work.

For the first versions of the language server, it is shipped as part of the Rzk proof assistant

itself under a different subcommand, but it is planned to decouple both components and

have the language server depend on the core library. They are implemented in the Haskell

programming language using the lsp4 package.

3. Conclusion and Future Work

We have designed and implemented an initial prototype of the language server and VS Code

extension for an experimental proof assistant Rzk. An intermediate result of this work has

been presented at the Interactions of Proof Assistants and Mathematics5 school in Germany

in September of 2023. This has helped gather feedback from the users and react to it on the

spot. We feel that current users are mostly satisfied with the prototype tooling, but have also

provided useful suggestions for further improvements.

In the future, we plan to support displaying variable information on hover, jumping to

definition, renaming symbols, and formatting Rzk code. Eventually, we also plan to support

rendering topes as images, and adding an information WebView similar to the one provided by

Lean 4 [10].

It is also anticipated that a Haskell library for developing language servers (especially for

proof assistants) can grow out of this project.
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