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Reachability probabilities and expected rewards are two important classes of properties

that are used in probabilistic model checking. Iterative numerical methods are applied to

compute the underlying properties. To guarantee soundness of the computed results, the

interval iteration method is used. This method utilizes two vectors as the upper-bound

and lower-bound of values and uses the standard value iteration method to update the

values of these vectors. In this paper, we use a combination of value iteration and policy

iteration to update these values. We use policy iteration to update the values of the lower

bound vector. For the upper-bound vector, we use a modified version of value iteration

that marks useless actions to disregard them for the remainder of the computations. Our

proposed approach brings an opportunity to apply some advanced techniques to reduce the

running time of the computations for the interval iteration method. We consider a set of

standard case studies and the experimental results show that in most cases, our proposed

technique reduces the running time of computations.
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1. Introduction

Value iteration (VI) and policy iteration (PI) are two well-known iterative numerical methods

that are used to approximate the required values in the analysis of Markov decision processes. In

reinforcement learning, VI and PI are used to compute the optimal expected rewards (or costs)

for an intelligent agent. In formal verification, these two methods are also used to compute

the optimal reachability probabilities: the minimal or maximal probability of reaching a goal

state. In both cases, linear programming (LP) can be used to compute exact values. Because

of the scalability of this technique, LP can not be used for large models. VI and PI are

used instead to approximate the required values. These techniques compute iteratively until

satisfying a stopping criterion[1, 5]. In reinforcement learning, a discount factor is considered

to guarantee the convergence of computations. The iterative computations terminate when the

maximal difference between two consecutive iterations drop below a threshold [5, 6]. In formal
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verification, where the optimal probabilities or expected rewards until reaching a goal state is

needed, some pre-computations are applied to disregard those states for which, the accumulated

expected rewards converge to infinite. For the remaining states, VI or PI can be applied. Both

approaches iteratively update state-values until reaching the case where the difference between

values drops the threshold. Although in most cases, this stopping criterion is sufficient to

verify the correctness of a given specified property, there is not any guarantee for the precision

of the computed values. There are some cases in probabilistic model checking where VI or

PI terminate and the reported reachability probability (or expected reward) is far away from

the exact value [2, 9]. To overcome this deficiency, the interval iteration method has been

proposed as an extension to the standard value iteration and is implemented in most model

checker tools. In interval iteration (II), two vectors of values are considered as an upper-bound

and lower-bound of the state-values. These vectors are updated iteratively until reaching a case

where the maximal difference of state values between these two vectors drop the threshold. In

such case, it is guaranteed that the exact value is between the two ones and maximal error is

controlled [4, 9, 15].

The running time of the standard iterative methods for probabilistic model checking is an

important challenge that affects their application on large models. While the number of states

of a model can grow exponentially in the number of components, that causes the state explosion

problem, a modern model checker should control the total number of numerical computations.

Several approaches have been proposed to accelerate the VI and PI methods. The results of [13]

demonstrate that the modified and improved versions of PI can outperform VI for most standard

case study models. For the interval iteration method, using two vectors of values brings more

computations and the running time is more than the VI and PI methods. For this method, it is

important to utilize improved techniques to reduce the overall running time. In most previous

works, VI is mainly used to update the values of these vectors, i.e., in each iteration, VI is used

to update the upper-bound and lower-bound values of each state. Appropriate state ordering for

VI has been used as an approach to accelerate the interval iteration method [8]. This approach

is applied in [2, 15] to reduce the overall running time of the computations. To the best of our

knowledge, no other work has considered more advanced techniques to accelerate the iterative

computations for the II method. In this paper, we focus on the problem of accelerating II

and select PI as the standard method for updating the state-values of this method. We utilize

several accelerating methods for PI to improve the performance of II. The main benefit of these



System Informatics (Системная информатика), No. 25 (2014) 41

accelerating methods is that in most iterations, they disregard less important computations

and focus on more important ones.

1.1. Related work

Value iteration and policy iterations have been used as the standard iterative methods in

probabilistic model checking [1, 3, 5]. However, the soundness of these methods was studied

for the first time in [7] where a counterexample is proposed that shows VI may terminate and

return a result that is far away from the exact value. To cover this problem and guarantee

the soundness of the computed values, the interval iteration method is proposed in [7] for the

extremal reachability probabilities. The extension of II for the extremal expected rewards is

proposed in [2] where some approaches are suggested for computing the upper-bound vector of

values. In some cases, the computed upper-bounds are far away from true values that causes a

large number of iterations in the computations of the II method. To reduce the overall running

times and start from better upper-bounds, the sound value iteration[15] and optimistic value

iteration[10] methods are proposed for computing the minimal and maximal expected rewards.

The possibility of applying policy iteration for the interval iteration method is studied in [9]. It

has only considered the standard PI method and do not studied the impact of modified policy

iteration or other improved technique on the performance of computations.

2. Preliminaries

In this section, we review some important concepts of probabilistic model checking. More

details are available in [2, 3, 8]. For a finite set S and vectors x = (xs)s∈S ∈ R|S| and y =

(ys)s∈S ∈ R|S|, we write x ≤ y if xs ≤ ys for all s ∈ S and we write x < y if xs < ys for all

s ∈ S.

2.1. Markov Decision Process

Definition 1. A Markov Decision Process (MDP) is a tuple M = (S, s0, Act, P,R) where:

• S is a finite set of states,

• s0 ∈ S is the initial state,

• Act is a finite set of actions.

• P : S × Act × S → [0, 1] is a probabilistic transition function such that for each state s

and the action α ∈ Act we have
∑

s′∈S P (s, α, s′) ∈ {0, 1}.
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• R : S × Act → R is a reward function.

An action α is enabled in state s, if
∑

s′∈S P (s, α, s′) = 1. The operational semantics of MDP

M is as follows. M is initiated with state s0. Assume that M is in state s. First, one of

the enabled actions of s is selected non-deterministically. According to the selected action α,

the reward R(s, α) is collected by the system. Then due to probabilistic transition function

P , one of the α-successor states of s (a state for which there is a transition from s via action

α) is chosen. That is, s′ is the next state with probability P (s, α, s′). A discrete-time Markov

chain (DTMC) is an MDP in which every next state is selected just probabilistically, i.e. it has

exactly one enabled action [1].

The minimal (or maximal) probability of reaching one of the goal states is called extremal

reachability probability. Extremal expected rewards are defined as the minimal (or maximal)

expectation of accumulated rewards until reaching a goal state. For a state s ∈ S, we use Emax
s

to denote the maximal expected reward. Some graph-based methods are exploited to detect

the set of states that the extremal reachability probability is one [1, 3]. These sets are used to

computing the maximal or minimal expected rewards [8].

A standard way to resolve non-deterministic choices in MDPs is to define and use policies.

A deterministic policy (also called adversary) is function π : S → Act that maps each state of

the MDP to one of its enabled actions. A policy is memory less where it decide the actions

only based on the last visited state [8]. For unbounded reachability probabilities and expected

rewards, the optimal action of each state s ∈ S is determined based of the probability dis-

tribution of the outgoing transitions and the computed values of the successor states and it

is not important which states have been visited before reaching s. Hence, for these classes of

properties, that are the topic of the current work, it is sufficient to consider deterministic and

memory-less policies [1, 3].

Iterative numerical methods are used to approximate the values of the expected rewards.

Value iteration, as a well known method uses a vector xk to store the approximated values of

the maximal expected rewards in iteration k. The values of xk
s determines the approximated

value of Emax
s after k iterations. In each iteration k the value of xk is computed according to the

computed value of xk−1 from the previous iteration. Theoretically, value iteration can finally

converge to the exact expected values, that is, limk→∞ xk
s = E

max
s ; but practically, a convergence

criterion is exploited to terminate the iterations. To do so, the maximum difference of computed

values between two consecutive iterations are compared with a threshold ϵ in which the value
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iteration method terminates when maxs∈S1
min

(xk
s − xk−1

s ) < ϵ [8]. In the literature, several

methods are proposed to accelerate the standard iterative methods using state prioritizing

approaches [8, 13]. Policy iteration (PI) is another option for approximating the extremal

reachability probabilities or expected reward[5]. This method follows a set of rounds. In each

round, PI considers a policy to select one action for each state. Based on the selected actions

a DTMC is induced and a set of iterations is applied to update the state values. For the first

round, the policy is defined by randomly selecting the actions of each state. For the other

rounds, policies are defined by considering the best action of each state by considering the

computed values of the previous round. The computations continue until reaching a stable

policy, where the last two policies are the same [9].

2.2. Interval Iteration for Expected Accumulated Rewards

Value iteration with the standard termination criterion can not guarantee the precision of

approximated values [6]. Interval iteration methods are proposed to guarantee the precision

of computed values for the extremal reachability probabilities [4, 6] and for extremal expected

rewards [2]. Two vectors x and y are utilized to approximate the lower and upper bound of the

extremal expected reward values. In this case, vectors x and y can finally converge from below

and above to Emax.

Considering ϵ for the precision of computations, the interval iteration method iterates until

the maximum difference of values between two vectors for all states drops below 2ϵ, that is in

an iteration k, if maxs∈S1
min

(yks − xk
s) < 2ϵ holds. After termination we have |y

k
s+xk

s

2
−Emax

s | < ϵ

for each state s ∈ S1
min. Algorithm 1 computes the interval iteration for the maximal expected

rewards. To avoid some redundant computations, a modified version (called separate interval

iteration) is proposed in [12].

Several methods are available for pre-computation to calculate the starting values for x and y.

In the case of non-negative rewards, 0 is trivially a starting point of x. For y, several techniques

are presented in [2] to calculate the starting point. A main drawback of these techniques to

compute an initial value for the vector y is that in come cases, the proposed initial values are

far away from the exact values. This drawback increases the running time of computations.

To have better initial values for y several techniques have been proposed in [10, 12, 15]. The

idea of these techniques is to consider the computed values for the vector x to approximate

the initial value for y. In the proposed approaches in [10, 12], the standard value iteration
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Algorithm 1 Interval iteration for Emax
s .

input: an MDP M = (S, s0, Act, P,R), a set G of goal states, the set S1
min, a threshold ϵ

and two initial vectors x and y for the lower and upper bound of values

output: Approximation of Emax
s for all s ∈ S with the precision of ϵ

repeat

for all s ∈ S1
min do

xs = max
α∈Act(s)

(R(s, α) +
∑

s′∈S P (s, α, s′) · xs′) ;

ys = min{ys, max
α∈Act(s)

(R(s, α) +
∑

s′∈S P (s, α, s′) · ys′)} ;

end for

until maxs∈S1
min

(ys − xs) ≤ 2ϵ;

return (ys+xs

2
)s∈S1

min
;

method is applied to update the values of x. After terminating value iteration, the initial value

for y is computed by considering the computed values for x. In this step and for each state

s ∈ S, the proposed approach considers ys = c · xs where c > 1 is a constant. To check the

soundness of the computed vector y several number of iterations of the VI method is applied

on this vector. If after these iterations, the value of all states decrease, it is guaranteed that the

computed vector is correctly an upper-bound of the values and can be used for the remainder

computations. Otherwise, several other iterations are applied on the vector x and a higher

value for c is considered. The process continues until getting a sound vector y. More details

about this approach is available in [10].

3. The Proposed Method

The possibility of using PI to update the values of the vectors x and y for the interval

iteration method has been recently investigated in [9]. It is not trivial to apply the PI method

to update the values of the upper-bound vector and [9] proposes an example where the PI

method picks some non-optimal policies and the II method with it terminates with some values

far away from the exact one. This case may happen for both extremal reachability probabilities

and expected rewards. Instead, a hybrid approach is mentioned in [9] to use a combination of

VI, PI and action elimination. The experimental evaluation of [9], however, does not cover this

case and only reports the results for the optimistic version of II[10] where the standard VI is

used to update values. It also considers PI when it uses II to resolve each induced DTMC. In
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this section, we provide our approach to apply PI as a solver for the interval iteration method

and discuss the possibility of applying some advanced techniques to reduce the overall running

time.

3.1. Sound Interval Iteration with Policy Iteration and Action

Elimination

In this section, we explain how to use PI and VI with action elimination for the interval

iteration method in a sound way. We propose this approach in Algorithm 2. It gets a MDP

model M , a constant K > 1, a threshold ϵ for terminating the computations and an initial

value for the vector x. The threshold ϵ can be considered as is in VI, PI and II[5]. For the

initial value of x the values for all states can be set to 0. For better explanation, we divide the

algorithm to three steps. The first step, contains a while loop and follows an approach similar to

the optimistic VI to compute a sound vector for upper-bound. However, our algorithm applies

PI to update the states of the vector x. After terminating PI, the initial value for the vector

x is computed by considering the constants c > 1 and d > 0. Then the algorithm updates the

values of y by applying K iterations of VI. If the value of all states decrease, the current values

for y provide a correct upper bound. Otherwise, several additional iterations of PI is applied

by considering smaller values for the threshold ϵ. It is guaranteed that these process will finally

terminate while has computed a sound vector y for upper-bounds [10, 12].

The second step, for each state s ∈ S considers the computed values for xs and label those

actions that give under-approximation for ys. Such actions can not give a correct value for the

upper-bound and should be disregarded for the remainder of the computations.

The third step updates the value of the vectors x and y until reaching a point where the

difference of the upper-bound and lower-bound for all states is less than ϵ. It uses PI to update

the values of the lower-bound and VI with non-disabled actions for the upper-bound.

Using PI to update the values of x and mark some actions as disabled can bring several

opportunity to improve the performance of the II method. There are some cases where the

standard version of PI outperform VI and hence, the former method can be a better option than

the later. In addition, the modified and improved versions of PI as are discussed in [9, 12, 13]

are faster than VI in most cases. Eliminating non-optimal actions avoids useless computations

and reduces the overall running time of the computations. The soundness of this algorithm

relies on the fact that PI will always converge to the true values from below if it uses sufficient



46 Mohagheghi M, Khademi A. Policy Based Interval Iteration for Probabilistic Model Checking

Algorithm 2 II with Policy Iteration for Emax
s .

input: an MDP M = (S, s0, Act, P,R), a set G of goal states, the set S1
min, a threshold ϵ

and an initial vectors x for the lower bound of values

output: Approximation of Emax
s for all s ∈ S with the precision of ϵ

flag = True;

while flag == True do

Apply PI on the vector x considering ϵ for termination of computations.

for all s ∈ S do

ys = c · xs + d;

end for

iters = 1;

while iters < K do

for all s ∈ S do

ys = min{ys, max
α∈Act(s)

(R(s, α) +
∑

s′∈S P (s, α, s′) · ys′)} ;

end for

iters = iters + 1;

end while

if ∃ s ∈ S1
min where ys has never decreased then

ϵ = ϵ/2;

else

flag = false;

end if

end while

for all s ∈ S1
min, α ∈ Act(s) do

if xs > R(s, α) +
∑

s′∈S P (s, α, s′) · ys′ then

Mark α as disabled.

end if

end for

repeat

for all s ∈ S1
min do

Update xs using PI;

Update ys considering non-disabled Actions;

end for

until maxs∈S1
min

(ys − xs) ≤ 2ϵ;

return (ys+xs

2
)s∈S1

min
;
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number of iterations, i.e., it never gets stuck in wrong state values. For the upper-bound the

soundness is provided when we apply the standard VI method [15] or disregard those actions

that do not surely give the optimal values.

4. Experimental Results

To analyse the running time of the proposed method in this paper with the standard one,

we consider a set of standard case studies that are widely used in the previous works [5,

9]. We use the PRISM model checker [11] to run the experiments. We also implemented

Algorithm 2 in PRISM. To do so, we consider the interval iteration [2] method (called II),

sound value iteration [15] (called SVI) and optimistic value iteration wthod[10] (called OVI)

from the previous works. We also consider Algorithm 2 with the standard PI method (PII), its

modified version [14] (MPII) and its improved version (IPII)[13]. The results of the experiments

are reported in Table1. For each method, we report the running time of iterative computations

and the total number of computations. All reported times are in seconds.

Table 1

The running time of the evalutaed methods.

Model Name Parameter Number of II SVI OVI PII MPII IPII

(parameters) Values states time iters time iters time iters time iterations

Coin 4,6 63616 89.7 67791 48.6 37750 41.3 30123 42 42056 33 30158 32.8 30147

(K,N) 4,10 104576 475 191473 226 93589 184 78495 154 85345 138 78538 139 78545

6,2 1258240 832 20811 509 13840 475 11624 663 31445 339 11642 342 11675

Zeroconf 6 798471 23.2 1491 12.6 747 10.7 635 11.7 647 11.5 1086 9.78 794

(K) 10 3001911 96 1546 49.6 850 40.9 695 38.8 695 39,7 695 40.2 697

14 4427159 174 1822 76.6 812 69.7 746 63.1 746 67.2 782 749 64

Wlan 200 171542 15.4 6502 12.2 4709 11 4391 11.3 6092 9.24 4394 9.75 4719

(ttm) 800 409142 102 16509 96.2 15117 93.7 14668 85.4 17464 77.3 14671 78.6 14742

1600 725942 426 35841 367 31482 343 29016 293 32003 286 29019 288 29022

In most cases, our proposed method with modified policy iteration works better than the

optimistic value iteration method. In some cases, even the proposed method with the standard

policy iteration is faster than OVI. Altough in these cases, the overall number of iterations

increases, but because they consider only one action in most iterations, they are faster than

OVI. There are also some cases where the proposed method with improved policy iteration

outperforms the other cases.

5. Conclusion

In this work, we propose an approach to use PI for updating the values of states for the II

method. Experimental results demonstrate that our proposed technique with modified policy
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iteration outperforms the best known previous work for optimistic value iteration. For the

future works, we plan to consider several improvements for policy iteration to reduce the overall

running time of the proposed technique.
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