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Event structures are a well-established model in concurrency theory. Two structurally

di�erent methods of associating transition system semantics to event-oriented models are

distinguished in the literature. One of them is based on con�gurations (event sets), the

other � on residuals (model fragments). In this paper, we deal with a highly expressive

model of event structures � event structures for resolvable con�ict (RC-structures) � and

provide isomorphism results on these two types of transition systems constructed from

RC-structures, in step and partial order semantics.
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1. Introduction

In [24], Nielsen, Plotkin and Winskel have introduced the concept of prime event structures

which are abstract representations of the behaviour of safe Petri nets. This event-oriented model

describes a concurrent system by means of a set of events, representing action occurrences,

and for every two events it is speci�ed whether one of them is a predecessor for the other

(causality presented in the form a partial order), whether they exclude each other (con�ict), or

whether they may happen independently (concurrency). The behaviour of an event structure

is formalized by associating to it a family of con�gurations, these being sets of events that

occur during runs of the represented system. A con�guration can also be understood as a

state of the represented system, namely the state reached after executing all events in the

con�guration. Since then, many studies have been conducted on possible relations among

events, giving rise to a number of di�erent de�nitions of event structures. Flow event structures

[9] drop the requirement that causality should be a partial order. Bundle event structures [21]

are able to represent OR-causality by allowing each event to be caused by a member of a

bundle of events. Asymmetric event structures [5] introduce the notion of weak causality that

can model asymmetric con�icts. Inhibitor event structures [4] are able to faithfully capture the

dependencies among events which arise in the presence of read and inhibitor arcs. In [6] event
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structures, where the causality relation may be circular, are investigated, and in [1] the notion

of dynamic causality is considered. Con�guration structures [13, 15] represent the behaviours of

event-oriented models as the collections of their con�gurations. The culminating point in these

studies is a highly expressive concurrency model called event structures for resolvable con�ict

(RC-structures) [15] corresponding to arbitrary nets without self-loops, under the collective

token interpretation.

The association of transition systems with event-oriented models has proved to contribute

to studying and solving various problems in the analysis and veri�cation of concurrent sys-

tems. It is distinguished two methods of providing transition system semantics with event

structures: a con�guration-based and a residual-based. In the �rst (more `behavioral') method

(see [1, 2, 12�15, 18, 19, 26] among others), states of transition systems are understood as sets

of con�gurations, and state transitions are built by starting with the empty con�guration and

enlarging con�gurations by already executed events. In the second (more `structural') method

[3, 9, 10, 19�22, 25], states are understood as event structures, and transitions are built by

starting with the given event structure as an initial state and removing already executed (or

con�icting) parts thereof in the course of an execution. In the literature, the two semantics

have occasionally been used alongside each other (see [19] as an example), but their general

relationship has not been studied too deeply. In a seminal paper, viz. [23], bisimulations

between con�guration-based and residual-based transition systems have been proved to exist

for prime event structures [27]. This result has been extended in [7] to more complex event

structure models � prime/bundle/dual event structures with asymmetric con�ict. A crucial

technical subtlety pertains to the removal operator that lies at the heart of residual semantics.

Counterexamples illustrate that an isomorphism cannot be achieved with the various removal

operators de�ned in [7, 23]. The paper [8] demonstrates that, nevertheless, the removal opera-

tors can be tightened in such a way that isomorphisms, rather than just bisimulations, between

the two types of transition systems constructed from a single event structure can be obtained

within a wide range of event-oriented models (namely, extended prime event structures, bun-

dle/dual event structures, �ow event structures, stable/general event structures, con�guration

structures), in di�erent true concurrent semantics. In the paper [17], the relationships between

transition system semantics for RC-structures presented in standard form have been established

in step semantics, because only this semantics has been developed in [15].

The aim of this paper is threefold: to de�ne partial order semantics within the con�gurations
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of RC-structures, to �nd a maximal subclass of the models where partial orders work properly,

and also to understand how transition systems based on con�gurations and residuals of RC-

structures, presented not necessary in standard form, are related in the context of partial order

multiset and step semantics.

This paper is structured as follows. In the next section, we �rst recall the de�nitions of the

structure and behavior (con�gurations) of RC-structures, and then consider and study their

special properties. In addition, there are de�ned partial order multiset and step semantics

for RC-structures. In Section 3, we determine and investigate a removal operator for RC-

structures in order to obtain their residuals. Section 4 contains the de�nitions of con�guration-

and residual-based transition systems and provides isomorphism results between them in the

semantics under study, withinRC-structures, presented not necessary in standard form. Section

5 concludes.

2. Event Structures for Resolvable Con�ict

2.1. Basic De�nitions of RC-structures and their Properties

In this subsection, we deal with event structures for resolvable con�ict that were put forward

in [14] to give semantics to general Petri nets. A resolvable con�ict structure consists of a set

of events and an enabling relation ⊢ between sets of events. The enabling X ⊢ Y with sets X

and Y imposes restrictions on the occurrences of events in Y by requiring that for all events

in Y to occur, their causes � the events in X � have to occur before. This allows for modeling

the case when a and b cannot occur together until c occurs, i.e., initially a and b are in con�ict

until the occurrence of c resolves this con�ict. In resolvable con�ict structures, the enabling

relation can also model con�icts: events from a set Y are in irresolvable con�ict i� there is no

enabling of the form X ⊢ Y for any set X of events. Further, an event can be impossible (i.e.

non-executable in any system's run) if it has no enabling or has in�nite causes or has impossible

causes/predecessors. In [15, 17], strict interrelations of resolvable con�ict structures have been

established with a variety of event-oriented models known from the literature that are unable

to model the phenomena of resolvable con�ict.

De�nition 1. An event structure for resolvable con�ict (RC-structure) over L is a tuple

E = (E, ⊢, L, l), where E is a set of events; ⊢ ⊆ P(E) × P(E) is the enabling relation; L is

a set of labels; l : E → L is a labeling function.
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Introduce auxiliary notions and notations. For an RC-structure E over L, a subset X ⊆ E,

and events e, d ∈ E, de�ne:

� Con(X) ⇐⇒ ∀X̂ ⊆ X∃Z ⊆ E : Z ⊢ X̂ (consistency);

� e ♯ d ⇐⇒ ¬Con({d, e}) (con�ict);

� e ≺ d ⇐⇒ e ∈ X for all X ⊆ E such that X ⊢ {d} (direct causality);

� X is left-closed i� X is �nite, and for all X̃ ⊆ X there exists a set X̂ ⊆ X such that

X̂ ⊢ X̃. The set of the left-closed sets of E is denoted as LC(E). Clearly, we have Con(X)

for all X ∈ LC(E);

� X is a con�guration of E i� X can be represented as an ordered set {e1, . . . , en} (n ≥ 0)

such that for all i ≤ n and for all Y ⊆ {e1, . . . , ei}, there is Z ⊆ {e1, . . . , ei−1} such that

Z ⊢ Y . Let Conf (E) be the set of con�gurations of E . Clearly, any con�guration X is a

left-closed set but not conversely. An event e ∈ E is called impossible (non-executable)

in E if it does not occur in any X ∈ Conf (E);

� for X ′ ⊆ X ∈ Conf (E) and e, d ∈ X, e ≺X′ d ⇐⇒ e ∈ Y for all Y ⊆ X ′ such that

Y ⊢ {d} (direct causality within X ′). Let ⪯X′ be the re�exive and transitive closure of

≺X′ . In case when specifying E is important for the context, we write ⪯E
X . To save space

in the graphical representation, causality between events a and b within a con�guration

is indicated by the notation a; b, the absence of causality (independence) � through a∥b.

� for X,X ′ ∈ Conf (E), X → X ′ i� X = {e1, . . . , em} (m ≥ 0), X ′ = {e1, . . . , em, . . . , en}

(n ≥ 0), and m ≤ n.

Lemma 1. Given an RC-structure E = (E,⊢, L, l) and a con�guration X ∈ Conf (E), ⪯X

is a partial order.

Proof. Suppose that E = (E,⊢, L, l) is an RC-structure and X ∈ Conf (E). As ⪯X is the

transitive and re�exive closure of ≺X , it is su�cient to show that ⪯X is antisymmetric. Assume

a ⪯X b and b ⪯X a. This means that in X there exist events e1, . . . , ek (k ≥ 1) and events

d1, . . . , dl (l ≥ 1) such that a = e1 ≺X e2 . . . ek−1 ≺X ek = b and b = d1 ≺X d2 . . . dl−1 ≺X

dl = a. Since X ∈ Conf (E), we have an ordered set X = {x1, . . . , xm} such that for all i ≤ m

and all Y ⊆ {x1, . . . , xi} there is Z ⊆ {x1, . . . , xi−1} such that Z ⊢ Y . W.l.o.g. assume a = xp

and b = xq (1 ≤ p, q ≤ m). If p = q, the result is obtained. Check the case when p ̸= q. Consider

the sequence a = e1 ≺X e2 . . . ek−1 ≺X ek = b. As b = xq, we can �nd Cb ⊆ {x1, . . . , xq−1}

such that Cb ⊢ {b}. By the de�nition of ≺X , we obtain ek−1 ∈ Cb ⊆ {x1, . . . , xq−1}. Repeating

the above reasoning, we come to the conclusion e1 = a ∈ {x1, . . . , xq−1}. Hence, p < q. Next,
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consider the sequence b = d1 ≺X d2 . . . dl−1 ≺X dl = a. Applying the reasoning analogous to

the above, we obtain the contradiction q < p.

Thus, p = q, i.e. a = b. 2

The next de�nition gives structural properties of RC-structures which, in suitable combina-

tions, determine subclasses of the models.

De�nition 2. An RC-structure E = (E,⊢, L, l) is:

� rooted i� (∅, ∅) ∈ ⊢;

� pure i� X ⊢ Y ⇒ X ∩ Y = ∅;

� singular i� X ⊢ Y ⇒ X = ∅ ∨ | Y |= 1;

� locally conjunctive i� Xi ⊢ Y (i ∈ I ̸= ∅) ∧ Con(
⋃

i∈I Xi ∪ Y ) ⇒
⋂

i∈I Xi ⊢ Y ;

� in standard form i� ⊢ = {(A,B) | A ∩B = ∅, A ∪B ∈ LC(E)}.

Some of the de�nitions above lead to the following

Observation. Given an RC-structure E = (E,⊢, L, l),

(i) ∅ ∈ LC(E) i� E is rooted;

(ii) Conf (E) = ∅ i� E is not rooted;

(iii) E is pure, if E is in standard form.

Example 1. First, consider the RC-structure E1 = (E1,⊢1, L, l1) from [15], where E1 =

{a, b, c}; ⊢1 consists of ∅ ⊢1 X for all X ̸= {a, b} and {c} ⊢1 {a, b}; L = E1; and l1 is the

identity labeling function. It is easy to see that LC(E1) = Conf (E1) = {∅, {a}, {b}, {c},

{a, c}, {b, c}, {a, b, c}}. In addition, we get ≺E1
X= ∅, for all X ∈ Conf (E1), and, for example,

{b} → {b, c, a}. This RC-structure models the initial con�ict between the events a and b that

can be resolved by the occurrence of the event c. The RC-structure is:

� rooted (because (∅, ∅) ∈ ⊢1),

� pure (because X ∩ Y = ∅, for all (X, Y ) ∈ ⊢1),

� not singular (because ({c}, {a, b}) ∈ ⊢1),

� locally conjunctive (because X is unique, for all (X, Y ) ∈ ⊢1)).

� not in standard form (see the standard form of E1 in Example 3).

Second, consider the RC-structure E2 = (E2,⊢2, L, l2), where E2 = {a, b, c}; ⊢2= {(∅, ∅),

(∅, {a}), ({a}, {b}), ({a}, {c}), ({b}, {c}), (∅, {a, b}), (∅, {a, c}), (∅, {b, c}), (∅, {a, b, c})}; L =

E2; and l2 is the identity labeling function. Using the relation ⊢2, we get that LC(E2) =

Conf (E2) = {∅, {a}, {a, b}, {a, c}, {a, b, c}}. In addition, ≺E2
{a,b}= {(a, b)}, ≺E2

{a,c}= {(a, c)},
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≺E2
{b,c}= {(b, c)}, ≺E2

{a,b,c}= {(a, b)}, and, for example, {a} → {a, b, c}. The RC-structure is:

� rooted (because (∅, ∅) ∈ ⊢2),

� pure (because X ∩ Y = ∅, for all (X, Y ) ∈ ⊢2),

� singular (because X = ∅ ∨ | Y |= 1, for all (X, Y ) ∈ ⊢2),

� not locally conjunctive (because ({a}, {c}), ({b}, {c}) ∈ ⊢2 and (∅, {c}) ̸∈ ⊢2),

� not in standard form (see the standard form of E2 in Example 2).

Third, examine the RC-structure E3 = (E3,⊢3, L, l3), where E3 = {a, b}; ⊢3 = {(∅, ∅),

(∅, {a}), (∅, {b}), ({a}, {a, b})}; L = E3; and l3 is the identity labeling function. It is easy to

see that LC(E3) = Conf (E3) = {∅, {a}, {b}, {a, b}}. It is not di�cult to observe that ≺E3
{a,b}= ∅.

Notice that {a} → {a, b} and {b} ̸→ {a, b}. The RC-structure is:

� rooted (because (∅, ∅) ∈ ⊢3),

� not pure (because ({a}, {a, b}) ∈ ⊢3),

� not singular (because ({a}, {a, b}) ∈ ⊢3),

� locally conjunctive (because X is unique, for all (X, Y ) ∈ ⊢3)),

� not in standard form (see the standard form of E3 in Example 2).

Fourth, check the RC-structure E4 = (E4,⊢4, L, l4), where E4 = {a}; ⊢4 = {(∅, {a}),

({a}, ∅)}; L = E4; and l4 is the identity labeling function. It is easy to see that LC(E4) = {{a}}

and Conf (E4) = ∅. The RC-structure is:

� not rooted (because (∅, ∅) ̸∈ ⊢4),

� pure (because X ∩ Y = ∅, for all (X, Y ) ∈ ⊢4),

� not singular (because ({a}, ∅) ∈ ⊢4),

� locally conjunctive (because X is unique, for all (X, Y ) ∈ ⊢4)),

� in standard form.

Fifth, observe E5 = (E5,⊢5, L, l5), where E5 = {a, b, c}; ⊢5= {(∅, ∅), (∅, {a}), (∅, {b}),

({a}, {c}), ({b}, {c}), (∅, {a, c}), (∅, {b, c})}; L = E5; and l5 is the identity labeling function.

It is not di�cult to see that LC(E5) = Conf (E5) = {∅, {a}, {b}, {a, c}, {b, c}}. Also, ≺E5
{a,c}=

{(a, c)}, ≺E5
{b,c}= {(b, c)}, and {a} → {a, c} and {b} → {b, c}. The RC-structure is:

� rooted (because (∅, ∅) ∈ ⊢5),

� pure (because X ∩ Y = ∅, for all (X, Y ) ∈ ⊢5),

� singular (because X = ∅ ∨ | Y |= 1, for all (X, Y ) ∈ ⊢5),

� locally conjunctive (because ({a}, {c}), ({b}, {c}), and ¬(Con({a, b, c}))),

� not in standard form (see the standard form of E5 in Example 2).
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Next, we establish essential facts concerning the standard form of RC-structures.

Proposition 1. Given an RC-structure E = (E,⊢, L, l),

(i) E can be transformed into the RC-structure SF (E) = (E, ⊢̃, L, l) in standard form such

that LC(E) = LC(SF (E)). Moreover, SF (E) is rooted i� E is rooted;

(ii) Conf (E) = Conf (SF (E)), and, moreover, X → X ′ in E ⇐⇒ X → X ′ in SF (E), if E

is a pure RC-structure;

(iii) for a con�guration X ∈ Conf (E), ⪯E
X=⪯SF (E)

X , if E is a pure, singular and locally con-

junctive RC-structure.

Proof. (i) For the transformation E = (E,⊢, L, l) into standard form SF (E) = (E, ⊢̃, L, l),

we can directly put ⊢̃ = {(A,B) | B ⊆ C ∈ LC(E), A = C \B}.

Clearly, LC(E) = ∅ i� LC(SF (E)) = ∅. Suppose X ∈ LC(E). For any Y ⊆ X, take

Z = X \ Y . Then, Z ⊢̃ Y , by the construction of ⊢̃. Hence, Z ∪ Y = X ∈ LC(SF (E)).

Conversely, assume X ∈ LC(SF (E)). Then, there is Z ⊆ X such that Z ⊢̃ X. By the

construction of ⊢̃, X = Z ∪ X ∈ LC(E). Thus, LC(E) = LC(SF (E)). It is easy to see that

SF (E) is rooted i� E is rooted.

(ii) Assume E being a pure RC-structure. Using Observation (ii) and item (i), it is straight-

forward to show that Conf (E) = ∅ i� Conf (SF (E)) = ∅. Take an arbitrary X ∈ Conf (SF (E)).

This means that X = {e1, . . . , en} (n ≥ 0) such that for all i ≤ n and for all Y ⊆ {e1, . . . , ei},

there is Z ⊆ {e1, . . . , ei−1} such that Z ⊢̃ Y . Clearly, Xi = {e1, . . . , ei} ∈ LC(SF (E)), for all

i ≤ n. Thanks to item (i), Xi ∈ LC(E), for all i ≤ n. Take arbitrary i ≤ n and Y ⊆ Xi.

Consider two possible cases.

ei ∈ Y . Since Xi ∈ LC(E), there is Z ⊆ Xi such that Z ⊢Y . Due to E being a pure RC-structure,

Z ∩ Y = ∅. Hence, ei ̸∈ Z. So, Z ⊆ Xi−1.

ei ̸∈ Y . This means that Y ⊆ Xi−1. Since Xi−1 ∈ LC(E), there is Z ⊆ Xi−1 such that Z ⊢Y .

Thus, X ∈ Conf (E).

Suppose X ∈ Conf (E). By Observation (iii), SF (E) is a pure RC-structure. Following

similar lines of the proof in the opposite direction, we obtain X ∈ Conf (SF (E)).

Check that X → X ′ in E ⇐⇒ X → X ′ in SF (E). Assume that X → X ′ in E . This means

that X, X ′ ∈ Conf (E), X = {e1, . . . , ek} and X ′ = {e1, . . . , en} (0 ≤ k ≤ n). Due to E being

a pure RC-structure, we may conclude that X, X ′ ∈ Conf (SF (E)) with the same ordering

of events as shown above. Hence, X → X ′ in SF (E). Conversely, suppose that X → X ′ in

SF (E). The proof of the result is analogous to that in the opposite direction. Thus, X → X ′
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in E .

(iii) According to items (i) and (ii), we have that LC(E) = LC(SF (E)) and Conf(E) =

Conf(SF (E)), respectively, since E is a pure RC-structure.

Consider arbitrary events e, d ∈ X ∈ Conf(E) such that e ≺E
X d. Check that e ≺SF (E)

X d.

Take an arbitrary set Z ⊆ X such that Z ⊢SF (E) {d}. By the construction of SF (E), we

obtain Z ∪ {d} ∈ LC(E). This means that for all Z ′ ⊆ Z ∪ {d} there exists a set Z ′′ ⊆ Z ∪ {d}

such that Z ′′ ⊢E Z ′. Hence, we can �nd a set W ⊆ Z ∪ {d} such that W ⊢E {d}. Note that

W ∩ {d} = ∅, due to E being a pure RC-structure. So, W ⊆ Z. By the de�nition of ≺E
X , we

have that e ∈ W . Hence, e ≺SF (E)
X d.

Conversely, take arbitrary events e, d ∈ X such that e ≺SF (E)
X d. We need to show that

e ⪯E
X d. Since X ∈ Conf (E), we have an ordered set X = {e1, . . . , em} such that for all

i ≤ m and all Y ⊆ {e1, . . . , ei} there is Z ⊆ {e1, . . . , ei−1} such that Z ⊢E Y . W.l.o.g. assume

d = eq (1 ≤ q ≤ m). Clearly, Xq = {e1, . . . , eq} ∈ LC(E) and Con(Xq). De�ne the set

Cd = {x ∈ Xq | x ⪯E
X d}. Check that Cd ∈ LC(E). Take an arbitrary W ⊆ Cd. Treat three

admissible cases.

|W | = 0. Since X ∈ Conf (E), it holds that Conf (E) ̸= ∅. By Observation (ii), we get that E is a

rooted RC-structure. Hence, we have ∅ ⊢E ∅ = W .

|W | = 1. W.l.o.g. assume W = {z}. As W ⊆ Xq ∈ LC(E), there is at least one Ai ⊆ Xq such

that Ai ⊢E {z}. Due to E being a locally conjunctive RC-structure and Con(Xq), we can

�nd A =
⋂

i∈I Ai ⊆ Xq such that A ⊢E {z}. Then, we obtain that a ≺E
X z for all a ∈ A,

thanks to the de�nition of ≺E
X . Because of z ∈ Cd, we have z ⪯E

X d. Hence, for all a ∈ A

it holds a ⪯E
X d, by the transitivity of ⪯E

X . Thus, A ⊆ Cd.

|W | ≥ 2. As W ⊆ Xq ∈ LC(E), we can �nd W ′ ⊆ Xq such that W ′ ⊢E W . Since E is a singular

RC-structure and |W | ≥ 2, it holds that W ′ = ∅ ⊆ Cd.

Thus, Cd ∈ LC(E) and d ∈ Cd. Due to the construction of SF (E), we obtain Cd \ {d} ⊢SF (E)

{d}. As e ≺SF (E)
X d, it holds e ∈ Cd \ {d}. This means that e ⪯E

X d, by the de�nition of Cd. 2

We illustrate the validity of Proposition 1.

Example 2. First, consider the rooted, pure, not locally conjunctive and singular RC-struc-

ture E2 = (E2, ⊢2, L, l2) from Example 1. Recall that E2 = {a, b, c}; ⊢2= {(∅, ∅), (∅, {a}),

({a}, {b}), ({a}, {c}), ({b}, {c}), (∅, {a, b}), (∅, {a, c}), (∅, {b, c}), (∅, {a, b, c})}; L = E2; and

l2 is the identity labeling function. We know from Example 1 that LC(E2) = Conf (E2) = {∅,

{a}, {a, b}, {a, c}, {a, b, c}}, and ≺E2
{a,b,c}= {(a, b)}.
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The structure E2 can be presented in standard form Ẽ2, with ⊢̃2 = {(∅, ∅), (∅, {a}), ({a}, ∅),

({a}, {b}), ({b}, {a}), (∅, {a, b}), ({a, b}, ∅), ({a}, {c}), ({c}, {a}), (∅, {a, c}), ({a, c}, ∅),

({a}, {b, c}), ({b, c}, {a}), ({b}, {a, c}), ({a, c}, {b}), ({c}, {a, b}), ({a, b}, {c}), (∅, {a, b, c}),

({a, b, c}, ∅)}. It is easy to see that LC(E2) = LC(Ẽ2), and Conf (E2) = Conf (Ẽ2), as E2 is

pure. Using the relation ⊢̃2, we get ≺Ẽ2
{a,b,c}= {(a, b), (a, c)}. Then, ≺E2

{a,b,c} ̸=≺Ẽ2
{a,b,c}, because E2

is not locally conjunctive.

Second, examine the rooted, not pure, locally conjunctive and not singular RC-structure E3 =

(E3,⊢3, L, l3) from Example 1. Here, E3 = {a, b}; ⊢3= {(∅, ∅), (∅, {a}), (∅, {b}), ({a}, {a, b})};

L = E3; and l3 is the identity labeling function. We know from Example 1 that LC(E3) =

Conf (E3) = {∅, {a}, {b}, {a, b}}, and ≺E3
{a,b}= ∅. In addition, {a} → {a, b} and {b} ̸→ {a, b}

in E3.

The structure E3 can be presented in standard form Ẽ3, with ⊢̃3 = {(∅, ∅), (∅, {a}), ({a}, ∅),

(∅, {b}), ({b}, ∅), ({a}, {b}), ({b}, {a}), (∅, {a, b}), ({a, b}, ∅)}. It is not di�cult to see that

Conf (E3) = {∅, {a}, {b}, {a, b}}, and ≺Ẽ3
{a,b}= ∅. Also it is true that {a} → {a, b} and,

however, {b} → {a, b} in Ẽ3, because E3 is not pure RC-structure.

Third, examine the rooted, pure, locally conjunctive and singular RC-structure E5 = (E5,

⊢5, L, l5) from Example 1. Recall that E5 = {a, b, c}; ⊢5= {(∅, ∅), (∅, {a}), (∅, {b}), ({a}, {c}),

({b}, {c}), (∅, {a, c}), (∅, {b, c})}; L = E5; and l5 is the identity labeling function. We know

that LC(E5) = Conf (E5) = {∅, {a}, {b}, {a, c}, {b, c}}, and ≺E5
{a,c}= {(a, c)}, ≺E5

{b,c}= {(b, c)}.

The structure E5 can be presented in standard form Ẽ5, with ⊢̃5 = {(∅, ∅), (∅, {a}), ({a}, ∅),

(∅, {b}), ({b}, ∅), ({a}, {c}), ({c}, {a}), (∅, {a, c}), ({a, c}, ∅), ({b}, {c}), ({c}, {b}), (∅, {b, c}),

({b, c}, ∅)}. It is easy to see that LC(E5) = LC(Ẽ5), and Conf (E5) = Conf (Ẽ5), as E5 is pure.

Using the relation ⊢̃5, we get ≺Ẽ5
{a,c}= {(a, c)} and ≺Ẽ5

{b,c}= {(b, c)}. Then, ≺E5
{a,c}=≺Ẽ5

{a,c} and

≺E5
{b,c}=≺Ẽ5

{b,c}, because E5 is a rooted, pure, locally conjunctive and singular RC-structure.

2.2. Di�erent Semantics for RC-structures

In this subsection, we introduce partial order multiset (pom) and step (step) semantics for

RC-structures.

We �rst de�ne auxiliary notions and notations. For con�gurations X,X ′ ∈ Conf (E), we

write:

� X →pom X ′ i� X → X ′;

� X →step X
′ i� X → X ′ in E , and X ′′ ∈ Conf (E), for all X ⊆ X ′′ ⊆ X ′.
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For ⋆ ∈ {pom, step}, a con�guration X ∈ Conf (E) is a con�guration in ⋆-semantics of E i�

∅ →∗
⋆ X, where →∗

⋆ is the re�exive and transitive closure of →⋆. Let Conf ⋆(E) denote the set

of con�gurations in ⋆-semantics of E .

Lemma 2. Given an RC-structure E and ⋆ ∈ {pom, step},

(i) Conf ⋆(E) = Conf (E);

(ii) X →⋆ X
′ in E ⇐⇒ X →⋆ X

′ in SF (E), if E is a pure RC-structure.

Proof. (i) Due to the de�nition of ⋆-semantics, we have Conf ⋆(E) ⊆ Conf (E). We shall show

Conf (E) ⊆ Conf ⋆(E). Take an arbitrary X ∈ Conf (E). This means that X can be represented

as an ordered set {e1, . . . , en} (n ≥ 0) such that for all i ≤ n and for all Y ⊆ {e1, . . . , ei}, there

is Z ⊆ {e1, . . . , ei−1} such that Z ⊢ Y . Clearly, Xi = {e1, . . . , ei} ∈ Conf (E) for all i ≤ n. If E

is a rooted RC-structure, it holds ∅ ∈ Conf (E). Then, we obtain ∅ →∗
⋆ X, by the de�nitions of

a con�guration and the relation →⋆. Hence, X ∈ Conf ⋆(E). If E is not rooted, it is true that

Conf ⋆(E) = Conf (E) = ∅.

(ii) It follows from the de�nitions of the transition relations and Proposition 1(ii). 2

For an RC-structure E and X,X ′ ∈ Conf (E), we write E⌈(X ′ \X) = ((X ′ \X), ⪯(X′\X) =

⪯X′ ∩ (X ′ \X ×X ′ \X),L,l |(X′\X)), if X →pom X ′. We say that E⌈(X ′ \X) and E⌈(Y ′ \ Y )

are isomorphic i� there is a bijection ι : (X ′ \ X) → (Y ′ \ Y ) such that (x, x′) ∈ ⪯(X′\X) i�

(ι(x), ι(x′)) ∈ ⪯(Y ′\Y ), for all x, x
′ ∈ (X ′ \ X), and l(x) = l(ι(x)), for all x ∈ (X ′ \ X). Let

[E⌈(X ′ \X)] denote the isomorphic class of E⌈(X ′ \X).

Given ⋆ ∈ {pom, step}, an RC-structure E over L, and con�gurations X,X ′ ∈ Conf ⋆(E)

such that X →⋆ X
′, we write:

l⋆(X
′ \X)=

 [E⌈(X ′ \X)], if ⋆ = pom,

M (∀a ∈ L : M(a) = |{e ∈ X ′ \X | l(e) = a}|), if ⋆ = step.

3. Removal Operator for RC-structures

The standard form of RC-structures and their ability to specify impossible events allow us

to develop a relatively simple structural de�nition of the removal operator which is useful for

constructing residuals of RC-structures.

De�nition 3. For an RC-structure E = (E, ⊢, L, l) in standard form and X ∈ LC(E), the
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removal operator is de�ned as follows: E \X = (E ′, ⊢′, L, l′), where

E ′ = E \X,

⊢′ = {(A′, B′) | ∃(A,B) ∈⊢ s.t. A′ = A∩E ′, B′ = B∩E ′, (A′∪B′∪X) ∈LC(E)},

l′ = l |E′ .

According to the de�nition above, we remove all events in X and retain the events that,

when combined with X, do not form left-closed sets and, therefore, con�ict with some events

in X; however, we make the con�icting retained events impossible by deleting their enabling

relations.

Consider properties of the removal operator.

Lemma 3. Given an RC-structure E in standard form and X ∈ Conf (E),

(i) E \X is an RC-structure;

(ii) (X ∪ Y ) ∈ LC(E) ⇐⇒ Y ∈ LC(E \X), for any Y ⊆ E ′;

(iii) E \X is a rooted RC-structure E in standard form.

Proof. (i) According to De�nition 1, E \X is an RC-structure.

(ii) Take an arbitrary Y ⊆ E ′. Then, X ∩ Y = ∅, due to De�nition 3.

(⇒) Suppose (X∪Y ) ∈ LC(E). Then, for all Ỹ ⊆ Y , (Ỹ ∪Ŷ ) ∈ LC(E), where Ŷ = X∪Y \Ỹ .

As E is in standard form, Ŷ ⊢ Ỹ , for all Ỹ ⊆ Y and the corresponding Ŷ . Obviously, (Ỹ ∪(Ŷ ′ =

Ŷ \ X) ∪ X) ∈ LC(E) and Ŷ ′ ⊆ Y . Due to the de�nition of ⊢′, for all Ỹ ⊆ Y , there exists

Ŷ ′ ⊆ Y such that Ŷ ′ ⊢′ Ỹ . Thus, Y ∈ LC(E \X).

(⇐) Assume Y ∈ LC(E \ X). Then, for Y there is Ŷ ⊆ Y such that Ŷ ⊢′ Y . By the

de�nition of ⊢′, this implies that (X ∪ Ŷ ∪ Y ) = (X ∪ Y ) ∈ LC(E).

(iii) We �rst show that E \X is in standard form.

(⇒) Suppose A′ ⊢′ B′. Then, we can �nd A ⊢ B such that A′ = A ∩ E ′, B′ = B ∩ E ′ and

(A′ ∪ B′ ∪X) ∈ LC(E), due to the de�nition of ⊢′. Since E is in standard form, it holds that

A∩B = ∅. This implies that A′∩B′ = ∅. Thanks to item (ii), we get that (A′∪B′) ∈ LC(E\X).

(⇐) Assume C ′ ∈ LC(E \ X). Take B′ ⊆ C ′ and A′ = C ′ \ B′. According to item (ii),

(C ′∪X) = (A′∪B′∪X) ∈ LC(E). Moreover, since (A′∪X)∩B′ = ∅, we get that A′∪X ⊢ B′,

due to E being in standard form. Hence, A′ ⊢′ B′, by the de�nition of ⊢′.

As X ∈ LC(E) and E is in standard form, (∅, ∅) ∈ ⊢′, i.e. E \X is rooted. 2

Next we establish the relationships between con�gurations and partial orders in the original

RC-structure and its residuals.
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Proposition 2. Given an RC-structure E in standard form,

(i) for any X,X ′ ∈ Conf (E) such that X → X ′,

(a) X ′ \X ∈ Conf (E \X);

(b) ⪯E\X
X′\X=⪯E

X′ ∩ (X ′\X×X ′\X), if E is the standard form of a singular RC-structure;

(ii) for any E ′ = E \X, with X ∈ Conf (E), and for any E ′′ = E ′ \X ′, with X ′ ∈ Conf (E ′),

X → X ∪X ′ in E, and E ′′ = E \ (X ∪X ′).

Proof. (i(a)) Take an arbitrary X,X ′ ∈ Conf (E) such that X → X ′. As X → X ′, we

have X = {e1, . . . , em} (m ≥ 0), X ′ = {e1, . . . , em, em+1, . . . , en} (n ≥ 0), and m ≤ n. Let

X ′ \X = {em+1, . . . , en}. Check that X ′ \X ∈ Conf (E \X). Take an arbitrary i ≤ n−m and

an arbitrary A ⊆ {em+1, . . . , em+i}. Consider possible cases.

A = ∅. We have ∅ ⊢′ ∅, because E \X is rooted, by Lemma 3(iii).

A ̸= ∅. Notice that {e1, . . . , em+i} ∈ Conf (E) ⊆ LC(E), for all i ≤ n − m. De�ne B =

{e1, . . . , em+i} \ A, if em+i ∈ A, and B = {e1, . . . , em+i−1} \ A, otherwise. Clearly,

B ⊆ {e1, . . . , em+i−1}. Since E is in standard form, we get B ⊢ A. According to

Lemma 3(ii), it holds B \ X ∪ A ∈ LC(E \ X). We know that E \ X is in standard

form, thanks to Lemma 3(iii). Hence, B \X ⊢′ A.

Thus, X ′ \X ∈ Conf (E \X).

(i(b)) Take arbitrary events e, d ∈ X ′ \X. Assume e ≺E
X′ d. Check that e ≺E\X

X′\X d. Take an

arbitrary set Z ⊆ X ′\X such that Z ⊢E\X {d}. By De�nition 3, we obtain Z∪{d}∪X ∈ LC(E).

This means that for all Z ′ ⊆ Z∪{d}∪X there exists a set Z ′′ ⊆ Z∪{d}∪X such that Z ′′ ⊢E Z ′.

Hence, we can �nd a set W ⊆ Z ∪ {d} ∪X such that W ⊢E {d}. By Observation (iii), it holds

that E is a pure RC-structure. Thus, W ∩{d} = ∅. So, W ⊆ Z ∪X ⊂ X ′. By the de�nition of

≺E
X′ , we have e ∈ W . Since e ∈ X ′ \X and W ⊆ Z ∪X, we conclude e ∈ Z. Hence, e ≺E\X

X′\X d.

Conversely, suppose e ≺E\X
X′\X d. We need to show that e ≺E

X′ d. Consider an arbitrary set

Z ⊆ X ′ such that Z ⊢E {d}. Due to E being in standard form, we obtain that Z∪{d} ∈ LC(E).

Moreover, d ̸∈ Z, by Observation (iii). As E = SF (F), we obtain LC(E) = LC(F), due to

Proposition 1(i). It is su�cient to check that X ∪ Z ∪ {d} ∈ LC(F). Take an arbitrary

W ⊆ X ∪ Z ∪ {d}. Three cases are admissible.

|W | = 0. Since X ′ ∈ Conf (E), we may conclude that Conf (E) ̸= ∅. This means that E is rooted,

by Observation (ii). Due to Proposition 1 (i), we get that F is a rooted RC-structure.

Hence, ∅ ⊢F ∅ = W .

|W | = 1. W.l.o.g. assume W = {z}. Consider two possible cases.
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z ∈ X. Since X ∈ LC(E) = LC(F), there is W ′ ⊆ X ⊆ X ∪ Z ∪ {d} such that W ′ ⊢F {z}.

z ̸∈ X. Hence, z ∈ (Z∪{d})\X. As Z∪{d} ∈ LC(E) = LC(F), we can �ndW ′ ⊆ Z∪{d} ⊆

X ∪ Z ∪ {d} such that W ′ ⊢F {z}.

|W | ≥ 2. Since W ⊆ X ∪Z ∪ {d} ⊆ X ′ ∈ LC(E) = LC(F), there is W ′ ⊆ X ′ such that W ′ ⊢F W .

Due to F being a singular RC-structure and |W | ≥ 2, it is true thatW ′ = ∅ ⊆ X∪Z∪{d}.

Thus, X ∪ Z ∪ {d} ∈ LC(E) = LC(F). Due to De�nition 3, we obtain Z \ X ⊢E\X {d}. As

e ≺E\X
X′\X d, it holds e ∈ Z \X. Thus, e ≺E

X′ d.

(ii) Assume that X ∈ Conf (E) and X ′ ∈ Conf (E ′), where E ′ = E \ X. Then, we can

arrange X = {e1, . . . , en} so that for all i ≤ n and for all Y ⊆ {e1, . . . , ei}, there is Z ⊆

{e1, . . . , ei−1} such that Z ⊢ Y , and arrange X ′ = {e′1, . . . , e′m} so that for all j ≤ m and for

all Y ′ ⊆ {e′1, . . . , e′j}, there is Z ′ ⊆ {e′1, . . . , e′i−1} such that Z ′ ⊢′ Y ′. De�ne en+1 = e′1, . . .,

en+m = e′m. Take an arbitrary i ≤ n + m and an arbitrary Y ⊆ {e1, . . . , ei}. If i ≤ n, the

result follows from the fact that X = {e1, . . . , en} ∈ Conf (E). Consider the case when n < i.

De�ne Y ′ = Y ∩E ′. Due to X ′ ∈ Conf (E ′), there is Z ′ ⊆ {e′1, . . . , e′i−1} such that Z ′ ⊢′ Y ′. By

virtue of Lemma 3(iii), E ′ = E \X is in standard form. Thus, Z ′ ∪ Y ′ ∈ LC(E ′). According to

Lemma 3(ii), we may conclude Z ′ ∪ Y ′ ∪ X ∈ LC(E). Due to E being in standard form, this

implies Z ⊢ Y , where Z = (Z ′ ∪ Y ′ ∪ X) \ Y . Clearly, Z ⊆ Z ′ ∪ X ⊆ {e1, . . . , ei−1}. Hence,

X ∪X ′ ∈ Conf (E). Obviously, X = {e1, . . . , en} → X ∪X ′ = {e1, . . . , en, e′1, . . . , e′m}.

Check that (E \ X) \ X ′ = E \ (X ∪ X ′). De�ne E ′′ = E ′ \ X ′ and Ẽ = E \ (X ∪ X ′). We

need to show E ′′ = Ẽ . By De�nition 3, E ′′ = E ′ \ X ′ = E \ X \ X ′ = E \ (X ∪ X ′) = Ẽ,

and l′′ = l |E′′= l |Ẽ= l̃. Verify that LC(E ′′) = LC(Ẽ). Thanks to Lemma 3(iii), Ẽ and E ′′ are

rooted RC-structures in standard form. Then, LC(E ′′) ̸= ∅ and LC(Ẽ) ̸= ∅. W.l.o.g. take an

arbitrary Y ∈ LC(E ′′). According to Lemma 3(ii), Y ∈ LC(E ′′) ⇐⇒ Y ∪X ′ ∈ LC(E ′) ⇐⇒

Y ∪X ′ ∪X ∈ LC(E) ⇐⇒ Y ∈ LC(E \ (X ∪X ′)) = LC(Ẽ). Hence, ⊢′′= ⊢̃. 2

We demonstrate the validity of Proposition 2.

Example 3. First, consider the rooted, pure, locally conjunctive and not singular RC-struc-

ture E1 = (E1,⊢1, L, l1) from Example 1. Recall that E1 = {a, b, c}; ⊢1 consists of ∅ ⊢1 X for

all X ̸= {a, b} and {c} ⊢1 {a, b}; L = E1; and l1 is the identity labeling function. We know

from Example 1 that LC(E1) = Conf (E1) = {∅, {a}, {b}, {c}, {c, a}, {b, c}, {b, c, a}}.

By building the standard form of E1, we get the enabling relation of Ẽ1: ⊢̃1 = {(∅, ∅),

(∅, {a}), ({a}, ∅), (∅, {b}), ({b}, ∅), (∅, {c}), ({c}, ∅), (∅, {a, c}), ({a, c}, ∅), ({a}, {c}), ({c},

{a}), (∅, {b, c}), ({b, c}, ∅), ({b}, {c}), ({c}, {b}), ({a}, {b, c}), ({b, c}, {a}), ({b}, {a, c}),
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({a, c}, {b}), ({c}, {a, b}), ({a, b}, {c}), (∅, {a, b, c}), ({a, b, c}, ∅)}. It is easy to see that

LC(E1) = LC(Ẽ1) and Conf (E1) = Conf (Ẽ1). In addition, we have that {b} → {b, c} and

{b} → {b, c, a} in Ẽ1. Moreover, it holds ≺Ẽ1
{b,c,a}= ∅.

Construct the RC-structure Ẽ1 \ {b} = ({a, c},⊢∗
1, L, l

∗
1 = l1|{a,c}), where ⊢∗

1 = {(∅, ∅),

(∅, {c}), ({c}, ∅), (∅, {a, c}), ({a, c}, ∅), ({a}, {c}), ({c}, {a})}. Then, we obtain Conf (Ẽ1 \

{b}) = {∅, {c}, {c, a}}. So, {b, c, a} \ {b} = {c, a} ∈ Conf (Ẽ1 \ {b}). On the other hand,

≺Ẽ1
{b,c,a} ∩ ({c, a} × {c, a}) = ∅ ̸=≺Ẽ1\{b}

{c,a} = {(c, a)}, although {b} → {b, c, a} in Ẽ1. This is

because E1 is not singular.

Next, construct the RC-structure (Ẽ1 \ {b}) \ {c} = ({a},⊢∗∗
1 , L, l∗∗1 = l∗1|{a}), where ⊢∗∗

1 =

{(∅, ∅), (∅, {a}), ({a}, ∅)}.

At last, construct the RC-structure Ẽ1 \ ({b} ∪ {c}) = ({a},⊢∗∗∗
1 , L, l∗∗∗1 = l∗1|{a}), where

⊢∗∗∗
1 = {(∅, ∅), (∅, {a}), ({a}, ∅)}. So, we see that {b} → {b, c} in Ẽ1, and (Ẽ1 \ {b}) \ {c} =

Ẽ1 \ ({b} ∪ {c}), con�rming the validity of Proposition 2(ii).

Second, consider the rooted, pure, locally conjunctive and singular RC-structure E5 = (E5,

⊢5, L, l5) from Example 1. Recall that E5 = {a, b, c}; ⊢5 = {(∅, ∅), (∅, {a}), (∅, {b}), ({a}, {c}),

({b}, {c}), (∅, {a, c}), (∅, {b, c})}; L = E5; and l5 is the identity labeling function. Moreover,

LC(E5) = Conf (E5) = {∅, {a}, {b}, {a, c}, {b, c}}, and ≺E5
{a,c}= {(a, c)} and ≺E5

{b,c}= {(b, c)}.

From Example 2 we know that the enabling relation in the standard form Ẽ5 of E5 looks

like this: ⊢̃5 = {(∅, ∅), (∅, {a}), ({a}, ∅), (∅, {b}), ({b}, ∅), ({a}, {c}), ({c}, {a}), (∅, {a, c}),

({a, c}, ∅), ({b}, {c}), ({c}, {b}), (∅, {b, c}), ({b, c}, ∅)}. In addition, LC(E5) = LC(Ẽ5),

Conf (E5) = Conf (Ẽ5), and ≺Ẽ5
{a,c}= {(a, c)}, ≺Ẽ5

{b,c}= {(b, c)}. Notice that {b} → {b, c} in Ẽ5.

Consider the RC-structure Ẽ5 \{b} = ({a, c}, ⊢∗
5, L, l

∗
5), where ⊢∗

5 = {(∅, ∅), (∅, {c}), ({c},

∅)}. Then, we obtain Conf (Ẽ5 \ {b}) = {∅, {c}}, and ≺Ẽ5\{b}
{c} = ∅. Hence, it holds that ≺Ẽ5

{b,c}

∩ ({c} × {c}) =≺Ẽ5\{b}
{c} . So, the example with E5 con�rms the validity of Proposition 2(i(b)).

4. Transition Systems TC (·) and TR(·) from RC-structures

In this section, we �rst give some basic de�nitions concerning labeled transition systems.

Then, we de�ne the mappings TC (E) and TR(E), which associate two distinct kinds of tran-

sition systems � one whose states are con�gurations and one whose states are residual RC-

structures � with the RC-structure E labeled over the set L of labels.

A transition system T = (S,→, i) labeled over a set L of labels consists of a set of states

S, a transition relation →⊆ S × L × S, and an initial state i ∈ S. Two transition systems
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labeled over L are isomorphic if their states can be mapped one-to-one to each other, preserving

transitions and initial states.

Let L be a �xed set of labels in RC-structures). Let Lstep := NL
0 (the set of multisets over

L, or functions from L to the non-negative integers), and Lpom := PomL (the set of isomorphic

classes of partial orders labeled over L) be another sets of labels. (The sets will be used as the

set of labels in the transition systems.)

We are ready to de�ne labeled transition systems with con�gurations as states.

De�nition 4. For a rooted RC-structure E over L and ⋆ ∈ {pom, step},

TC ⋆(E) is a transition system (Conf ⋆(E), ⇁⋆, ∅) over L⋆,

where X
p
⇁⋆ X

′ i� X →⋆ X
′ and p = l⋆(X

′ \X) in E.

We exemplify a feature of the above de�nition.

Example 4. Consider the not rooted RC-structure E4 = (E4,⊢4, L, l4) from Example 1. Re-

call that E4 = {a}; ⊢4= {(∅, {a}), ({a}, ∅)}; L = E4; and l4 is the identity labeling function.

We know that LC(E4) = {{a}}, and Conf (E4) = ∅, as E4 is not rooted, i.e. (∅, ∅) ̸∈⊢4. We

cannot construct the transition system TC ⋆(E4) = (Conf ⋆(E4), ⇁⋆, ∅) over L⋆ (⋆ ∈ {pom,

step}) because the initial state ∅ must belong to Conf (E4).

Lemma 4. Given a rooted RC-structure E,

(i) TC step(E) = TC step(SF (E)), if E is a pure RC-structure;

(ii) TC pom(E) = TC pom(SF (E)), if E is a pure, singular and locally conjunctive RC-structure.

Proof. Let ⋆ ∈ {step, pom}. Due to Lemma 2(i), we obtain that Conf ⋆(E) = Conf (E) and

Conf ⋆(SF (E)) = Conf (SF (E)). Since E is a pure RC-structure, we have that Conf (E) =

Conf (SF (E)), by Proposition 1(ii). Thus, we obtain Conf ⋆(E) = Conf ⋆(SF (E)). Moreover,

according to Lemma 2(ii), the relation →⋆ in E is equal to the relation →⋆ in SF (E).

Thanks to the construction of SF (E) and the de�nition of lstep(·), it easy to see that lEstep =

l
SF (E)
step .

If E is a pure, singular and locally conjunctive RC-structure, it holds that ⪯E
X=⪯SF (E)

X , for

all X ∈ Conf (E) = Conf (SF (E)), due to Proposition 1(iii). Hence, lEpom = l
SF (E)
pom .

So, by De�nition 4, we get ⇁E
⋆=⇁

SF (E)
⋆ . Thus, TC ⋆(E) = TC ⋆(SF (E)). 2

We illustrate the validity of Lemma 4.

Example 5. From Example 1 we know that E1 is a rooted and pure RC-structure, E3 is a

rooted and not pure RC-structure, and E5 is a rooted, pure, singular and locally conjunctive
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∅

{a}

{b}

{c}

{a, c}

{b, c}

{c, a, b}

c

c a||b

c

b ab||c b

a ba||c a

Fig. 1. The con�guration transition system TC step(E1)

∅

{a}

{b}

{a, c}

{b, c}

c

c

b b; c

a a; c

Fig. 2. The con�guration transition system TC pom(E5)

RC-structure. The transition system TC step(E1) is shown in Fig. 1, and the transition system

TC pom(E5) is depicted in Fig. 2. Using Examples 3 and 2, respectively, it is easy to make sure

that TC step(E1) = TC step(SF (E1)) and TC pom(E5) = TC pom(SF (E5)). However, this does not

apply to E3 for both semantics. It is easy to see this by looking at Fig. 3 and 4.

∅

{a}

{b}

{a, b}b

b

a a∥b

Fig. 3. The con�guration transition system TC step/pom(E3)

Next, introduce the de�nition of labeled transition systems with residuals as states.

De�nition 5. For an RC-structure E over L in standard form and ⋆ ∈ {pom, step},

TR⋆(E) is the transition system (Reach⋆(E), ⇀⋆, E) over L⋆,

where F p
⇀⋆ F ′ for some p ∈ L⋆ i� F ′ = F \X and ∅ →⋆ X in F , for some X ∈ Conf ⋆(F)

with p = l⋆(X \ ∅), and Reach⋆(E) = {F | ∃E0, . . . , Ek (k ≥ 0) s.t. E0 = E, Ek = F , and
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∅

{a}

{b}

{a, b}

b

b a

a
a∥b

Fig. 4. The con�guration transition system TC step/pom(SF (E3))

Ei
p
⇀⋆ Ei+1 (i < k)}.

Example 6. Consider Ẽ1 = SF (E1) in Example 3 and Ẽ5 = SF (E5) in Example 2. The

transition system TRstep(Ẽ1) is shown in Fig. 5, and the transition system TRpom(Ẽ5) is depicted

in Fig. 6.

E = {a, b, c}
LC(E) = {∅, {a},
{b}, {c}, {a, c},
{b, c}, {a, b, c}}

E = {b, c}
LC(E \ {a}) =

= {∅, {c}, {b, c}}

E = {b}
LC(E \ {a, c}) =

= {∅, {b}}

E = ∅
LC(E \ {a, b, c}) = {∅}

E = {a, b}
LC(E \ {c}) =

= {∅, {a}, {b}, {a, b}}

E = {a}
LC(E \ {b, c}) =

= {∅, {a}}

E = {a, c}
LC(E \ {b}) =

= {∅, {c}, {a, c}}

c

c a||b

c

b ab||c b

a ba||c a

Fig. 5. The residual transition system TRstep(SF (E1))

We establish the relationships between states and transitions of TC (·) and TR(·) in both

semantics.

Proposition 3. Given a rooted RC-structure E in standard form and ⋆ ∈ {pom, step},

(i) for any X ∈ Conf ⋆(E), E \X ∈ Reach⋆(E);

(ii) for any E ′ ∈ Reach⋆(E), there exists X ∈ Conf ⋆(E) such that E ′ = E \X;

(iii) for any X ′, X ′′ ∈ Conf ⋆(E), if X ′ p
⇁⋆ X

′′ in TC ⋆(E), then E \X ′ p′
⇀⋆ E \X ′′ in TR⋆(E),

moreover, p = p′ if either ⋆ = step or ⋆ = pom and E is the standard form of a singular

RC-structure;

(iv) for any E ′, E ′′ ∈ Reach⋆(E), if E ′ p
⇀⋆ E ′′ in TR⋆(E), then there are X ′, X ′′ ∈ Conf ⋆(E)

such that E ′ = E \X ′, E ′′ = E \X ′′, and X ′ p′
⇁⋆ X

′′ in TC ⋆(E), moreover, p = p′ if either

⋆ = step or ⋆ = pom and E is the standard form of a singular RC-structure.
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Proof.

(i) Take an arbitraryX ∈ Conf ⋆(E). Due to Lemma 2(i), we have that Conf ⋆(E) = Conf (E).

Hence, X ∈ Conf (E). This implies that X = {e1, . . . , en} (n ≥ 0) such that for all i ≤ n

and for all Y ⊆ {e1, . . . , ei}, there is Z ⊆ {e1, . . . , ei−1} such that Z ⊢ Y . Clearly,

Xi = {e1, . . . , ei} ∈ Conf (E) and Xi → Xi+1, for all i ≤ n−1. Let Yi = {ei} for all i ≤ n.

Check that E \Xi = E \ Y1 \ . . . \ Yi, for all i ≤ n. We shall proceed by induction on n.

n = 0. Obvious.

n = 1. Then, Y1 = X1 ∈ Conf(E) andE \X1 = E \ Y1.

n > 1. By the induction hypothesis, we have E \Xn−1 = E \Y1 \ . . .\Yn−1. Since Xn−1, Xn ∈

Conf (E) and Xn−1 → Xn in E , we obtain Xn \ Xn−1 = Yn ∈ Conf (E \ Xn−1), due

to Proposition 2(i(a)). According to Proposition 2(ii), it holds that E \Xn−1 \ Yn =

E \ (Xn−1 ∪ Yn) = E \Xn. Hence, E \ Y1 \ . . . \ Yn−1 \ Yn = E \Xn.

It is easy to see that E ⇀⋆ E \X1 ⇀⋆ . . . ⇀⋆ E \Xn. Thus, E \X ∈ Reach⋆(E).

(ii) Take an arbitrary E ′ ∈ Reach⋆(E). This means that E = E0
p1
⇀⋆ E1 . . . En−1

pn
⇀⋆ En = E ′

(n ≥ 0). By the de�nition of
pi+1
⇀ ⋆, it holds that Ei+1 = Ei \ Xi+1, for some Xi+1 ∈

Conf⋆(Ei) and pi+1 = lEi⋆ (Xi+1). Due to Lemma 2(i), we have Conf ⋆(Ei) = Conf (Ei).

Hence, Xi+1 ∈ Conf (Ei). Verify that Yi+1 =
i+1⋃
j=1

Xj ∈ Conf(E) and Ei+1 = E \ Yi+1, for

all i < n. We shall proceed by induction on n.

n = 0. Obvious.

n = 1. Then, Y1 = X1 ∈ Conf(E) and E1 = E0 \X1 = E \ Y1.

n > 1. By the induction hypothesis, Yn−1 =
n−1⋃
j=1

Xj ∈ Conf(E) and En−1 = E \ Yn−1. Check

that Yn =
n⋃

j=1

Xj ∈ Conf(E) and En = E \ Yn. As En = En−1 \ Xn, it holds that

En = (E \ Yn−1) \Xn. According to Proposition 2(ii), we have that Yn−1 ∪Xn = Yn ∈

Conf(E) and En = E \ (Yn−1 ∪Xn) = E \ Yn. Thus, E ′ = E \ Yn. Moreover, it is true

that Yn ∈ Conf ⋆(E), due to Lemma 2(i).

(iii) Take arbitrary X ′, X ′′ ∈ Conf ⋆(E) such that X ′ p
⇁⋆ X

′′ in TC ⋆(E). Then, we have that

X ′ →⋆ X
′′ in E and p = lE⋆ (X

′′\X ′). This means thatX ′→X ′′. As E is an RC-structure in

standard form, we obtain that X ′′\X ′ ∈ Conf (E \X ′), by Propositions 2(i(a)). Moreover,

since X ′ →⋆ X
′′ in E , we may conclude that ∅ →⋆ X

′′\X ′ in E \X ′, by the construction of

E \X ′. Next, due to Propositions 2(ii), it holds that E \X ′′ = (E \X ′) \ (X ′′ \X ′). Then,

E \ X ′ p′
⇀⋆ E \ X ′′ in TR⋆(E), where p′ = l

E\X′

⋆ (X ′′ \ X ′). Moreover, if ⋆ = step, we get

that p = lEstep(X
′′ \X ′) = l

E\X′

step (X ′′ \X ′) = p′. If ⋆ = pom and E is the standard form of a
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singular RC-structure, we have ≺E\X′

X′′\X′=≺E
X′′ ∩(X ′′\X ′×X ′′\X ′), by Proposition 2(i(b)).

Hence, p = lEpom(X
′′ \X ′) = l

E\X′
pom (X ′′ \X ′) = p′.

(iv) Take arbitrary E ′, E ′′ ∈ Reach⋆(E) such that E ′ p
⇀⋆ E ′′ in TR⋆(E). Due to item (ii), there

is X ′ ∈ Conf⋆(E) such that E ′ = E \ X ′. According to the de�nition of
p
⇀⋆, there is

X̃ ′ ∈ Conf⋆(E ′) such that E ′′ = E ′ \ X̃ ′, ∅ →⋆ X̃ ′ in E ′ and p = lE
′

⋆ (X̃ ′). Then, X ′′ =

X ′∪ X̃ ′ ∈ Conf⋆(E), X ′ → X ′′, and E ′′ = E \X ′′, due to Proposition 2(ii). As ∅ →⋆ X̃
′ in

E ′ and X ′ → X ′′, we have that X ′ p′
⇁⋆ X

′′ in TC ⋆(E), where p′ = lE⋆ (X
′′ \X ′). Moreover,

if ⋆ = step, we get that p′ = lEstep(X
′′ \X ′) = l

E\X′

step (X ′′ \X ′) = p. If ⋆ = pom and E is the

standard form of a singular RC-structure, it holds that ≺E\X′

X′′\X′=≺E
X′′ ∩(X ′′\X ′×X ′′\X ′),

by Proposition 2(i(b)). Hence, p′ = lEpom(X
′′ \X ′) = l

E\X′
pom (X ′′ \X ′) = lE

′
pom(X̃

′) = p. 2

E = {a, b, c}
LC(E) = {∅, {a},

{b}{a, c},
{b, c}}

E = {b, c}
LC(E \ {a}) =

= {∅, {c}, {b, c}}

E = {b}
LC(E \ {a, c}) =

= {∅}

E = {a}
LC(E \ {b, c}) =

= {∅}

E = {a, c}
LC(E \ {b}) =

= {∅, {c}, {a, c}}

c

c

b b; c

a a; c

Fig. 6. The residual transition system TRpom(SF (E5))

Finally, we formulate the main results of the paper.

Theorem 1. Given a rooted RC-structure E and ⋆ ∈ {step, pom},

(i) TC step(E) and TRstep(SF (E)) are isomorphic, if E is a pure RC-structure;

(ii) TC pom(E) and TRpom(SF (E)) are isomorphic, if E is a pure, singular and locally con-

junctive RC-structure.

Proof. Let ⋆ ∈ {step, pom}. First, de�ne a mapping g : Conf ⋆(SF (E)) → Reach⋆(SF (E))

as follows: g(X) = SF (E) \ X for all X ∈ Conf ⋆(SF (E)). Since E is a rooted RC-structure,

it holds that SF (E) is a rooted RC-structure, by Proposition 1(i). Then, g(X) is well-de�ned,

due to Proposition 3(i).

Since SF (E) is a rooted RC-structure, it is clear that ∅ ∈ Conf (SF (E)). Thanks to

Lemma 2(i), we get that Conf ⋆(SF (E)) = Conf (SF (E)). Hence, g(∅) = SF (E) \ ∅ = SF (E).

Check that g is a bijective mapping. Assume g(X) = g(X ′), for someX,X ′ ∈ Conf ⋆(SF (E)).
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This means that SF (E) \X = SF (E) \X ′. By De�nition 3 and the construction of SF (E), we

get E \X = E \X ′. Since X,X ′ ⊆ E, we have X = X ′. So, g is an injective mapping.

Take an arbitrary E ′ ∈ Reach⋆(SF (E)). Due to Proposition 3(ii), we get E ′ = SF (E) \X,

for some X ∈ Conf ⋆(SF (E)). Hence, g is a surjective mapping.

(i) According to Propositions 3(iii) and (iv), and the fact that g is a bijective mapping, we

have that X
p
⇁step X ′ in TC step(SF (E)) i� g(X)

p
⇀step g(X ′) in TRstep(SF (E)). So, g

is indeed an isomorphism between TC step(SF (E)) and TRstep(SF (E)). Due to Lemma 4

(i), we may conclude that TC step(E) = TC step(SF (E)), because E is a pure RC-structure.

Thus, TC step(E) and TRstep(SF (E)) are isomorphic.

(ii) Since SF (E) is the standard form of a singular RC-structure and g is a bijective mapping,

we obtain that X
p
⇁pom X ′ in TC pom(SF (E)) i� g(X)

p
⇀pom g(X ′) in TRpom(SF (E)),

by Propositions 3(iii) and (iv). So, g is indeed an isomorphism. Since E is a pure,

singular and locally conjunctive RC-structure, we get that TC pom(E) = TC pom(SF (E)),

by Lemma 4 (ii). Thus, TC pom(E) and TRpom(SF (E)) are isomorphic. 2

Example 7. From example 1 we know that E1 is a rooted, pure, not singular, and locally con-

junctive RC-structure, and E5 is a rooted, pure, singular and locally conjunctive RC-structure.

It is easy to see that TC step(E1) shown in Fig. 1 and TRstep(SF (E1)) shown in Fig. 5 are iso-

morphic, and the transition system TC pom(E5) depicted in Fig. 2 and TRstep(SF (E5)) shown in

Fig. 6 are isomorphic. However, this does not apply to E1 in partial order semantics because the

structure is not singular. In Fig. 7 and 8, we see that ∅ a∥c→ {a, c} and ∅ b∥c→ {b, c} in TC pom(E1),

and E1
c;a→ E1 \ {a, c} and ∅ c;b→ E1 \ {b, c} in TRpom(SF (E1)).

∅

{a}

{b}

{c}

{a, c}

{b, c}

{c, a, b}

c

c a∥b

c

b ab∥c b

a ba∥c a

c∥b

a∥b∥c

c∥a

Fig. 7. The con�guration transition system TC pom(E1)

5. Concluding Remarks
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E = {a, b, c}
LC(E) = {∅, {a},
{b}, {c}, {a, c},
{b, c}, {a, b, c}}

E = {b, c}
LC(E \ {a}) =

= {∅, {c}, {b, c}}

E = {b}
LC(E \ {a, c}) =

= {∅, {b}}

E = ∅
LC(E \ {a, b, c}) = {∅}

E = {a, b}
LC(E \ {c}) =

= {∅, {a}, {b}, {a, b}}

E = {a}
LC(E \ {b, c}) =

= {∅, {a}}

E = {a, c}
LC(E \ {b}) =

= {∅, {c}, {a, c}}

c

c a∥b

c

b
a

c; b b

a
b

c; a a

c; b

a∥b∥c

c; a

Fig. 8. The residual transition system TRpom(SF (E1))

In this paper, we investigated two di�erent ways of providing various transition system se-

mantics for RC-structures which are very expressive among the event-oriented models known

in the literature. First, we have developed the notion of partial orders within the con�gurations

of RC-structures and discovered their subclasses in which partial orders are preserved in the

standard form of the models and under the removal operator. Second, we have revealed closed

relationships between con�gurations in the original RC-structure, in its standard form and in

its residuals, under some conditions. Third, we have formulated properties of the model under

consideration, which guarantee the coincidence of con�guration transition systems obtained

from the RC-structure and its standard form. As our main result, we have demonstrated how

transition systems based on con�gurations and residuals of RC-structures, presented not nec-

essary in standard form, are related in the context of partial order multiset and step semantics.

Work is currently underway to extend our approach to other event-oriented models (e.g., to

precursor [11], probabilistic [28], and local [18] event structures, and also to event structures

with dynamic causality [1]), and it gave preliminary results. Another future direction of our

research is to extend our results in comparing of the two types of transition systems studied to

the multiset case of transition relation and to the non-pure case of RC-structures.
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