
System Informatics, No. 15 (2019) 13

UDC 004.05

A Method to Verify Parallel and Distributed Software in

C# by Doing Roslyn AST Transformation to a Promela

Model

Sergey Staroletov and Anatoliy Dubko

(Polzunov Altai State Technical University)

In this paper, we describe an approach to formal verification of parallel and distributive

programs in C#. We use Microsoft Roslyn technique to get syntax and semantic informa-

tion about interesting constructions in the real source code to generate some corresponding

code in Promela language, designed to model actor-based interoperation systems, so we

do a program-to-model transformation. Then, we verify the usual problems of parallel

and distributive code by checking pre-defined LTL formulas for the model program. We

are able to provide checking of data races, improper locking usage, possible deadlocks in

distributive service interoperations using the Model Checking approach. This method can

be used to construct a static analyzer for the .NET platform.

Keywords: Roslyn, Verification, Static Analyzer, LTL, SPIN

1. Introduction

This work is dedicated to improving the quality of modern software which has parallel

executable entities and acts as a distributive system or microservice. Such kind of systems can

have tricky errors, just exposed in rare situations. It is usually impossible or very challenging

to detect such errors by testing.

Formal verification methods were introduced to ensure the correctness and reliability of such

type of program systems, to detect faults at the different stages of software development and

maintenance to consistently reduce them.

We assume that the formal verification approach [1] should be applied here but it will be

hard to understand by an ordinal software developer how to create different kinds of models to

verify [2], so such techniques should be a transparent part of developing process, and additional

checking should be integrated into a compiler or an IDE.

The problems of verification and creation of a verifying compiler are examples of the funda-

mental problems of modern programming that are in the progress of being solved.



14 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

In this paper, we deal with C# parallel programs and WCF services. We use Microsoft

Roslyn technique to obtain the AST (Abstract Syntax Tree) from C# input sources to generate

a corresponding code in Promela modeling language intended to make further verification of

the generated model code using SPIN verifier according to defined classes of possible parallel

and distributive errors and generated requirements as LTL (Linear Temporal Logic) formulas.

2. Related Work

2.1. .NET and C# for parallel and distributed systems creation

C# is an industrial, type-safe, object-oriented modern language designed to develop appli-

cations running in the .NET Framework environment [3]. Using C#, developers can create

general-purpose software including standard and universal desktop applications, mobile appli-

cations, web services, distributed components; client-server, database and web applications.

The C# programs run within the .NET Framework – an integrated Windows component

that contains the Common Language Runtime (CLR) virtual system and a unified set of Base

Class Libraries (BCL). The CLR is an implementation of the Common Language Infrastructure

(CLI) – an international standard, the foundation of execution and development environments

with close interaction of languages and libraries. Novel platform implementation named .NET

Core provides the developers with some abilities to create application not only for Windows

platform, but also for Linux and Mac, and this implementation is even open-sourced [4].

Source code written in C# is compiled into the Intermediate Language (IL) following the

CLI specification. IL code and resources, such as bitmaps and strings, are stored on disk in an

executable file, called an assembly, with EXE or DLL extension.

The .NET platform and the C# language provide the ability to create distributed compo-

nents or applications:

• Web API. The Web API is a RESTful HTTP web service that can interact with various

components. These can be ASP.NET web-, mobile or regular desktop applications.

• WCF (Windows Communication Foundation). WCF provides a platform for building

service-oriented (SOA) applications and implements a manageable approach to create

web services and clients for them [5]. With WCF, developers can send data in the form

of asynchronous messages from one service endpoint to another. The endpoint can be a

part of a permanently available service hosted in IIS (a web-based Internet Information

Services server) or represent a service hosted inside an application. Messages can be in



System Informatics, No. 15 (2019) 15

the form of a complex stream of binary data.

• .NET Sockets. Sockets are used to build traditional client-server applications. By con-

necting two sockets explicitly, the applications can transfer data between different pro-

cesses, nodes or platforms.

In the current work, we model distributive interoperations only as WCF services and clients

due to their high-level logical structure.

2.2. Roslyn

Roslyn [7] is a platform that provides the system developers with various powerful tools for

analyzing and parsing .NET languages (mostly C#) code. The source code of this platform is

freely available on MS GitHub account [6].

Fig. 1. Retrieving data for analysis with Roslyn [8]

With the help of tools provided by the Roslyn platform, it is possible to perform a full

syntax analyzes of the code by traversing all supported language constructs. The Visual Studio

environment allows developers to create tools embedded in the IDE itself (as Visual Studio

extensions) and independent applications on the basis of Roslyn.

When analyzing code with Roslyn tools, it is possible to get a list of files from a solution

whose source code is being checked, to get the necessary entities for parsing (syntax model),

and then to get access to the semantic model of the program after compiling it (Figure 1).

For a complicated analysis, it is necessary to obtain a syntax tree and a semantic model. A

syntax tree is built from a program source code and is used to link various language constructs.

A semantic model provides information about program objects and their types.

For every language structure, Roslyn defines corresponding type nodes. Moreover, for each



16 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

Fig. 2. An expression tree for a * = (b + 4) with lexemes [8]

Fig. 3. A sintax trivia tree for a = b; //Comment [8]

node type, a method in code can be defined that performs a crawl through the nodes of this type.

Thus, by adding handlers to traverse of various nodes, we can analyze only the constructions

of language we are interested in. An example tree for the expression a∗ = (b + 4) in syntax

tokens is shown in Figure 2.

In addition, there exist "syntax trivia" – elements in the tree that will not be compiled into IL

code, they are stands for some additional syntax information. This category includes comments,

preprocessor directives, spaces, etc. Figure 3 shows a tree with extra syntax information for

the expression a = b; //Comment. This data can be possibly used for implementing additional

processing for constructions as special comments, for example, it is a usual way to write control

annotations for deductive verification approach now, as ACSL annotations for C programs to

prove with Frama-C tool are written in C comments [9].



System Informatics, No. 15 (2019) 17

The semantic model in Roslyn provides useful information about objects and their types.

It is a powerful source for building deep and complex analyzers. That is why it is essential to

have a correct compilation and a correct semantic model.

2.3. Actor model

Today, the dominant way to programs creation is the imperative approach based on the

general state (it is also used for C# programs). Very often, the code of such programs from

the very beginning is written without considering the possibility of parallelization, and parallel

actions occur in the code only when needed.

The actor model on the other side, "forces" the code to be parallel from the starting point.

This model is a mathematical representation of parallel computing, which uses the concept of

"actor" as a universal primitive. It was applied [10] as a basis for understanding the calculation

using processes and as a theoretical basis for some practical implementations of parallel systems.

The basic idea is that the actor-based application is built from many lightweight processes

called actors [11]. Each actor is responsible for one tiny task, so it is easy to understand what

does it responsible for. Programs with more complex logic can be implemented as an interaction

of several actors that are concurrently sending messages between each other.

So, the actor is a computational entity that, in response to a received message, can simulta-

neously:

• send a finite number of messages to other actors;

• create a finite number of new actors;

• select the behavior that will be used when processing the next received message.

It does not assume the existence of a specific sequence of the above-described actions and all of

them can be performed in parallel. Separating the sender from the messages was a fundamental

achievement of the actor model. Message recipients are identified by the address (PID, process

identifier), which is sometimes called the mailbox address. Thus, an actor can interact only

with those actors whose addresses it has, and it can extract addresses from received messages

or know them in advance.

The most outstanding implementation of the actor model was made in Erlang language [12].

A rather popular implementation of this model is Akka library [13] for Scala.



18 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

2.4. Promela and SPIN

Fig. 4. An example Promela model

SPIN [14] is a utility for verifying the correctness of distributed software models. The

abbreviation stands for Simple Promela INterpreter. This utility is used for automated verifi-

cation of models, and it can also work as a simulator, executing one of the possible traces of a

model of system behavior.

The SPIN system checks not the programs themselves, but their models. To build a model

for an original parallel program or an algorithm, the engineer (usually manually) builds a

representation of this program in the C-like input language, called Promela (Protocol MEta-

LAnguage). This program in Promela language can be considered a model of the verified

program. Promela language constructs are simple, they have clear and distinct semantics,

which allows translating any program in this language into a transition system with a finite

number of states for verification purposes. The requirements for the model are expressed in the

language of LTL (Linear-time Temporal Logic) [15].

Input models in Promela are different from original verifiable programs, usually written in

high-level programming languages. Promela programs do not have classes, and they represent a

flat structure of interacting parallel processes, as we described in the actor model section (Figure

4), have a minimum of control structures, all variables have finite domains. Therefore, such a



System Informatics, No. 15 (2019) 19

program can be considered a model of the system being analyzed; it represents an abstraction

of the original system, in which the engineer should reflect those aspects and characteristics of

the real system that are very significant for the properties specified for the verification.

The system description is expressed in Promela language must preserve the essential prop-

erties of this system. It should be stressed that the resulting verification quality of Promela

programs entirely depends on the degree of adequacy of the constructed model. The model

construction process can be done manually or automatically, and in this paper, we present the

ways of auto model generation based on the C# compiler information.

2.5. Existing solutions to do C# code verification

To check the C# programs statically, Microsoft Research offered a solution called Spec#

(Specification Sharp) which extends C# language with constructs for non-null types, pre-

conditions, postconditions, and object invariants [17]. With this solution, the developer should

manually specify additional code to describe the program with special requirements in the form

of logical predicates. Later, in [18] an embedded code contracts approach was presented, it

became a part of the .NET platform, introducing annotations to the C# classes and ways to

statically check the contracts assumptions while code writing and compiling from the IDE. It

is intended to prove the program logic, and it is hard to check the interoperations with this

approach.

MS Research has some trying to create a formal language to describe models with message

passing, and in [19] Sing# language was presented as an extension to Spec# but the current

state of the project is unclear and it seems they stopped developing and using it.

In [20] ISP RAS introduced an approach to do static analysis of C# programs based on the

symbolic execution method with using advanced SMT solvers.

In [21] the PVS-Studio static analyzer for C, C++ and C# programs was described and its

internal methods were discussed. It can detect some threading issues, and it uses Roslyn as a

backend.

We can state that none of the described tools uses Promela and SPIN as a way to check

the extracted models from C# input code. The analyzers can use Roslyn to obtain AST,

but then they use own special techniques. None of the methods can verify distributed service

interoperations.



20 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

3. Code Analysis and Model Generation

We consider here some algorithms for transforming syntax elements we are interested in the

C# programs, to a Promela code according to our goals. Some ideas of it were given in our

paper [22].

3.1. Ways of thread creation and its modeling

Consider some common ways to create parallel threads in C# language. Firstly, a thread

can be created with the Thread class from the System.Threading namespace (Figure 5).

Fig. 5. Creating Threads with the Thread Class

This class is used to create two types of threads: parameterized and non-parameterized. Its

constructor takes a delegate of type ThreadingStart or ParametrizedThreadingStart, explicitly

or implicitly. In Figure 5, the parameter is passed as a lambda expression, which is implicitly

reduced to the above types.

Also, a parallel code can run with the Task class from the System.Threading.Tasks names-

pace (Figure 6).

Fig. 6. Creating Threads with the Task Class

Using classes from this namespace, one can create high-level thread types, taking advantage

of thread-pooling. The static Run method accepts an Action type delegate with no parameter

or Func delegate (from the System namespace), which can return a result. The method returns

its result in the form of a new object of type Task, which represents the running task passed

as the parameter.

Another method is the Parallel class from the System.Threading.Tasks namespace (Figure

7).



System Informatics, No. 15 (2019) 21

Fig. 7. Creating Threads with the Parallel Class

Also, we consider some methods are used to create parallel loop processing. The static For

method takes as its parameters the initial value of the counter, the final value of the counter,

and a parameterised delegate (of type Action) that handles the current value of the counter.

The static ForEach method takes as its parameters a collection that implements the typed

IEnumerable <T> interface and a parameterized delegate (of type Action) that accepts the

current collection element in the iteration.

Now consider modeling the interaction of threads in C# as Promela structures. For the

simulation, we decided to use a separate Promela process for each running thread in C#.

The interaction between threads, as well as the awaiting of their completion, are modeled by

transmitting synchronization messages through Promela channels. The types of processes are

described using the declaration with the proctype keyword [16]. Processes are always declared

globally. Processes are started from other processes by the means of the run operator.

Later we describe a way to the code generation for this body from all the possible variants

of parallel entity creation described in this section.

3.2. Analysis of the syntax, semantics and data flow of the C#

programs and its modeling

Before starting the analysis of C# sources, it is necessary to construct a graph of method

calls inside the program being analyzed. This graph will help:

• Firstly, detect calls of methods that trigger a new thread.

• Then determine the order of calls, starting from an arbitrary method to generate defini-

tions in Promela before their use further.

• And as a result, switch to a pure interprocess communication model in Promela without

calling intermediate methods.

Consider an example of a method call in C# (Figure 8).

We see, in order to find all method calls in the source code of the program, we need to find

all nodes of the InvocationExpression type in its syntax tree.



22 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

Fig. 8. Method Call syntax tree

To construct the graph, it is necessary to determine the relationship "which method is called

from a which one". It is required for each method call to find a definition of its parent method

or a lambda expression (Figure 9).

Fig. 9. Lambda Expression syntax tree

Moving up in the tree starting from a method call, we should find such a parent definition

of the method or a lambda expression. This link will be an edge in the call graph.

We discovered that each node in the syntax tree has already defined hash code. Due to this,

it is possible to use it as a unique value of a vertex in the graph without fear of the collisions

occurrence between identical syntactic structures in the source code.

An example of the resulting call graph is shown in Figure 10.

The graph is acyclic, but it is not always connected. With further code generation on



System Informatics, No. 15 (2019) 23

Fig. 10. Call graph in C# source code

Promela, acyclicity is easily removed when using the semantic model, since in this model the

same characters have the same hash codes.

During the construction of the call graph, we can immediately determine which of the calls

starts a new thread. For this, it is necessary to make a semantic analysis of the method call,

setting some conditions:

• The name of the method that starts the thread.

• The type of object with which the method is called.

• If the method is not static, check, was the constructor called with the delegate of this

thread object.

The first two conditions are checked using the appropriate properties of the method call symbol

in the semantic model. To check the last condition, it is necessary to carry out an additional

analysis:

• If a static method is called to start a thread, then check its argument, which must be a

delegate.

• If the method is called immediately after the creation of the object, then analyze the

child nodes of the call tree to check whether the constructor with the delegate was called.

• If the reference to the object was passed to a local variable, field or class property before

calling the method, then we need to analyze the data flow of the parent method body,



24 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

Fig. 11. Creating and starting a thread through a variable

delegate or class and link the local variable and the corresponding constructor call to the

delegate, if any (Figure 11).

The Roslyn platform provides a number of useful classes to work with syntactic trees. One

of them is the CSharpSyntaxWalker class, which implements the Visitor Design Pattern [23].

After inherited it, we can start a traversal through all syntactic nodes of the tree, simultaneously

redefining the methods of visiting nodes of various types.

The idea of generating Promela code is precisely this crawling of the entire syntax tree of

C# code with pre-determined methods for generating syntax nodes we need (Figure 12).

Fig. 12. C# syntax nodes where Promela code will be generated



System Informatics, No. 15 (2019) 25

Fig. 13. Promela code generation for MethodDeclaration

Now we proceed to describe some nodes processing.

Each traversal of the MethodDeclaration, ParenthesizedLambda and SimpleLambda nodes

will create a separate unit to generate Promela code, which will do this for the remaining nodes

which belong to each of these declarations. Also during the crawl, an entry point to the program

will be selected, and it is becoming later as the initial state when generating the resulting code

using the call graph.

When visiting nodes of the MethodDeclaration type, we provide an algorithm for generating

code in Promela presented in Figure 13. If the declaration is a program entry point, then it is

generated as the initial running process in Promela, otherwise as an inline function [24].

When generating declarations and calls in Promela, the hash codes of corresponding symbols

from the semantic model are used for names, because the same symbols, unlike syntax nodes,

have the same hash codes.

When visiting nodes of ParenthesizedLambda and SimpleLambda types, which are threads

delegates, a graphical illustration of this Promela code generation algorithm is shown in Figure

14. Here for each delegate, a new, not yet started process is created.

When visiting nodes of the Invocation type, a Promela code generation algorithm is provided

in Figure 15. If an invocation launches a new thread, then a call code is generated for a

previously generated process corresponding to the delegate. Otherwise, an inline function call

is generated.



26 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

Fig. 14. Promela code generation for thread delegates

When visiting nodes like IfStatement and ElseClause, an algorithm for generating code is

provided in Figure 16. A non-deterministic control flow is generated in Promela both by the

if condition and by the else alternative branch, since all the variants of possible executions as

steps in the control flow are necessary for further verification.

When visiting nodes of type WhileStatement, an algorithm for generating code on Promela

is provided in Figure 17. A non-deterministic control flow is generated on Promela both with

the do(while) clause and with the break operator, which may be absent in the C# source code

since we need all variants of the possible development of program behavior and due to Promela

blocking guarded condition semantic [25].



System Informatics, No. 15 (2019) 27

Fig. 15. Promela code generation for Invocation

Fig. 16. Promela code generation for IfStatement and ElseClause



28 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

Fig. 17. Promela code generation for WhileStatement



System Informatics, No. 15 (2019) 29

3.3. Thread waiting and its modeling

Figure 18 shows some possible ways to wait for threads termination in C# code.

Fig. 18. Ways to wait for threads in C#

When modeling of waiting for the completion of C# threads in Promela, we use message

channels. For each child task, we create a separate message channel with a buffer size of

1. This buffer size is chosen so that the child processes should be executable when sending

synchronization messages at the end of their work (computation body). The channel buffer size

larger than 1 is redundant, since for each child process an individual channel is created, and

the buffer size equals to 0 (the rendezvous channel) will make the child process impracticable

if the parent does not want to wait for its completion.

Each child process sends a message according to a specific pattern to its message channel

at the end of the execution. The parent process, in turn, can stop its execution by calling the

receive statement from this channel along with the same pattern. Also, this process will resume

its work as soon as a message from a finished child appears on the channel.

To cover all the considered ways of waiting for threads in C#, some additional rules for

syntactic nodes of the InvocationExpression type are added using the similar pattern, that

rules find calls to methods which trigger a new thread. Only method names and object types

here should be changed, for example, the TaskAwaiter type and the GetResult method, or the

Thread type and the Join method.

For code generation, following the scheme for simulating awaiting when generating definitions

of new processes, we add an appropriate channel in front of them with the same hash code as

the process, and then at the end of the process body, we generate a message send to this channel

(Figure 19).



30 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

Fig. 19. Promela code generation to model the thread awaiting



System Informatics, No. 15 (2019) 31

3.4. Blocking and its modeling

To model the blocking, we consider modeling operations with the Semaphore class due

to the generality of the locking process with it. This approach can be extended to other

synchronization primitives and patterns. Figure 20 shows some of the methods for accessing

semaphores in C# language.

Fig. 20. Ways to create and use semaphores in C#

When modeling a semaphore, we add a shared resource, in the form of a global variable, for

which wait and release actions will be modeled.

When we proceed to await and resource capture modeling, we check the resource value, and

when it is considered free, then we change this value. These two steps should be concluded

in one indivisible operation. For this, we use the possibility of Promela language to wrap the

code into an atomic block. When we model the release of a resource, we assign the value to the

variable which is considered to be free and a possible blocked code in some different process

can continue to run [22] (and it is a subject to do further checks of it).

To cover the methods of interaction with semaphores in C#, additional rules are added for

syntactic nodes of the InvocationExpression type using a similar pattern we did for finding calls

to methods that trigger a new thread. We should change only the method name and object

type: the Semaphore type, the WaitOne and Release methods (Figure 21).



32 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

Fig. 21. Generating Promela code for C# Semaphore



System Informatics, No. 15 (2019) 33

3.5. Creating and using WCF services and its modeling

Figure 22 shows how to create and run a WCF service in C# code. The service here contains

two things – a contract (an interface) and an implementation so that the service publishes the

contract and clients can call its methods by using proxy-classes based on the contract interface.

Fig. 22. Creating and running a WCF service in C#

Figure 23 shows how to create and use a WCF-service client. It connects to an endpoint

where the service is operating and calls the service methods.

Fig. 23. A way to create and use a WCF client in C#

When modeling the WCF services, here we consider two models – a single-threaded and a



34 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

multi-threaded server. In C# code both models are implemented by using special annotations

(see "ConcurrencyMode=" in Figure 22), in Promela code we model them by generating code

to communicate with the client process in the same server process or by using an additional

one.

The single-threaded service runs in an infinite loop, receives a message from a client via

a rendezvous service channel (buffer size is 0), and there is an indication of a method being

called in this message. Then is made a comparison of the requested method with the pre-

defined service contract and the execution of the resolved method in the same process which

get requests. The multi-threaded service model is similar, except that each handle of the service

method occurs in a separate process.

The client model is synchronous. It sends a message to the service channel with the name of

the method being called. Then it waits for a response from the service on a separate rendezvous

channel.

When generating the model code for the client, we search for an endpoint address it refers

and a contract it implements, generate the channels followed by a hash code of the above

combination and the messages for service call emulation (Figure 24).

Fig. 24. Generating Promela code for a WCF service client

When generating the model code for the service, a search for the service contract (the

interface to be implemented) is performed to generate the corresponding methods.

To determine the type of service, the ServiceBehavior attribute of the service class is ana-

lyzed. If the argument ConcurrencyMode is set to Multiple, then the multi-threaded model is

generated (Figure 25), otherwise the single-threaded one (Figure 26).



System Informatics, No. 15 (2019) 35

Fig. 25. Generating Promela code for a multi-threaded WCF service in C#

Fig. 26. Generating Promela code for a single-threaded WCF service in C#



36 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

4. Verification of distributed system properties

The verification process includes the generation of model code, control variables and rules

expressed in LTL, and then model checking (validation of the model correctness).

In this section, we show that by means of generating special control variables and simple LTL

formulas, it is possible to model and check some distributed system properties. This process

of generation applies to each needed construction as described in the previous section in code

independently, so for a particular real program we generate and check different variables and

Promela constructions and we do not need to generate complex formulas and structures – we

verify the generated model program with respect to all the generated LTL formulas step by

step.

4.1. Data race

Fig. 27. A generated Promela code to check the data race using the example of a collection change



System Informatics, No. 15 (2019) 37

The data race problem is the change of object state from different processes (threads) si-

multaneously that can spoil the correct value of the object.

To model the change we create a pair of control variables var_hashcode_modified = false

and var_hashcode = 0. The first is set to true before the object is changed, and then to

false after the change. The object change itself is modeled using two consecutive operators to

increment and decrement the second variable. When the code is correct, this variable should

always remain 0.

Thus, data race verification here – is generating and checking the LTL rule (1).

G(!var_hashcode_modified→ var_hashcode == 0) (1)

It means "always now and in the future, from the fact that the variable does not change, it

implies that its reference value is zero".

An example of generated Promela code to verify the correct changes of a collection object

variable that implements the ICollection <T> interface is shown in Figure 27.

4.2. Improper blocking usage

When modeling a semaphore object, a global shared resource sem_hashcode_blocked is

used, therefore, when verifying the usage of the semaphore we only need to generate the corre-

sponding LTL rule in the form (2).

G(sem_hash_code_blocked→ FG(!sem_hash_code_blocked)) (2)

It means "always now and in the future, if the semaphore is locked, then once now or in the

future it will be released forever".

Note that the rule is stronger than, for example, a rule G(sem_hash_code_blocked→

F (!sem_hash_code_blocked)) because that semaphore object can be used multiple times and

we need to ensure that the object finally is stay unlocked if it became locked.

An example of generated Promela code to check the use of a semaphore is shown in Figure

28.



38 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

Fig. 28. Generated Promela code to check a semaphore usage

4.3. Deadlock when accessing an WCF service in a microservice

system

Microservices now is a popular concept for scalable [26] applications architectures. Services

can act together to solve a huge task by dividing it into some small parts and providing message

passing ability between the units. So, a WCF service can be considered as a microservice, if it

acts as a service when it receives a task from a client and, in the same time, acts as a client to

ask a different service in a chain to get some needed information to the task solving. However,

in the chain of service calls, we can get a deadlock when we request a service which is waiting

for some data from us. Deadlock can be checked as a liveness condition of the system.

When modeling the service call, we add a separate control variable service_call_hash_code

= false before each call to the service method. After receiving a response from the service, we

set its value to true.

To verify a deadlock when accessing a service, we generate the LTL rule in the form (3).

F (service_call_hash_code == true) (3)

It means "once in the future a response from the service will be received" (Figure 29).

Using this type of paired constructions of assignments, we ensure that each call to a service

function has the corresponding return due to the nature of synchronous calls in WCF. In a

microservice chain it is usually hard to capture the logic of corresponding calls (after a call to

a service there can exist an inner call to a different service and another next call to another



System Informatics, No. 15 (2019) 39

Fig. 29. Generated Promela code to check for a deadlock when accessing a WCF service

service and so on), and by expecting a call return for all calls we can check the correctness of

the whole system and easily find a place where the integrity of the service calls might violate.

5. An example of generated model verification

Consider an example of starting and running SPIN verifier with a generated model and an

LTL formula that checks it for the data race.

An example source code in C# and a corresponding generated model in Promela are shown

in Figure 30.

Figure 31 shows the result of the verification signaling the violation of the absence of data

race condition.

Since the verifier found a counterexample, we can build a call trail containing it in the

simulation mode with SPIN (Figure 32).



40 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

Fig. 30. Generated source code for checking the race condition



System Informatics, No. 15 (2019) 41

Fig. 31. Verification result indicating the violation of the absence of data race condition

Fig. 32. Counterexample in the simulation mode



42 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

6. Conclusion

As the result of the work, we created a possible extension of the C# language compiler

toolset for the formal verification of parallel and distributed applications, which:

• transforms a C# program into an actor model in Promela;

• creates control variables;

• generates LTL formulas for checking:

– deadlocks;

– data races;

– synchronization errors;

• verifies the generated model according to the generated rules.

The aim of the paper was not to create a complete solution for proving parallel and dis-

tributed software, we just wanted to show a possible method that uses AST C# code model

to Promela model transformation, generates LTL formulas and checks them with the SPIN

verifier.

The process is based on analyzing Roslyn structures of full C# grammar programs. The

results can be used in static checkers to prove some properties of sophisticated code.

The method we used can be a bridge from real programs to its formal models with the

automatic transformation between them.



System Informatics, No. 15 (2019) 43

Bibliography

1. Clarke Jr, Edmund M., et al. Model checking. Cyber-Physical Systems, 2018.

2. Staroletov, Sergey. Basics of Software Testing and Verification [in Russian]. Lanbook, Saint

Petersburg, 2018. -344p. ISBN 978-5-8114-3041-3.

3. Richter, Jeffrey. CLR via C#. Pearson Education, 2012. ISBN 978-0-7356-6876-8

4. Home repository for .NET Core. Available from: https://github.com/dotnet/core

5. McMurtry, Craig, et al. "Windows Communication Foundation Unleashed (WCF)." (2007).

6. The Roslyn .NET compiler provides C# and Visual Basic languages with rich code analysis

APIs. Available from: https://github.com/dotnet/roslyn

7. Harrison, Nick. Code Generation with Roslyn. Apress, 2017. ISBN 978-1-4842-2211-9

8. Vasiliev, Sergey. Introduction to Roslyn and its use in program development. Available from:

https : //www.viva64.com/en/b/0399/

9. Burghardt, Jochen, et al. "ACSL By Example." (2016).

10. Hewitt, Carl, Peter Bishop, and Richard Steiger. "Session 8 formalisms for artificial intelli-

gence a universal modular actor formalism for artificial intelligence." Advance Papers of the

Conference. Vol. 3. Stanford Research Institute, 1973.

11. Agha, Gul A. Actors: A model of concurrent computation in distributed systems. No. AI-

TR-844. Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab, 1985.

12. Armstrong, Joe. Programming Erlang: software for a concurrent world. Pragmatic Book-

shelf, 2013.

13. Vernon, Vaughn. Reactive Messaging Patterns with the Actor Model: Applications and

Integration in Scala and Akka. Addison-Wesley Professional, 2015.

14. Holzmann, Gerard J. "The model checker SPIN." IEEE Transactions on software engineer-

ing 23.5 (1997): 279-295.

15. Pnueli, Amir. "The temporal logic of programs." Foundations of Computer Science, 1977.,

18th Annual Symposium on. IEEE, 1977.

16. Proctype – for declaring new process behavior. Promela. Available from:

http : //spinroot.com/spin/Man/proctype.html

17. Michael Barnett, K. Rustan, M. Leino and Wolfram Schulte. "The Spec# programming

system: An overview." International Workshop on Construction and Analysis of Safe, Secure,

and Interoperable Smart Devices. Springer, Berlin, Heidelberg, 2004.

18. Manuel Fähndrich, Michael Barnett and Francesco Logozzo. "Embedded contract lan-



44 Staroletov S., Dubko A. Doing Roslyn AST Transformation to a Promela Model

guages." Proceedings of the 2010 ACM Symposium on Applied Computing. ACM, 2010.

19. Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C. Hunt, James R.

Larus, and Steven Levi. Language Support for Fast and Reliable Message-based Communi-

cation in Singularity OS. Proceedings of EuroSys2006. Leuven, Belgium, April 2006. ACM

SIGOPS.

20. Koshelev, Vladimir Konstantinovich, Valery Nikolayevich Ignatyev, and Artem Il’ich

Borzilov. "C# static analysis framework." Proceedings of the Institute for System Program-

ming of the RAS 28.1 (2016): 21-40.

21. Karpov, Andrey. How PVS-Studio does the bug search: methods and technologies. Available

from: https://www.viva64.com/en/b/0466/

22. Staroletov, Sergey. Model of a program as multi-threaded stochastic automaton and its

equivalent transformation to Promela model. Ershov informatics conference. PSI Series,

8th edition. International workshop on Program Understanding. Proceedings. – Novosibirsk,

2011. p. 33-38

23. Gamma, Erich, et al. "Design patterns: Abstraction and reuse of object-oriented design."

European Conference on Object-Oriented Programming. Springer, Berlin, Heidelberg, 1993.

24. Inline – a stylized version of a macro. Promela. Available from:

http : //spinroot.com/spin/Man/inline.html

25. Do – repetition construct. Promela. Available from:

http : //spinroot.com/spin/Man/do.html

26. Dragoni, Nicola, et al. "Microservices: How to make your application scale." International

Andrei Ershov Memorial Conference on Perspectives of System Informatics. Springer, Cham,

2017.


