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We address the formal verification of the control software of critical systems, i.e., ensur-

ing the absence of design errors in a system with respect to requirements. Control systems

are usually based on industrial controllers, also known as Programmable Logic Controllers

(PLCs). A specific feature of a PLC is a scan cycle: 1) the inputs are read, 2) the PLC

states change, and 3) the outputs are written. Therefore, in order to formally verify PLC,

e.g., by model checking, it is necessary to reason both in terms of state transitions within

a cycle and in terms of larger state transitions according to the scan-cyclic semantics.

We develop a formalization of PLC as a hyperprocess transition system and an LTL-

based temporal logic cycle-LTL for reasoning about PLC.
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1. Introduction

The long-term goal of our work is formal verification of control software specified in the

process-oriented paradigm, in particular programs written in the Domain-Specific Language

(DSL) Reflex [1, 7]. Formal verification of Programmable Logic Controllers (PLCs), which

are important components of automatic control systems, is an active topic of practical and

research work [2, 4]. The proposed approaches follow various PLC models [8]. In general, PLC

functioning consists of infinite sequence of scan cycles. Each scan cycle includes a sequence of

three phases: reading input, execution, and writing output.

We choose a process-oriented PLC modeling based on hyperprocesses [7]. This modeling
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method allows us to specify the main features of the PLC, such as scan cycle and timers; it

describes a PLC as a synchronized system of interacting functional processes defined by a set of

functional states and actions on these states. According to the classification [8], hyperprocesses

model PLCs that abstract from scan cycle time (the environment is considered to be slow

enough to assume zero time for the input/output and execution phases of a scan cycle) and

use input and output controlling timers. This modeling provides a natural specification for

the control multiprocess systems, which, due to abstracting from the scan cycle time, allows

ordering process executions in a scan cycle. Such high synchronization of processes without

interleaving makes possible the effective use of formal verification methods. A hyperprocess is a

base for the process-oriented language Reflex that was used in a number of industrial projects,

in particular, a plant for growing silicon single crystals using Czochralski method, and a vacuum

system for the Big Solar Vacuum Telescope [6].

In this paper, we assume model checking as our formal verification method. Therefore, we

present a hyperprocess as a special transition system, and the properties of a hyperprocess as

formulas of a special temporal logic. A hyperprocess transition system is close to a concurrent

multi-threaded system [3] enriched with synchronizing counter, process functional states, timers,

and action primitives for their changing. The time for a PLC specified as a hyperprocess is

clocked both inside of the scan cycle execution (taking into account changes of variable values)

and outside of the execution at the reading of the inputs.

The logic for reasoning about PLC should allow the formulation of statements for these two

kinds of clocks. In this paper, we develop the cycle-LTL logic – which is an LTL enriched

with cycle temporal operators for reasoning about PLC states outside of a scan cycle. In this

logic, the following properties are expressible for a simple example of a hand-dryer machine:

“If the sensor has detected hands, the dryer will turn on in the next scan cycle” or “If the

temperature is higher than the critical value, the cooling process is always on.” Note that if the

switching on and off for the cooling process is performed after actions of other processes in a

scan cycle, then the last property can be violated inside the cycle, but it can hold outside the

cycle. This example illustrates the need to use cyclic temporal operators, in particular special

cycle always-operator Gc.

2. Hyperprocess Transition System
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Let us give an informal description of the hyperprocess [7]. Hyperprocess is an ordered

set of interacting processes that execute sequentially in a given order, forming a scan cycle.

This cycle starts by reading the input from the environment into the hyperprocess system

variables, and finishes by writing outputs to the environment. All hyperprocess variables are

global. A feature of the processes that form a hyperprocess are functional states – labels that

mark a sequence of process actions. The functional states of every process include the states

of normal shutdown and abnormal shutdown: in these states, the process does not perform

any actions. Process actions can change the values of hyperprocess variables (except input

variables), affect the functional states of other processes, and set and reset timer values. Actions

may have guard conditions depending on the hyperprocess variables and functional states of

other processes. Our definition of the hyperprocess transition system is based on a description

of the hyperprocesses and the operational semantics of the Reflex language [1, 7]. We hide the

output phase inside the execution phase without loss of generality.

Definition 1. (Hyperprocess transition systems, HTS)

HTS is a tuple H = (P, S, sini, A,R), where

• P = {p1, ..., pn} is an ordered set of processes;

• S is a nonempty set of states;

• sini is an initial state;

• A is an action alphabet;

• R is a labelled transition relation R : A 7→ 2S×S.

Before defining HTS-components, we describe hyperprocess elements in general.

Definition 2. (Hyperprocess elements)

Hyperprocess elements are variables, functional states, process actions, and timers:

Variables. V = {v1, . . . , vN} is a set of hyperprocess variables which values are the result of

the corresponding functions vi : S 7→ D ∪ {⊥}. We distinguish input variables VE and

process variables VP : V = VE ∪ VP .

Functional states. For every i ∈ [1..n] Fi = {f 1
i , ..., f

mi
i , stop, err} is a set of functional states

of process pi. The stop and err are inactive states, and other states are active states.

The value of every functional state variable fi is described by function fi : S 7→ Fi.

Actions. In functional state f ji , process pi performs actions from set A. These actions form the

body of the functional state. Lji ∈ N is the number of actions in this body. Variable ai is

an action counter and its value is a position. The value of the action counter is the result
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of function ai : S 7→ [1..Lji ] ∪ {⊥}. The next value of this counter is defined by functions

nxtj : N × S 7→ N ∪ {⊥}. These functions implicitly include guards for actions because

the results depend on a current HTS-state, in particular, on activity of other processes.

If there is no the next action in the current functional state then nxtj(ai) = ⊥. Functions

anj : N ∪ {⊥} 7→ A return the name of the action at position ai.

Timers. The timer of process pi is variable ti with values as the result of functions ti : S 7→

N∪{⊥}. The timer bound at position a of functional state f ji is N ja
i ∈ N. For simplicity,

we consider the processes with one timer per a functional state.

Let us define the components of HTS-system H = (P, S, sini, A,R).

The set of states S

A state s = (v, sp, pc) ∈ S includes the following elements:

• the state of variables v = (v1(s), . . . , vN(s)) for variables’ values in state s;

• the state of processes sp = ((f1(s), a1(s), t1(s)), . . . , (fn(s), an(s), tn(s))), where for every

process pi in state s, fi(s) is its current functional state, ai(s) is an action counter in

state fi(s), and ti(s) is the value of its timer;

• process counter pc(s) with values in [0..n], where 0 is reserved for updating input.

The initial state sini

sini = (v0, sp0, pc0), where

– v0 = (⊥1, . . . ,⊥N),

– sp0 = ((f 1
1 , 1,⊥)1, (stop,⊥,⊥)2, . . . , (stop,⊥,⊥)n), and

– pc0 = 0.

The action alphabet A

The alphabet includes a single environment action and process actions:

A = {upd0, skip, end, upd, tout, reset, startP, stopP, start, set, next, stop, err}.

0. The cycle action.

upd0 – change of values of input variables, i.e. reading environment inputs.

1. Service actions.

skip – a process does nothing in inactive states.

end – a process transfers control to the next process at the end of its active state body.

2. Actions for updating non-input variables.

upd – a process changes the values of some variables.
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3. Timeout actions.

tout – a process starts the timer and performs actions in the current state until timeout;

reset – a process resets its timer to zero.

4. Actions for functional states.

startP/stopP – a process transfers target process pk to functional state f 1
k/stop;

start/set – a process transits to target functional state f 1
i /f ;

stop/err – a process transits to functional state stop/err;

next – a process transits to the next functional state.

The labeled transition relation R

The transition relation R gives the semantics to actions of processes and the environment. Let

i ∈ [1..n], j ∈ [1..mi], a ∈ [1..Lji ]. We use the following notation.

The expression

(fi = f ji , ai = a, Ti, T gi, pc = i)
act−→ (y′1 = new1, . . . , y

′
m′ = newm′)

means that R(act) = (s, s′), where

• act = anj(a), and anj(⊥) ∈ {skip, end};

• before-state s is such that pc(s) = i, fi(s) = f ji , ai(s) = a, the time constraint Ti can

be ti(s) 6= ⊥, ti(s) = ⊥, ti(s) < N j
i , or ti(s) = N j

i , and the target constraint Tgi can be

tgpi = k or tgsi = k, where tgpi is variable in VP with values in [1..n] for specifying the

target process, and tgsi is variable in VP with values in [1..mi] for specifying the target

functional state of process pi; non-mentioned left elements have arbitrary values;

• after-state s′ specifies the changes of hyperprocess elements after action act: yk(s′) = newk

(k ∈ [1..m′]); non-mentioned right elements are not changed.

0. The external update action.

We use the notation like above to specify R(upd0). At the beginning of the scan cycle,

the values of input data are read to the input variables in VE, the value of every ticking

process timer is increased by 1, and the process counter points to the first process:

(ti1 6= ⊥, . . . , tik 6= ⊥, pc = 0)
upd0−→

(v′1 = v1, . . . , v
′
m = vm, t

′
i1

= ti1 + 1, . . . , tik = tik + 1, pc′ = 1).

In the following definition of the transition relation R for process actions, we suppose that

process pi performs the action number ai with name anj(ai) in its functional state fi = f ji .

1. Service actions.

Process pi does nothing in inactive states stop and err, and passes control to the next
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process:

– (fi = stop, pc = i)
skip−→ (pc′ = |i+ 1|n+1).

– (fi = err, pc = i)
skip−→ (pc′ = |i+ 1|n+1).

When process pi reaches the end of the body of its active functional state f ji , it goes to

the first action of the body and transfers control to the next process:

– (fi = f ji , ai = ⊥, pc = i)
end−→ (a′i = 1, pc′ = |i+ 1|n+1).

2. The action for updating variable values.

By this action, process pi changes values of some variables from the set of non-input

variables {v1, . . . , vm} ⊆ VP , and goes to the next action nxtj(a) of its current state:

– (fi = f ji , pc = i)
upd−→ (v′1 = d1, . . . , v

′
m = dm, a

′
i = nxtj(a));

3. Timeout actions.

In these cases, process pi starts the timer ti (if ti = ⊥), goes to the first action of its

current state f ji , and transfers control to the next process:

– (fi = f ji , ti = ⊥, pc = i)
tout−→ (a′i = 1, t′i = 0, pc′ = |i+ 1|n+1);

– (fi = f ji , ti < N j
i , pc = i)

tout−→ (a′i = 1, pc′ = |i+ 1|n+1).

In the case of timeout, process pi stops the timer ti and goes to the next action in its

current functional state:

– (fi = f ji , ti = N j
i , pc = i)

tout−→ (a′i = nxtj(a), t′i = ⊥).

The reset-action results exactly as the first case of the tout-action:

– (fi = f ji , ti 6= ⊥, pc = i)
reset−→ (a′i = 1, t′i = 0, pc′ = |i+ 1|n+1)).

4. Actions for functional states.

These two actions of process pi force process pk (i 6= k) to go to start or stop state:

– (fi = f ji , tgpi = k, pc = i)
startP−→ (f ′k = f 1

k , a
′
k = 1, t′k = ⊥, a′i = nxtj(a));

– (fi = f ji , tgpi = k, pc = i)
stopP−→ (f ′k = stop, a′k = ⊥, t′k = ⊥, a′i = nxtj(a));

With these actions, process pi goes to the first action of the corresponding functional

states and stops the timer:

– (fi = f ji , tgsi = k, pc = i)
set−→ (f ′i = fki , a

′
i = 1, t′i = ⊥);

– (fi = f ji , pc = i)
start−→ (f ′i = f 1, a′i = 1, t′i = ⊥);

– (fi = f ji , pc = i)
next−→ (f ′i = f j+1

i , a′i = 1, t′i = ⊥);

Process pi perform these actions in case of it should do nothing from this moment because

of normal or error shutdown:

– (fi = f ji , pc = i)
stop−→ (f ′i = stop, a′i = ⊥, t′i = ⊥);
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– (fi = f ji , pc = i)
err−→ (f ′i = err, a′i = ⊥, t′i = ⊥).

According to the defined transition relation, the processes act sequentially in the current

cycle, following the order specified by the process counter. Let an input state sinp be a state

with pc(sinp) = 0. We define a cyclic state sc as a state just after updating the input variables

and before the processes start to act: R(upd) = (sinp, sc). The set of cycle states is Sc.

We define two kinds of paths in HTS. Standard path π = s0, s1, . . . is a sequence of states

si ∈ S such that ∀i ≥ 0 ∃a ∈ A : R(a) = (si, si+1). Let π(i) be ith state on path π. Cycle path

σ = c0, c1, . . . is an infinite sequence of cycle states ci ∈ Sc such that for every i ≥ 0 there exists

a finite standard path πi of length ni with πi(0) = ci and πi(ni) = ci+1. If ρ is the standard or

cycle path, let ρ(k) be kth state on this path, ρk be the suffix of ρ starting from ρ(k), and cπ

be the number of the first cycle state on standard path π.

3. Temporal logic cycle-LTL

The syntax of our cycle-LTL logic includes propositions P , boolean connections, standard

LTL temporal operators, inner-cycle temporal operators, and cycle temporal operators:

ϕ ::= P | ¬ϕ | ϕ ∧ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ |

Xiϕ | Fiϕ | Giϕ | ϕUiϕ | Xcϕ | Fcϕ | Gcϕ | ϕUcϕ

The inner-cycle operators Xi, Fi, Gi, and Ui are used for formulating properties of a control

system which have to hold during a particular cycle execution phase, while the cycle operators

Xc, Fc, Gc, and Uc are used for formulating properties of the control system which have to

hold at the beginning of cycles.

Let the set of standard LTL formulas be Φs, the set of formulas started with inner-cycle

operators be Φi, the set of formulas started with cycle operators be Φc, and the set of all

cycle-LTL formulas be Φsic.

The semantics of the cycle-LTL are defined for new inner-cycle and cycle temporal oper-

ators only. We define the semantics of inner-cycle operators on standard paths and semantics

of cycle operators on standard and cycle path. The semantics of standard LTL formulas can

be found in [3]. Let H be a hyperprocess transition system, π be an infinite standard path, σ

be a cycle path, and ϕ, ψ ∈ Φsic be formula of cycle-LTL..

The semantics of formulas in Φi.

• H, π |= Xiϕ iff π1 /∈ Sc and H, π1 |= ϕ;

• H, π |= Fiϕ iff there exists 0 ≤ k < cπ such that H, πk |= ϕ;



40Garanina N., Anureev I., Zyubin V., Rozov A., Liakh T., Gorlatch S.Reasoning about Programmable Logic Controllers

• H, π |= Giϕ iff for all 0 ≤ k < cπ H, πk |= ϕ;

• H, π |= ϕUiψ iff there exists 0 ≤ k < cπ such that H, πk |= ψ and for all 0 ≤ j < k

H, πj |= ϕ.

The semantics of formulas in Φc.

Let ξ ∈ Φc.

• H, π |= ξ iff H, σ |= ξ with σ(0) = π(cπ);

• H, σ |= Xcϕ iff H, σ1 |= ϕ;

• H, σ |= Fcϕ iff there exists k ≥ 0 such that H, σk |= ϕ;

• H, σ |= Gcϕ iff for all k ≥ 0 H, σk |= ϕ;

• H, σ |= ϕUcψ iff there exists k ≥ 0 such that H, σk |= ψ and for all 0 ≤ j < k H, σj |= ϕ.

Let us give some informal comments for semantics of cycle-LTL formulas. We consider the

cases when a formula of some type is a subformula of other type formula at the first nesting

level of temporal operators: ϕ ∈ nl1(ψ). Let ϕs, ψs ∈ Φs, ϕi, ψi ∈ Φi, and ϕc, ψc ∈ Φc. We

have six cases.

1. ϕi ∈ nl1(ψc): this assertion states that ϕi holds during the execution part of scan cycles

explicitly specified by ψc.

2. ϕi ∈ nl1(ψs): this assertion states that ϕi holds during the execution part of scan cycles

implicitly specified by ψs.

3. ϕc ∈ nl1(ψi): if ϕc is in boolean connection with formulas in Φs ∪Φi, this assertion binds

a property of the execution phase of a scan cycle explicitly specified by ψi to a cycle

property of the next cycle.

4. ϕc ∈ nl1(ψs): if ϕc is in boolean connection with formulas in Φs ∪Φi, this assertion binds

a property of the execution phase of a scan cycle implicitly specified by ψs to a cycle

property of the next cycle.

5. ϕs ∈ nl1(ψc): this assertion states that ϕs holds at some cycle state explicitly specified

by ψc. If ψc include operator Gc or Uc, ϕs will hold periodically with respect to scan

cycle.

6. ϕs ∈ nl1(ψi): this assertion states that ϕs holds at some state in execution part of a scan

cycle specified by ψi.

As an illustration, let us define the cycle-LTL specifications for the properties of a hand-

dryer and cooling machine as example control systems:

1. If the sensor has detected hands, the dryer will turn on in the next scan cycle:
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Gc(hands = on→ Xcdryer = on).

2. If the temperature is higher than the critical value, the cooling is always on:

Gc(temp > 95◦ → cooler = on).

The above examples of formulas for control system properties use only cycle states and

observable input-output system variables. This formulation can be used for high-level properties

of implementation independent models of control system viewed as a black box. However, if

some high-level property fails for some implementation of the control system, then checking

low-level properties of the system may be required. These properties are formulated in terms

of process states and actions. They are hypotheses which use inner-cycle operators to localize

the error within the scan cycle. Verifying such hypotheses can be less time-consuming then

analyzing a counterexample for the failed high-level property. The following properties for a

system that combines a lighting control system and a burglar alarm system illustrates causality

between a low-level hypothesis and a high-level property: failing the former implies failing the

latter.

1. When a break-in is detected, all lamps should flash:

Gc(alarm→ Xcalarm_light = on).

2. When the alarm sensor is on then the security alarm subsystem should send

the alarm message to all other subsystems ASAP :

Gc(alarm→ Fialarm_message_sent).

4. Conclusion

In this paper, we develop the hyperprocess transition systems (HTS) for modeling PLC and

the novel cycle-LTL logic for specifying PLC properties. Our HTS-model naturally captures

features of PLC such as scan cycles and timers. Our cycle-LTL temporal logic enables reasoning

about PLC properties w.r.t. both small-step time inside scan cycles and big-step time over scan

cycles. Expressing the big-step properties in a standard LTL would be much more cumbersome.

We plan to prove that the model checking for HTS and cycle-LTL is reduced to the standard

LTL model checking. For this we will translate HTS into the Kripke structure and cycle-LTL

formulas into LTL formulas. The method of this translation will provide the basis for the

correct translation of the process-oriented language Reflex into the Promela language used

by the SPIN verifier [5]. We also plan to develop and implement a special model checking

algorithm for verifying cycle-LTL formulas in HTS, which will have lower time complexity than
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the standard model-checking algorithm for LTL due to the use of HTS features such as cyclicity

and ordering action processes.
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