
System Informatics (Системная информатика), No. 27 (2025) 93

UDC 004.052.42, 004.8

Conceptual Framework for Trustworthy Artificial

Intelligence: Combining Large Language Models with

Formal Logic Systems∗

Nechesov A.V. (The Artificial Intelligence Research Center of Novosibirsk State

University)

Kondratyev D.A. (A.P. Ershov Institute of Informatics Systems SB RAS)

Sviridenko D.I. (The Artificial Intelligence Research Center of Novosibirsk State

University)

Anureev I.S. (A.P. Ershov Institute of Informatics Systems SB RAS)

Garanina N.O. (A.P. Ershov Institute of Informatics Systems SB RAS)

Gumirow A.V. (Novosibirsk State University)

Gorobets I.A. (Novosibirsk State University)

Dementyeva Y.Y. (Novosibirsk State University)

∗This work was supported by a grant for research centers, provided by the Ministry of Economic Development of the Russian

Federation in accordance with the subsidy agreement with the Novosibirsk State University dated April 17, 2025 No. 139-15-2025-

006: IGK 000000C313925P3S0002.

94 Nechesov A.V., Kondratyev D.A., el all. Conceptual Framework for Trustworthy Artificial Intelligence ...

The paper explores the problem of building trustworthy artificial intelligence based on

large language models and p-computable checkers. For this purpose we present a concept

of framework for reliable verification of answers obtained by large language models (LLMs).

We focus on the application of this framework to digital twin systems, particularly for smart

cities, where LLMs are not yet widely used due to their resource intensity and potential for

hallucination. Taking into account the fact that solution verification from a suitable set of

tasks is p-computable and in most cases less complex than computing and implementing

the whole task, we present a methodology that uses checkers to assess the validity of

LLM-generated solutions. These checkers are implemented within the methodology of

polynomial-time programming in Turing-complete languages, and guarantee a polynomial-

time complexity. Our system was tested on the 2-SAT problem. This framework offers a

scalable way to implement trustworthy AI systems with guaranteed polynomial complexity,

ensuring error detection and preventing system hangups.

Keywords: digital twins, smart city, polynomial programming methodology, Turing-

complete language, semantic programming, large language model, trustworthy AI, deduc-

tive verification, 2-SAT

1. Introduction

Today, an increasing number of users are joining the use of artificial intelligence. Artificial

intelligence is being applied to a wide range of tasks and this range is growing. However, there

have already been many cases where the involvement of AI, in particular large language models,

has led to incorrect and even dangerous decisions. Therefore, it is important for us to obtain

a trusted artificial intelligence. In this paper, we propose a concept of framework for reliable

verification of decisions obtained using a large language model.

The topic of trustworthiness of artificial intelligence systems has recently received increasing

attention from both AI researchers and AI systems users. It is the concept of designing and

operating AI systems that are guaranteed to have the characteristics that we would normally

ascribe to some agent. In this case, we usually talk about safety, security, responsibility,

reliability, reproducibility, efficiency, productivity, transparency, confidentiality, fairness, ethics

of its actions and results. All of this also applies to AI systems. The main challenge of

trustworthy AI is to find an answer to the question, how to achieve it? And often the problem

is to find a toolkit that will be used to achieve the desired result.

In the case of the symbolic approach, trust can be guaranteed by the presence of a reasonable,

explainable, transparent and reliable development and operation environment based on logical

and probabilistic principles. At the same time the use of machine learning technologies is

System Informatics (Системная информатика), No. 27 (2025) 95

dangerous due to high uncertainty and low level of transparency and validity of the results

obtained. It is especially peculiar to the technology of artificial neural networks, in particular,

to the technology of large language models (LLM), when we face the "black box" effect and

hallucinations.

At the moment, trusted artificial intelligence is most in demand for implementation in digital

twin systems ([7], [15]). We are considering the construction of digital twins for smart cities

([14]), but we are not yet able to involve LLMs due to their unreliability and high resource

intensity. However, there are still plenty of tasks that require involving LLMs to get at least

inaccurate solutions for multiparametric problems that are impossible or difficult to solve using

analytical methods based on available resources. We realize that it is necessary to check the

correctness of these solutions. Therefore our concept is invented.

It is well known that solving NP-class problems ([17]) has a high computational complexity

above polynomial. However, verifying a solution is a more simple task and often belongs to class

P and requires polynomial time. This concept allows us to reduce the cost of computational

resources on the side of the digital twin due to verification of solutions by a checker working

in polynomial time. The checkers themselves are written within the framework of polynomial-

time programming methodology in Turing-complete languages ([8]). Our methodology allows

us to check whether our checker corresponds to class P. The polynomial complexity check is

performed following the methodology of semantic programming, where tasks are formulated

following to the task approach ([16]).

Let us note another advantage of our methodology. There are a lot of cases when imple-

mentation of task solution checker is simpler than implementation of solver for this task. Since

our methodology is based on implementation of checkers instead of solvers, our approach allows

reducing developer efforts in these cases.

The system, which is described in detail below, was tested on the 2-SAT problem. Scenarios

were considered when the LLM gave the correct answers and when it was wrong. A finite

set of checkers with partial order applied to evaluate the answers. Next, the jointness of the

solver obtained using LLM and a certain checker from the set is evaluated. A solution can be

decided as trusted only when the domain of the original problem coincides with the domain of

the solver. The advantage of this framework is that it allows us to use trustworthy artificial

intelligence systems while guaranteeing polynomial complexity. In addition, the system signals

errors and hangups. The 2-SAT problem is only an illustrative example of understanding the

96 Nechesov A.V., Kondratyev D.A., el all. Conceptual Framework for Trustworthy Artificial Intelligence ...

concept of a conceptual environment for developing trusted intelligent systems. The concept

itself is applicable to other classes of tasks.

This paper is divided into the following sections. The essence of the proposed concept and

its fundamental foundations are outlined in the second section. The next section describes the

testing of the system. A summary of the results is presented below in the conclusion.

2. Framework

In this section we present a conceptual framework for ensuring trustworthiness of AI-based

solvers (for example, LLMs).

First of all, we formalize the concepts of AI-based solver and checking environment.

Fig. 1. The process of solving problems in combination of algorithms and LLMs

Let letters I and O (possibly with indices and primes) denote sets.

An AI-based solver S for inputs set I and outputs set O is a (possibly partial) function from

D → R. The partiality property means that there are inputs where the solver cannot solve the

problem.

Let bool = {true, false}, and dom(f) denotes the domain of a partial function f .

A checking environment E is a pair (Ψ,≺) where Ψ = {ψ1, . . . , ψn} is a finite set of partial

System Informatics (Системная информатика), No. 27 (2025) 97

functions ψj ∈ Dj ×Rj → bool called checkers, and ≺ is a partial order relation on Ψ such that

for all 1 ≤ j, k ≤ n the following properties hold for each input i ∈ I:

• j < k ∧ ψj ≺ ψk ∧ i ∈ dom(ψj) ⇒ i ∈ dom(ψk) ∧ ψk(i) = ψj(i);

• ¬(ψj ≺ ψk) ∧ ¬(ψk ≺ ψj) ∧ i ∈ dom(ψj) ⇒

i ∈ dom(ψk) ∧ ψk(i) = ψj(i) ∨ i /∈ dom(ψk).

The checking environment E is attached to the AI-based solver S, providing verification of

the correctness of the output o of S at the input i, i.e. the correctness of the pair (i, o), by

applying checkers from Ψ. The true value of the checker means that the solver returned the

correct result o at input i, the false value does that the solver’s result is incorrect at this input,

and the undefined value ⊥ does that the checker could not make an estimate.

The ≺ relation specifies the order in which the checkers are run.

If ψj ≺ ψk, then the checker ψk can run only after the checker ψj returns the result, and

whether the checker ψk is started depends on this result. The checker ψk is run only if the

checker ψj failed to check the pair (i, o), i. e. ψj returned an undefined value ⊥. The first

property ensures that if the checker ψj did not fail to check the pair, then running the checker

ψk returns the same result, that is, it makes no sense to run it.

If ¬(ψj ≺ ψk), and ¬(ψj ≺ ψk), then the checkers ψj and ψk can be run in parallel. The

second property ensures consistency of the results of parallel checkers, which means that it

cannot happen that one of them returned false and the other returned true.

A solver S and an environment E are consistent if Dj ⊆ D, and Ej ⊆ E for each 1 ≤ j ≤ n.

The consistency property means that checkers work within the state space D×E of the solver.

Now we can define trustworthiness condition for AI-based solvers.

A solver S is trustworthy w.r.t. an environment E on a set I ′ ⊆ I if for each i ∈ I ′ there

exists a path ψm1 ≺ . . . ≺ ψml
such that ψmr(i) = ⊥ for each 1 ≤ r ≤ l − 1, and ψml

∈ bool.

The existence of the path means that checking environment estimates the solver on any inputs

from I ′.

A solver S is trustworthy w.r.t. an environment E if A solver S is trustworthy w.r.t. an

environment E on a set I. This property means that solver S is trustworthy at any inputs.

Let us note that the system (S,E) consisting of a solver S and checking environment E

can be considered as a hybrid intellectual system with intellectual part S and analytical part

E that provides total or partial (on a subset of inputs) trustworthiness of S. Since checker

implementation is simpler than solver implementation in many practical cases, hybrid nature

98 Nechesov A.V., Kondratyev D.A., el all. Conceptual Framework for Trustworthy Artificial Intelligence ...

of our approach allows reducing developer efforts in practice.

There are two problems that arise when building such a hybrid AI.

First, we need to make sure that all checkers from the checking environment are working cor-

rectly. To address this problem we use formal verification methods (in particular, the deductive

verification method [9]) for ensuring the correctness of the checkers themselves).

Second, we need to ensure relatively small time complexity of the checkers included in

the checking environment. To address this problem we use polynomial-time programming

methodology in Turing-complete languages ([8]) which allows us to check whether a checker

corresponds to class P.

With this in mind, we define a conceptual framework as the quadruple (S,E,∆1,∆2), where

(S,E) has already been defined above, ∆1 is a set of checkers verification tools, and ∆2 is a set

of checkers complexity assessment tools.

3. Experiments

In this section, we illustrate the main components of the conceptual framework using the

example of solving 2-SAT problems.

3.1. Application of our framework to 2-SAT problem

2SAT is an P-class problem of assigning values to binary variables to perform a conjunction of

k disjunctions. It is a special case of the general Boolean satisfiability problem. Thus, Problem

of 2-SAT can be stated as: Given Conjunctive Normal Form F with each clause having only 2

terms:

F = (A1 ∨B1) ∧ (A2 ∨B2) ∧ (A3 ∨B3) ∧ · · · ∧ (Am ∨Bm)

Is it possible to assign such values to the variables so that the Conjunctive Normal Form is

TRUE?

The checking environment E of our conceptual environment consists of two functions:

twosat_solver and sat_solution_checker. Implementations of these functions are available

in our repositories [11, 12] and also in Appendix A and Appendix B. These implementations

correspond to our polynomial programming methodology (The corresponding polynomiality

tests make up the component ∆2).

The twosat_solver function allows us to check unsatisfiability case. Thus, dom(twosat_solver) =

{(i, o) | i is a 2-SAT task, and o = unsat}. We define formal specifications of this function to

System Informatics (Системная информатика), No. 27 (2025) 99

verify its implementation. This function checks the property of existence of path from x to

¬x and existence of path from ¬x to x in implication graph for any formula variable x. This

property is important in the field of 2-SAT problem. If this property holds, than formula

is unsatisfiable. Let us note that implementation of whole 2-SAT solver requires not only

implementing check of this property but also implementing search of all strongly connected

components of implication graph and topological sort of these components to build solution of

2-SAT problem [2]. But our approach based on using checkers in our environments allows us to

avoid implementing whole 2-SAT solver. Thus, we use the twosat_solver function instead of

implementation of whole 2-SAT solver. Consequently, we have reduced developer efforts in this

case. Another function twosat-solver used in specifications is implementation of solution of

SAT problem using generation of all combinations of possible values of formula variables. Spec-

ifications describe equivalency between this ineffective simple implementation and polynomial

complex implementation of 2-SAT solution algorithm in the case of unsatisfiable formula. We

have used the C-lightVer deductive verification tool [13] (an element of ∆1 from the conceptual

environment) to prove property of this equivalence described in specifications. This proof allows

us to guarantee that implementation of this unsatifiablity checker is trustworthy [10].

The sat_solution_checker function allows us to check whether a set of variable values

proposed by LLM is solution of 2-SAT problem. Thus, dom(sat_solution_checker) =

{(i, o) | i is a 2-SAT task, and o = sat}. The polynomial implementation of this function is

based on iterations over disjunctions and variables of formula.

We use ChatGPT and DeepSeek as solvers in our conceptual framework and apply the

prompt from Appendix C to solve 2-SAT problems on these LLMs.

Application of our framework to 2-SAT problem allows us to solve tasks that can be reduced

to 2-SAT problem.

3.2. Heterogeneous resource allocation (HRA) in the case of two

resources and one-level dependencies between tasks

We use the task of heterogeneous resource allocation (HRA) from the paper [1] as the first

case study. We consider that we have two platforms, each with an unbounded number of

processors. We want to execute an application represented as a Directed Acyclic Graph (DAG)

using these two platforms. Each task of the application has two possible execution times,

depending on the platform it is executed on. Finally, there is a cost to transfer data from one

100 Nechesov A.V., Kondratyev D.A., el all. Conceptual Framework for Trustworthy Artificial Intelligence ...

platform to another one between successive tasks. Maximum depth of this DAG is 1. So task

can depend only on task that has no dependencies. Tasks could be executed in parallel. Each

task predecessors could be ran on different platforms (i.e when task 1 depends on 2 and 3, these

tasks may be executed on different platforms).

The goal is to calculate minimum possible time of total DAG execution and return platform

for each task.

We use a polynomial algorithm for solving this task and apply obtained polynomial algorithm

to this task [1]. This algorithm is based on reduction of this task to 2-SAT problem. Reduction

of considering task to 2-SAT is implemented by us and available in the repository [11]. We use

application of our framework to 2-SAT problem for solving tasks obtained by this reduction.

Two examples of our first case study lead to 15 2-CNF formulas: 8 2-SAT formulas resulted

from first example and 7 2-CNF formulas resulted from second example. On the one hand, all 8

2-CNF formulas corresponded to first example have been solved by both LLMs (ChatGPT and

DeepSeek). Our checkers allowed us to verify solutions of these 8 2-SAT cases. On the other

hand, only one formula corresponding to second example has been solved by our solver. Let

us note that this formula has been solved by DeepSeek and has not been solved by ChatGPT.

The set of 7 2-CNF formulas corresponded to second example contain interesting case when

DeepSeek reports about unsatisfiability but our unsatisfiability checker allows us to discover

that this formula is not unsatisfiable. The representation of this formula from prompt in

DIMACS CNF format is follow:

p cnf 3 6

-3 2 0

-1 2 0

-3 -2 0

1 2 0

-1 -2 0

3 2 0

Let us consider DIMACS cnf format which is used by a lot of modern SAT solvers and by

us to define 2-SAT instances in prompt. The number of variables and the number of clauses

are defined by the line p cnf variables clauses. Each of line below specifies a clause: a

positive literal is denoted by the corresponding number, and a negative literal is denoted by

the corresponding negative number. The last number in a line should be zero.

System Informatics (Системная информатика), No. 27 (2025) 101

Let us consider the classic representation of this formula:

(¬x3 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (¬x3 ∨ ¬x2) ∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x3 ∨ x2)

This formula is not unsatisfiable (for example, this formula is true in the case of x1 = false,

x2 = true and x3 = false).

This case is interesting since unsatisfiable case is more difficult to analyze due to absence of

proposed solution in this case.

3.3. Applications in Smart Cities and Multi-Blockchains

The future of urban management is being redefined through the convergence of smart city

initiatives, multi-blockchain architectures, and advanced artificial intelligence. This section

presents an integrated framework where diverse blockchain systems store and process infor-

mation across various domains of a smart city, smart contracts execute all business logic au-

tonomously, and trustworthy AI underpins decision-making. Moreover, a polynomial complex-

ity HRA-task is employed to maintain efficient control over the multi-blockchain ecosystem.

3.3.1. Architecture of the Multi-Blockchain Ecosystem

The framework implements a three-levels hierarchy:

1. Master Blockchain (1st Level):

• Root layer with maximum decentralization/security (e.g., PoW/BFT)

• Manages cross-domain coordination and integrity proofs

2. Sector-Specific Blockchains (2nd Level):

• Domain-optimized consensus (PoS for energy, PBFT for emergency services)

• Interfaces between subsectors and master chain

3. Subsector Blockchains (3rd Level):

• High-throughput chains for granular operations (DAG-based consensus)

• Examples: traffic light control, household energy metering

3.3.2. Coordination and Processing Workflow

• Bottom-Up Processing:

3rd level → 2nd level → 1st level

Parent chains process only after child chains complete

• Resource Allocation:

102 Nechesov A.V., Kondratyev D.A., el all. Conceptual Framework for Trustworthy Artificial Intelligence ...

– GPU-intensive: PoW-like consensuses

– CPU-intensive: BFT/PoS consensuses

– Single-device execution per blockchain

3.3.3. Polynomial-Time Heterogeneous Resource Allocation (HRA) Task

Let:

B = {B1, B2, . . . , Bn} (blockchains)

R = {GPU,CPU}

T (Bi) : Processing time for blockchain Bi

Bj ≺ Bk : Processing order constraint

Objective:

min

(
max
r∈R

(∑
Bi assigned to r

T (Bi)

))

Constraints:

• Order preservation:

∀Bj ≺ Bk, start_time(Bj) + T (Bj) ≤ start_time(Bk)

• Consensus-specific resource assignment:

GPU-required Bi ⇒ Bi assigned to GPU device

Since the master blockchain will be processed after we have processed all other blockchains,

this problem is reduced to the HRA problem for a DAG- graph with two layers. This problem

can be solved in polynomial time!

The integration of multi-blockchain storage, smart contracts, trustworthy AI, and efficient

resource allocation creates a resilient and adaptive infrastructure for smart cities. By parti-

tioning data into specialized ledgers, automating business processes via smart contracts, and

underpinning operations with transparent and accountable AI, urban systems can achieve un-

precedented levels of efficiency, security, and scalability. Furthermore, the deployment of a

polynomial complexity heterogeneous resource allocation algorithm provides the necessary con-

trol to manage diverse and dynamic resources across the entire multi-blockchain ecosystem.

System Informatics (Системная информатика), No. 27 (2025) 103

3.4. Wireless sensor network (WSN) connectivity analysis

We use the task of wireless sensor network connectivity analysis from the paper [4] as the

another one case study. Since wireless sensor networks (WSN) are widely applied to such

perspective area as smart city creation [3], considering task is important [6].

This task is based on representation of communications between sensors as graph. This

graph is referred to as communication graph. Vertexes of this graph are sensors. There is edge

between sensors if and only if direct communication between these sensors exists. Let us note

that this graph is directed due to possibility of only one-side direct communication in some cases

(for example, when distance between two sensors does not allow sending messages from sensor

with less powerful transmitter to sensor with more powerful transmitter but allows sending

messages from sensor with more powerful transmitter to sensor with less powerful transmitter).

Considering task is to check whether communication graph satisfies the following property:

ability of each sensor to communicate with each another sensor with opportunity of using other

sensors as repeaters. This property is equivalent of strong connectivity of communication graph.

The reduction of question about strong connectivity of communication graph to black-and-

white 2-SAT problem has been described in the paper [4]. This reduction is interesting due its

simplicity: each edge (a, b) is translated to implication a→ b (¬a∨b conjunct in obtained 2-cnf

formula). But authors of the paper [4] have proved that it is necessary to avoid cases when

all variables (vertexes) have true values in 2-SAT solution and when all variables (vertexes)

have false values in 2-SAT solution. Authors of the paper [4] have proposed to add the

following two conjunctions to the formula to solve this problem: x1 ∨ x2 ∨ . . . ∨ xn−1 ∨ xn

and ¬x1 ∨ ¬x2 ∨ . . . ∨ ¬xn−1 ∨ ¬xn (where x1, x2, . . . , xn−1, xn denotes all formula variables

(all graph vertexes)). 2-SAT problem with these two additional constraints is referred to as

black-and-white 2-SAT problem.

Authors of the paper [4] have proved that communication graph is strongly connected if and

only if corresponding black-and-white 2-SAT problem is unsatisfiable. But it is necessary to

reduce considering task to ordinary 2-SAT problem instead of black-and-white 2-SAT problem

to solve obtained 2-cnf formula in polynomial time. Thus, we propose reduction of considering

task to ordinary 2-sat problem. We state that two additional constraints can be replaced by

statement of presence of pair of variables that have different values in obtained solution. We

suggest to check this statement in the iteration over all pair of variables. We propose to add

to the formula constraint (xi ∨ xj) ∧ (¬xi ∨ ¬xj) (where xi and xj are iterated variables) on

104 Nechesov A.V., Kondratyev D.A., el all. Conceptual Framework for Trustworthy Artificial Intelligence ...

each iteration instead of adding big "black-and-white" constraints. We try to solve obtained

2-SAT problem on each iteration using application of our framework to 2-SAT problem. If

obtained formula occurs satisfiable on some iteration then communication graph is not strongly

connected. Else if obtained formula is unsatisfiable on each iteration then communication graph

is strongly connected. Thus we improve result from the paper [4] by reducing question of graph

strong connectivity to ordinary 2-SAT problem instead of black-and-white 2-SAT problem. We

have implemented this reduction in our repository [12].

Let us consider example of wireless sensor network described in the paper [4]. Corresponding

communication graph is presented on Figure 2.

Fig. 2. Communication graph of wireless sensor network described in the paper [4]

Application of our approach to this communication graph results to 45 2-cnf formulas due

to count of possible pairs of 10 variables. All of these 45 formulas are unsatisfiable. Thus, this

communication graph is strongly connected. For example, let us consider the representation in

DIMACS CNF format of the first formula from these 45 formulas:

p cnf 10 20

-1 6 0

-6 1 0

-2 6 0

-6 2 0

-6 3 0

-3 4 0

-4 6 0

-8 7 0

System Informatics (Системная информатика), No. 27 (2025) 105

-6 7 0

-7 6 0

-5 7 0

-7 5 0

-7 8 0

-8 9 0

-9 8 0

-9 10 0

-10 8 0

-9 5 0

1 2 0

-1 -2 0

The classic representation of this formula has the following form:

(¬x1 ∨ x6) ∧ (¬x6 ∨ x1) ∧ (¬x2 ∨ x6) ∧ (¬x6 ∨ x2) ∧ (¬x6 ∨ x3) ∧ (¬x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧

(¬x8 ∨ x7) ∧ (¬x6 ∨ x7) ∧ (¬x7 ∨ x6) ∧ (¬x5 ∨ x7) ∧ (¬x7 ∨ x5) ∧ (¬x7 ∨ x8) ∧ (¬x8 ∨ x9) ∧

(¬x9 ∨ x8) ∧ (¬x9 ∨ x10) ∧ (¬x10 ∨ x8) ∧ (¬x9 ∨ x5) ∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

The first 18 conjuncts of this formula correspond to connection graph edges. The last 2

conjuncts of this formula are resulted of first iteration over variables pairs. These conjuncts

state that the values of x1 and x2 variables are different.

Applications of solvers from our framework to this formula led to the opposite results. On the

one hand, the direct answer of DeepSeek is that this formula is satisfiable. Our unsatisfiability

checker shows that it is wrong answer. On the other hand, DeepSeek generates Python code to

solve 2-SAT tasks. Execution of this code results to correct answer about unsatisfiability of this

formula. Let us note that application of ChatGPT to this formula lead to correct answer about

unsatisfiability of this formula. This case demonstrates importance of using our unsatisfiability

checker.

Question of connectivity robustness of wireless sensor network relative to removing nodes

or edges is important [5]. Removing direct connection from sensor 7 to sensor 6 results to

modification of the example presented at Figure 3.

Application of our approach to this modified communication graph results to only 4 2-cnf

formulas since solution has been found on fourth iteration. Let us consider this satisfiable

formula obtained on fourth iteration:

106 Nechesov A.V., Kondratyev D.A., el all. Conceptual Framework for Trustworthy Artificial Intelligence ...

Fig. 3. Communication graph of wireless sensor network described in the paper [4] without the direct communication

from sensor 7 to sensor 6

p cnf 10 19

-1 6 0

-6 1 0

-2 6 0

-6 2 0

-6 3 0

-3 4 0

-4 6 0

-8 7 0

-6 7 0

-5 7 0

-7 5 0

-7 8 0

-8 9 0

-9 8 0

-9 10 0

-10 8 0

-9 5 0

1 5 0

-1 -5 0

The classic representation of this formula has the following form:

System Informatics (Системная информатика), No. 27 (2025) 107

(¬x1 ∨ x6) ∧ (¬x6 ∨ x1) ∧ (¬x2 ∨ x6) ∧ (¬x6 ∨ x2) ∧ (¬x6 ∨ x3) ∧ (¬x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧

(¬x8 ∨ x7) ∧ (¬x6 ∨ x7) ∧ (¬x5 ∨ x7) ∧ (¬x7 ∨ x5) ∧ (¬x7 ∨ x8) ∧ (¬x8 ∨ x9) ∧ (¬x9 ∨ x8) ∧

(¬x9 ∨ x10) ∧ (¬x10 ∨ x8) ∧ (¬x9 ∨ x5) ∧ (x1 ∨ x5) ∧ (¬x1 ∨ ¬x5)

The first 17 conjuncts of this formula correspond to connection graph edges. The last 2

conjuncts of this formula are resulted from fourth iteration over variables pairs. These conjuncts

state that the values of x1 and x5 variables are different.

Execution of Python code generated by ChatGPT for solving this task has crashed with

runtime error. Thus, we have undefined result of ChatGPT solver in this case. On the one

hand, the direct answer of DeepSeek is statement about satifiable of this formula. But our

solution checker shows that solution proposed by DeepSeek in direct answer is incorrect. On

the other hand, execution of Python code generated by DeepSeek results to correct solution.

This correct solution is the following assignment: x1 = false, x2 = false, x3 = false, x4 =

false, x5 = true, x6 = false, x7 = true, x8 = true, x9 = true, x10 = true. Let us note that

we do not need in using big "black-and-white" constraints to achieve this result. This case

demonstrates importance of using our solution checker.

4. Conclusion

This paper presents a novel framework for the reliable verification of answers obtained by

large language models (LLMs), with a focus on their application in digital twin systems for smart

cities. Our experiments, conducted using the 2-SAT problem, demonstrated the effectiveness

of the framework in correctly identifying trusted solutions, even in the presence of incorrect or

suboptimal responses from the LLM. Let us note that advantages of reduction of tasks to 2-

SAT led us to such improvement of result of the paper [4] as reduction of question about graph

strong connectivity to ordinary 2-SAT problem instead of black-and-white 2-SAT problem.

The mathematical foundation of the concept, coupled with successful experimental results,

provides strong evidence for the feasibility of using this framework to integrate trustworthy

AI into resource-constrained environments, such as digital twins. This approach not only

guarantees polynomial-time complexity but also offers a robust mechanism for error detection

and system stability. Moreover our methodology can reduce developer effort due to simplicity

of checker implementation relative to solver implementation.

Future work could focus on extending the framework to other problems, optimizing the

verification process, and exploring its application in real-world smart city implementations.

108 Nechesov A.V., Kondratyev D.A., el all. Conceptual Framework for Trustworthy Artificial Intelligence ...

Overall, this research contributes a significant step toward realizing reliable and efficient AI

systems, facilitating their safe deployment in complex, critical environments.

References

1. Ait Aba M., Munier Kordon A., Pallez G. Scheduling on two unbounded resources with commu-

nication costs // Euro-Par 2019: Parallel Processing: 25th International Conference on Parallel

and Distributed Computing, Göttingen, Germany, August 26–30, 2019, Proceedings 25. – Springer

International Publishing, 2019. – pp. 117-128.

2. Aspvall B., Plass M. F., Tarjan R. E. A linear-time algorithm for testing the truth of certain

quantified boolean formulas // Information processing letters. – 1979. – Т. 8. – №. 3. – pp. 121-123.

3. Belghith A., Obaidat M. S. Wireless sensor networks applications to smart homes and cities //

Smart cities and homes. – Morgan Kaufmann, 2016. – pp. 17-40.

4. Biró C., Kusper G. Equivalence of strongly connected graphs and black-and-white 2-SAT problems

// Miskolc Mathematical Notes. – 2018. – Vol. 19. – Is. 2. – pp. 755-768.

5. Dagdeviren O., Akram V. K. The effect of random node distribution and transmission ranges on

connectivity robustness in wireless sensor networks // 2019 International Symposium on Networks,

Computers and Communications (ISNCC). – IEEE, 2019. – pp. 1-5.

6. Faye S., Chaudet C. Connectivity analysis of wireless sensor networks deployments in smart cities

// 2015 IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT).

– IEEE, 2015. – pp. 1-6.

7. Goncharov S., Nechesov A. AI-Driven Digital Twins for Smart Cities // Engineering Proceedings.

– 2023. – Vol. 58. – Is. 1. – Article ID: 94.

8. Goncharov S., Nechesov A., Sviridenko D. Programming Methodology in Turing-Complete Lan-

guages // 2024 IEEE International Multi-Conference on Engineering, Computer and Information

Sciences (SIBIRCON). – IEEE, 2024. – pp. 272-276.

9. Hähnle R., Huisman M. Deductive software verification: from pen-and-paper proofs to industrial

tools // Computing and Software Science: State of the Art and Perspectives. – 2019. – pp. 345-373.

10. Kondratyev D.A., Staroletov S.M., Shoshmina I.V., Krasnenkova A.V., Ziborov K.V., Shilov N.V.,

Garanina N.O., Cherganov T.Y. VeHa-2024 Formal Verification Contest: Two Years of Experience

and Prospects // Proceedings of the Institute for System Programming of the RAS. 2025. Volume

37. Issue 1. pp. 159–184.

11. Kondratyev D. HRA-solver: trustworthy polynomial 2SAT-based solver for heterogeneous resource

allocation (HRA). 2025. URL: https://github.com/trustworthy-code/HRA-solver (Accessed 07

Jul 2025)

12. Kondratyev D. WSN-solver: trustworthy polynomial 2SAT-based solver for wireless sensor network

(WSN) connectivity analysis. 2025. URL: https://github.com/trustworthy-code/WSN-solver

(Accessed 07 Jul 2025)

13. Kondratyev D.A., Nepomniaschy V.A. Automation of C program deductive verification without

System Informatics (Системная информатика), No. 27 (2025) 109

using loop invariants // Programming and Computer Software. 2022. Volume 48. Issue 5. pp. 331–

346.

14. Nechesov A., Ruponen J. Empowering Government Efficiency Through Civic Intelligence: Merging

Artificial Intelligence and Blockchain for Smart Citizen Proposals // Technologies. – 2024. – Vol.

12. – Is. 12. – Article ID. 271.

15. Nechesov A., Dorokhov I., Ruponen J. Virtual Cities: From Digital Twins to Autonomous AI

Societies //IEEE Access. – 2025. – Vol. 13. – pp. 13866-13903.

16. Nechesov A.V. TASK APPROACH IN ARTIFICIAL INTELLIGENCE: LEARNING THEORY

AND KNOWLEDGE HIERARCHY. 2023. Malcev meeting. Novosibirsk.

17. Prates M., Avelar P.H.C, Lemos H., Lamb L.C., Vardi M.Y. Learning to solve np-complete prob-

lems: A graph neural network for decision tsp // Proceedings of the AAAI conference on artificial

intelligence. – 2019. – Vol. 33. – Is. 01. – pp. 4731-4738.

A. Appendix A

We implement checking unsatisfiability as following twosat_solver function written in C program-

ming language (formal specifications of this function are written in C comments using Applicative

Common Lisp language):

/*

(and

(integerp

variable_count

)

(<

0

variable_count

)

(integer-listp

implication_graph_transitive_closure

)

(=

(len

implication_graph_transitive_closure

)

(*

4

(*

variable_count

variable_count

110 Nechesov A.V., Kondratyev D.A., el all. Conceptual Framework for Trustworthy Artificial Intelligence ...

)

)

)

)

*/

int twosat_solver(int variable_count,

int implication_graph_transitive_closure[])

{

int x = 0;

int satisfiable = 1;

/*

(and

(integerp

variable_count

)

(<

0

variable_count

)

(integer-listp

implication_graph_transitive_closure

)

(=

(len

implication_graph_transitive_closure

)

(*

4

(*

variable_count

variable_count

)

)

)

(integerp

x

)

(<=

0

System Informatics (Системная информатика), No. 27 (2025) 111

x

)

(implies

(=

satisfiable

0

)

(and

(=

(nth

(+

(*

x

(*

variable_count

2

)

)

(+

x

variable_count

)

)

implication_graph_transitive_closure

)

1

)

(=

(nth

(+

(*

(+

x

variable_count

)

(*

variable_count

2

)

112 Nechesov A.V., Kondratyev D.A., el all. Conceptual Framework for Trustworthy Artificial Intelligence ...

)

x

)

implication_graph_transitive_closure

)

1

)

(<

x

variable_count

)

)

)

)

*/

while (x < variable_count && satisfiable == 1)

{

if (implication_graph_transitive_closure[

x + variable_count + x * 2 * variable_count] == 1 &&

implication_graph_transitive_closure[

x * 2 * variable_count + x +

variable_count * 2 * variable_count] == 1)

{

satisfiable = 0;

}

else

{

x++;

}

}

return satisfiable;

}

/*

(implies

(=

satisfiable

0

)

(not

System Informatics (Системная информатика), No. 27 (2025) 113

(twosat-solver

(boolean-variable-values

variable_count

nil

)

variable_count

implication_graph_transitive_closure

)

)

)

*/

B. Appendix B

We implement checking solution of 2-SAT problem as following sat_solution_checker function

written in C programming language:

int sat_solution_checker(int variable_count,

int disjunction_count,

int* twocnf_formula,

int* variable_values)

{

int result = 1;

for (int i = 0; (i < disjunction_count) && (result == 1);

i++)

{

int index_i = 2*i;

int first_literal = twocnf_formula[index_i];

int second_literal = twocnf_formula[index_i + 1];

int first_literal_variable;

if (first_literal > 0)

{

first_literal_variable = first_literal;

}

else

{

first_literal_variable = -first_literal;

}

114 Nechesov A.V., Kondratyev D.A., el all. Conceptual Framework for Trustworthy Artificial Intelligence ...

int first_variable_value;

int first_variable_find = 0;

for (int i = 0;

(i < variable_count) && (first_variable_find == 0);

i++)

{

int variable;

if (variable_values[i] > 0)

{

variable = variable_values[i];

}

else

{

variable = -variable_values[i];

}

if (variable == first_literal_variable)

{

if (variable_values[i] > 0)

{

first_variable_value = 1;

}

else

{

first_variable_value = 0;

}

first_variable_find = 1;

}

}

int second_literal_variable;

if (second_literal > 0)

{

second_literal_variable = second_literal;

}

else

{

second_literal_variable = -second_literal;

System Informatics (Системная информатика), No. 27 (2025) 115

}

int second_variable_value;

int second_variable_find = 0;

for (int i = 0;

(i < variable_count) && (second_variable_find == 0);

i++)

{

int variable;

if (variable_values[i] > 0)

{

variable = variable_values[i];

}

else

{

variable = -variable_values[i];

}

if (variable == second_literal_variable)

{

if (variable_values[i] > 0)

{

second_variable_value = 1;

}

else

{

second_variable_value = 0;

}

second_variable_find = 1;

}

}

if ((first_literal > 0) && (second_literal > 0))

{

if ((first_variable_value == 0) &&

(second_variable_value == 0))

{

result = 0;

}

116 Nechesov A.V., Kondratyev D.A., el all. Conceptual Framework for Trustworthy Artificial Intelligence ...

}

else if ((first_literal > 0) && (second_literal < 0))

{

if ((first_variable_value == 0) &&

(second_variable_value == 1))

{

result = 0;

}

}

else if ((first_literal < 0) && (second_literal > 0))

{

if ((first_variable_value == 1) &&

(second_variable_value == 0))

{

result = 0;

}

}

else

{

if ((first_variable_value == 1) &&

(second_variable_value == 1))

{

result = 0;

}

}

}

return result;

}

C. Appendix C

We use the following prompt to solve 2-SAT problems on LLMs:

We consider 2-satisfiability (2-SAT) problem. In computer science,

2-SAT is a computational problem of assigning values to variables,

each of which has two possible values, in order to satisfy

a system of constraints on pairs of variables. It is a special

case of the general Boolean satisfiability problem. Instances of

the 2-satisfiability problem are typically expressed as Boolean

formulas of a special type, called 2-conjunctive normal form

System Informatics (Системная информатика), No. 27 (2025) 117

(2-CNF) formulas. A 2-satisfiability problem may be described

using a Boolean expression with a special restricted form.

It is a conjunction (a Boolean and operation) of clauses, where

each clause is a disjunction (a Boolean or operation) of two

variables or negated variables. The variables or their negations

appearing in this formula are known as literals.

The goal is to solve a 2-SAT problem on input Boolean formula.

Use a polynomial algorithm for solving this task.

Input data is Boolean formula encoded in DIMACS CNF format.

Input data format is:

p cnf <number of variables ’N’> <number of clauses ’S’>

After that S lines of:

<first literal i where i is variable number in the case of

positive literal or i is negative variable number in the case of

negative literal> <second literal j where j is variable number

in the case of positive literal or j is negative variable number

in the case of negative literal> 0

Output data format is solution encoded in DIMACS CNF format.

Output data format is:

s <result k where k is "SATISFIABLE" in the case of satisfiable

input formula or k is "UNSATISFIABLE" in the case of

unsatisfiable input formula>

If input formula is satisfiable then representation of variable

assignments in 1 line of:

v <variable assignments a_i separated by space (where i is

variable number i from 1 to N and a_i is i in the case of

assignment of true to variable i or a_i is -i in the case of

assignment of false to variable i)> 0

Solve this task for this example:

...

118 Nechesov A.V., Kondratyev D.A., el all. Conceptual Framework for Trustworthy Artificial Intelligence ...

