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Abstract. Extended Finite State Machines (EFSMs) are widely used when deriving tests for 

checking whether a software implementation meets functional requirements. These tests usually 

are derived keeping in mind appropriate test purposes such as covering paths, variables, etc. of 

the specification EFSM. However, it is well known that such tests do not detect many functional 

faults in an EFSM implementation. In this paper, we propose an approach for increasing the 

fault coverage of test suites initially derived against the specification EFSM. For this reason, the 

behavior of the specification EFSM is implemented in Java using a template that is very close to 

the EFSM description. At the next step, the fault coverage of an initial test suite derived against 

the specification EFSM is calculated with respect to faults generated by µJava tool. Since the 

EFSM software implementation is template based, each undetected fault can be easily mapped 

into a mutant EFSM of the specification machine. Thus, a distinguishing sequence can be 

derived not for two programs that is very complex but for two machines and there are efficient 

methods for deriving such a distinguishing sequence for Finite State Machine (FSM) 

abstractions of EFSMs. As an FSM abstraction, an l-equivalent of an EFSM can be considered 

that in fact, is a subtree of the successor tree of height l that describes the EFSM behavior under 

input sequences of length up to l. Such l-equivalents are classical FSMs and if l is not large then 

a distinguishing sequence can be derived simply enough. The initial test suite augmented with 

such distinguishing sequences detects much more functional faults in software implementations 

of a system described by the specification EFSM.  
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1. Introduction 

Model based test derivation is now widely used for deriving functional (conformance) tests for 

software implementations [1, 2] which nowadays are used everywhere including various critical 

systems. When deriving tests with the guaranteed fault coverage finite state models such as Finite 

State Machines (FSMs) and their extensions are widely used [2], since these models have the 
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natural reactivity and there are no races between inputs and outputs. However, traditional FSMs are 

too big for real-life software and extracting such a model from informal description of functional 

software requirements is rather difficult. Despite the big number of publications about automatic 

derivation of an FSM from informal behavioral restrictions, most authors consider small examples 

and very often such model is manually derived by a test engineer. The Extended Finite State 

Machine (EFSM) [3] extends the classical FSM with input and output parameters, context variables, 

update functions and predicates defined over context variables and input parameters. For test 

derivation for telecommunication protocol implementations the EFSM model is often extracted 

from the protocol RFC specification [2]. As a result, it is nearly to impossible to find the correlation 

between model and software faults with respect which we are going to guarantee the fault coverage. 

Often enough faults are injected into constructed software and then corresponding mutants are 

distinguished [4, 5]. In this paper, we propose to derive distinguishing sequences not for code but 

for two EFSMs injecting faults into the template Java implementation of the specification EFSM. 

We note that the same approach can be applied when using other programming languages for which 

an automatic mutation tool exists. 

There exist a number of EFSM based test derivation methods. Tests usually are derived keeping 

in mind appropriate test purposes such as covering paths, variables, etc. of the specification EFSM. 

The derived tests have a good quality but it is well known [6, 7] that such tests do not detect many 

functional faults in a software implementation of a system described by the EFSM. 

Correspondingly we propose to increase the fault coverage of EFSM based test suites constructing a 

Java template implementation of the specification EFSM. Using the tool Java [8] a number of 

mutants is generated for the template EFSM implementation which are tested using the initial test 

suite derived by covering appropriate paths in the specification EFSM. If a mutant is not detected 

by the initial test suite then a corresponding fault is easily mapped into an EFSM fault and a 

distinguishing sequence is derived not for two software programs that is known to be a very 

complex task [5] but for two finite state models that is known to be much simpler [9, 10]. First 

results have been published in [11]; in this paper, we extend a proposed approach to arbitrary 

EFSMs.   

The rest of the paper is structured as follows. Section 2 contains preliminaries. A proposed 

approach is described in Section 3. In Section 4, we apply a proposed approach to a Simple 

Connection Protocol SCP that being a ‘toy example’ has many features that are presented in real 

protocol descriptions. Section 5 concludes the paper. 
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1. Preliminaries 

 A Finite State Machine (FSM) [12] is a 5-tuple S = (S, I, O, hS, s0), where S is a nonempty finite 

set of states with the designated initial state s0, I and O are nonempty finite input and output 

alphabets, hS  I  S  S  O is a behavior or a transition relation. Extended FSM (EFSM) extends 

the classical FSM by context (internal) variables, input and output parameters and conditions when 

a transition can be fired. Formally [3], an EFSM M is a 5-tuple M = (S, s0, X, Y, T, V), where S is a 

nonempty finite set of states of the EFSM, X and Y are nonempty finite input and output alphabets, 

V is a finite possibly empty set of context variables, T is a set of transitions between states of S. 

Every transition of the EFSM is a 7-tuple (s, x, P, oM, y, uM, s), where s and s are the initial and 

final states of the transition; x  X is an input, along with Dinp-x denoting the set of input vectors, 

i.e., vectors with all possible values of input parameters which correspond to x (input parameters); y 

 Y is an output, along with Dout-y denoting the set of output vectors, i.e., vectors with all possible 

values of output parameters which correspond to y (output parameters); P, oM and uM are functions 

over input parameters and context variables from V. The predicate P: Dinp-x  DV  {0, 1} where DV 

is the set of context vectors, describes the conditions when a corresponding transition can be fired; 

the function oM : Dinp-x  DV  Dout-y updates the values of output parameters after firing the 

transition, while the function uM : Dinp-x  DV  DV updates the context variables. 

The configuration is a pair «state, context vector»; a parameterized input (parameterized output) 

is a pair «input, vector of input parameter values» («output, vector of output parameter values». The 

initial configuration is usually denoted (s0, v0). A transition of an EFSM can be fired if the 

corresponding predicate is ‘True’ for the current parameterized input and configuration. Thus, 

differently from classical FSMs not each transition at a current state can be fired and this is the well 

known problem of transition execution [3]. It is possible that in order to fire a given transition we 

have to execute a number of other transitions first, for example, in order to reach a predefined value 

of a counter.  

Well known test for an EFSM is a transition tour which is widely used for detecting functional 

faults in various systems’ implementations [7]. A transition tour is a parameterized input sequence 

that traverses each transition of the EFSM. As mentioned above, it is not simple to construct such a 

sequence for an EFSM; however, there exist methods [13] for the transition tour construction. Other 

methods construct  the set of input sequences that cover critical paths, conditions, variables but as it 

is shown in PhD thesis of S. Nika [6], the fault coverage of such tests with respect to functional 

software faults is very low, around 70 %; when considering functional faults such as transition 
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and/or predicate faults, variable and/or parameters updating, etc. On the other hand, in [7], it is 

shown that the transition tour also is not very efficient with respect to such functional faults, since a 

transition tour covers only appropriate paths. Accordingly in [7] it is shown that the fault coverage 

of random tests of appropriate length is almost the same as that of a transition tour.  

As an example, we consider an EFSM describing the behavior of Simple Connection Protocol 

(SCP) [14, 15], that has three states; every state describes an appropriate operating mode. State S1 

describes a mode when a protocol implementation is waiting for connection, S2 corresponds to 

establishing the connection while state S3 is related to data transmission. Inputs correspond to 

standard protocol commands: Req (request), Conn (connection), Data (data transmission) and Reset. 

We also use an input parameter Support that equals 1 when the connection of the predefined quality 

QoS can be established and 0, otherwise. Input parameter SysAvail equals 1 if the system is 

available and 0, otherwise. Output parameters are also very natural: No support, Error, Abort, 

Support, Refuse, Accept, Ack_1. Context variable TryCount corresponds to the number of attempts 

when the connection has failed. Despite the fact that this protocol is somehow a “toy protocol”, it 

illustrates many aspects of protocol implementations. 

As mentioned above, differently from deriving a distinguishing sequence against software 

mutants the derivation of such sequences for finite state machines is much simpler. Distinguishing 

sequences for two FSMs are constructed based on the product of these machines [11]; for EFSMs it 

is a bit more complex, since appropriate FSM abstractions are derived first [16, 17, 18]. Such 

abstractions can be derived in various ways, for example, we can simply delete all predicates, 

context variables, input and output parameters and updating functions. As shown in [19], in this 

case, a distinguishing sequence will be constructed for two nondeterministic FSMs. It is also the 

case when predicate abstractions are considered when deriving a distinguishing sequence  [20]. One 

of simple ways is to use l-equivalents of an EFSM which describe the EFSM behavior under critical 

(parameterized) input sequences of length up to l. In the paper [10], it is experimentally shown that 

when two EFSMs differ in a small number of transitions (the specification EFSM and a mutant 

EFSM with one or two mutation transitions) usually it is enough to consider l = 2, 3 when deriving 

a distinguishing sequence. 

2. Test derivation when using Java 

An initial test suite is derived against the specification EFSM using one of known approaches. It 

can be a transition tour or a set of randomly derived test cases of appropriate length. This initial test 

suite will be then augmented with distinguishing sequences for mutants derived by µJava for a 
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template Java implementation of the specification EFSM. The last version of this tool (µJava, v.4) 

appeared in June, 2013 [8]. The µJava has good functional abilities and according to the documents 

can generate 34 types of code mutations. There are traditional faults such as the operator or variable 

replacement and object-oriented faults for inheritance, polymorphism, etc.; there is the high 

correlation between these mutants and functional software faults. For this reason, we have selected 

this approach in order to increase the fault coverage of EFSM based test suites. It is known that 

single faults are most hard detecting faults [6], while test suites complete with respect to single 

faults detect a big number of other (multi) faults. Correspondingly, µJava injects exactly various 

types of single faults into software implementations. For correct use of µJava it is necessary to 

perform appropriate pre-settings which can be found in the official developer site [6]. For mutant 

generation, the µJava graphic shell should be installed and the code project and mutation types have 

to be selected. As a result, in the Results folder all the generated mutants will appear; subfolders 

will have titles corresponded to a mutation type. By the use of the JUnit library for module testing 

[21] a current test suite can be applied to all mutants simultaneously in order to determine mutants 

which are not detected by the test suite, i.e., have the behavior that cannot be distinguished with the 

template Java implementation. For those mutants, corresponding faults will be injected into the 

specification EFSM and a distinguishing sequence will be derived for two machines, a mutant and 

the specification. Therefore, EFSM based test derivation strengthened with µJava includes the 

following steps. 

Step 1. An initial EFSM based test suite TS is derived using one of well known methods. This 

test suite can be a transition tour of the specification EFSM M, or a test suite can cover some critical 

transitions, conditions, paths, etc., or a test suite can be a random test of appropriate length.  

Step 2. A Java template implementation of the specification EFSM is derived. The template is 

very close to the EFSM notion and thus, there is the strong correlation between faults in the 

specification EFSM and template implementation. In particular, EFSM states in the template 

implementation are the values of a corresponding variable (for describing an appropriate mode, for 

example). Context variables and input and output variables correspond to those in the template 

implementation; predicates describe the conditions for instruction execution. 

Step 3. The fault coverage of the test suite TS is checked with respect to faults injected by µJava 

generator into the template implementation and the set Mut of the specification EFSM mutants 

corresponded to undetected faults is constructed.  

Step 4. For each EFSM Imp of the set Mut, an appropriate FSM abstraction is derived keeping in 

mind mutated transitions. At the next step, a distinguishing sequence for the specification and 

mutant FSM abstractions is constructed if such a sequence exists. In this case, a derived 
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distinguishing sequence is added to TS. If such a sequence is not found then the conclusion is drawn 

that the mutant is indistinguishable with the specification EFSM.  

Remark. We note that when a distinguishing sequence is not found, we cannot guarantee the 

equivalence of the mutant and specification but our experiments with protocol implementation show 

that such situations occur very rare. In other words, according to performed experiments, the 

specification and indistinguishable mutant EFSMs always were equivalent. Nevertheless, we 

underline that for EFSMs there are no necessary and sufficient conditions of the two EFSMs’ 

equivalence and in our experiments when checking the equivalence, we used only some sufficient 

conditions. One easily checked condition is that the fault injection creates instructions which do not 

influence the specification EFSM behavior.  

3. Analyzing performed experiments for simple connection protocol 

We performed experiments with EFSMs which are used for describing protocols Simple 

Connection Protocol, Time, SMTP, POP3, TFTP, Audio CD player [11]. Almost in all cases, save 

for the simplest protocols, a transition tour needed to be augmented with distinguishing sequences 

obtained after using the µJava tool. The augmentation process in more details is illustrated for the 

Simple Connection Protocol. A template Java implementation has been obtained for this protocol 

and a transition tour was used as an initial test suite. After applying µJava, 245 traditional 

(arithmetic) mutants have been generated, along with seven object oriented mutants (Table 1). 

Table 1. Generated mutants 

Name Mutant description Number of mutants 

AOIS Variable increment/decrement  96 

AOIU Inserting a unary operator (arithmetic “-“) before a variable 5 

LOI Operand bit based inversion 24 

ROR Logic operator replacement >,<,=,<=,>=,== 91 

COR Logic operand replacement ^,||,&&,&,| 4 

COI Injecting logic inversion into conditions  17 

ASRS Arithmetic operator modification: +=, /=, -=, %=  8 

JSI Adding the “Static” modifier to instance variables 7 

Overall 252 mutants 
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When applying the initial test TS to all generated mutants, it occurred that 62 mutants (24,6%) 

produced expected outputs to all test cases. Using FSM abstractions we determined that 9 (3,6%) 

are distinguishable with the specification EFSM. Other 53 (21%) mutants were indistinguishable 

with the EFSM specification. Based on the EFSM specification the paths were determined where 

nonequivalent mutations occurred and a test suite has been augmented with three additional 

parameterized distinguishing sequences of the total length 11; correspondingly, the test suite length 

was increased from 18 up to 29 parameterized inputs. We also checked 53 indistinguishable 

mutants using simple sufficient conditions and all of them were found to have injected faults which 

do not influence the specification behavior. Therefore, the fault coverage of the initial test suite has 

been increased from 75,4% up to 100 % (with respect to mutants generated by µJava tool).  

4. Conclusion 

In this paper, we proposed how to increase the fault coverage of EFSM based test suites when 

testing software implementations, since tests based on covering appropriate paths, variables, etc. are 

known to be incomplete with respect to functional software faults. We develop a template Java 

implementation of the EFSM specification such that implementation faults can be easily mapped 

into the EFSM faults. The Java tool is used to inject faults into the template implementation and 

the set of corresponded EFSM faults undetected with the initial test suite is constructed. Thus, a 

distinguishing sequence is derived not for two Java programs that is very complex but for two 

machines and there are efficient methods for deriving such a distinguishing sequence for FSM 

abstractions of EFSMs. As the performed experiments show this approach allows to eliminate 

mutants which are equivalent to the EFSM specification and to augment the initial test suite with 

appropriate distinguishing sequences for non-equivalent mutants. We plan more experiments with 

real protocol software implementations in order to reveal which functional faults still are not 

detected with constructed test suites. Another direction of our future work includes the study how to 

use the obtained results for fault localization in software implementations.   
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