
System Informatics (Системная информатика), No. 12 (2018) 85

УДК 004.432:004.054

Reflex Language: a Practical Notation for Cyber-Physical

Systems

Liakh T.V., Rozov A.S., Zyubin V.E.

(Institute of Automation and Electrometry SB RAS,

Novosibirsk State University)

This paper introduces a conceptual framework for complex control algorithms in form

of hyperprocess model. To demonstrate the practical value of the model we describe

grammar and translational semantics of a process-oriented language, known as Reflex or “C

with processes”. Expressive properties of the presented notation are shown on an example

control algorithm design for a hand dryer device. Finally, we give a short report about

practical application of the language and results, which have been obtained during its

usage.

Keywords: Reflex language, control software, IEC 61131-3, process-oriented program-

ming, POP, programmable logic controller, PLC, cyber-physical system, hybrid system,

finite state machine, FSM, finite state automaton, FSA, controller, plant, syntax, seman-

tics, industrial automation, reactive system

1. Introduction

Industrial control systems are nowadays most commonly implemented using programmable

logic controllers (PLCs). A typical PLC consists of a central control board hosting the proces-

sor, in bundle with multiple extension modules that provide digital I/O, analog-to-digital and

digital-to analog conversions, etc. All of control logic, including timing, computation, contin-

uous control and peripheral communication, is speci�ed in the PLC software. Thus in control

systems, software development expenses surpass those of hardware development and constitute

the larger part of the total project cost.

The speci�city of control algorithms calls for specialized design patterns, languages and

models to be utilized in development of PLC software. Numerous theoretical studies have been

published, with design patterns, models and methods (e. g. TCSP, CCS, I/O-Automata, TLA,

FSM and their timed extensions [1�12], to name a few) that address the characteristic issues

arising in control software development. Despite this diversity of approaches available, the in-

dustry still favours IEC 61131-3 [13] standard languages as their primary and ultimate solution

86 Liakh T. V., Rozov A. S., Zyubin V. E. Reflex Language: a Practical Notation for Cyber-Physical Systems

in the �eld. It incorporates languages for relay logic (LD), functional block diagrams (FBDs),

sequential function charts (SFCs) and assembler-like speci�cations (IL). However, as the com-

plexity of control software increases and quality is of higher priority, the 35 years old technology

underlying the IEC 61131-3 approach is not able to address the present-day requirements [14].

The IEC standard is ambiguous, universally critisized for its lack of expressiveness and is even

cited as an example of standardization misuse [15]. The shortcomings of the IEC 61131-3 lan-

guages have become particularly evident after new types of cyber-physical systems started to

emerge and rapidly spread, such as embedded systems, smart-devices, IoT-devices, etc. This

motivates researchers to enrich the IEC 61131-3 development model with OO concepts [16], or

rather develop alternative approaches, e. g. [17, 18].

The idea of designing special mathematical models for speci�cation of control software is

not new. A large amount of related work has been published over the years. Unfortunately,

the e�ort was distributed among di�erent �elds: reactive systems, programming, logic, parallel

system, homeostatic systems, so called real time systems, robotics, etc., see e. g. [1, 4, 5, 9, 19]

Though meany of the presented ideas look promising, these theoretical results �nd little to no

use in the industry. Attaining a practical solution for control system speci�cation requires a

holistic approach.

We strongly believe that a useful notation for control software can be designed over a thor-

ough analysis of the target task. The models and concepts underlying such a notation would

have to re�ect the key features of control systems. Further, the notation itself should be com-

prehensible and easy-to-use for the programmers already engaged in the industry. It therefore

needs to conform with the current trends in programming languages. In this work we introduce

a programming language based on this idea.

The paper is organized as follows: in Section 2 we analyze the domain of control systems

and extract the key features of control software. Section 3 introduces the hyperprocess mathe-

matical model that re�ects the aforementioned features. Section 4 presents the syntax of Re�ex

programming language that is based on the hyperprocess. Section 5 shows semantics of the

language. Section 7 concludes the paper and lines out directions for our future work.

This work has been supported by the Federal Agency for Scienti�c Organizations (project

AAAA-A17-117060610006-6) and the Russian Foundation for Basic Research (grant 17-07-

01600).

System Informatics (Системная информатика), No. 12 (2018) 87

2. Specific Features of Control Software

When considering a modern control system, we generally picture a digital controller con-

nected to a controlled plant. The plant represents external environment of control system and

consists of hardware and equipment within which physical processes take place. The plant and

controller are connected via sensors and actuators. Sensors read data from the plant and pass

it to the control system. The controller then acts, or rather reacts on this input by producing

control values for the actuators, which in turn alter the �ow of the physical processes in the

plant.

Input from the sensors is supplied continuously. The controller detects events within the

data-�ow and consequently reacts on them with accordance to its algorithm. Therefore, unlike

transformational software, control algorithms operate inde�nitely, which for digital controllers

automatically implies cyclic execution. A general control algorithm is thus presented with the

following pattern: input of data about current state of controlled plant from sensors � data

processing and determination of required reaction � and data output, which changes current

state of the actuators and consequently the state of the plant.

Technological processes tend to involve multiple stages and the way control software reacts

to events, needs to change over time. Control algorithms have polymorphic behavior which

cannot be de�ned by the knowledge of inputs alone, but depends on a history of events.

As the plants are dynamical systems, control software has to function time-dependently, i. e.

accordingly to the plant dynamics. This means that control algorithms accommodate delays,

latencies, idles, pauses, watchdogs, timeouts and other notions connected to time intervals.

Another important feature of control algorithms is that they are almost always highly con-

current. The system needs to control multiple physical processes and communicate with a

variety of hardware peripherals � all at the same time. As physical processes in the plant

evolve independently, the sequence of events is arbitrary. Therefore any attempts to describe

the control system within a single monolithic block leads to a ñombinatorial explosion of com-

plexity [20]. Avoiding this requires the system to be split into a multitude of independent or

loosely coupled control �ows.

Lastly, we ought to mark the hierarchical structure of any complex control algorithm that

re�ects arti�cial nature of the external environment, the designer plan that is implemented in

architecture of the facilities [21]. Taking into account the previous remarks we can say that

the hierarchical structure consists of chains that are independently executed in parallel. This

88 Liakh T. V., Rozov A. S., Zyubin V. E. Reflex Language: a Practical Notation for Cyber-Physical Systems

means that divergence and convergence of control �ow are the base for a signi�cant part of

control algorithm. The algorithm structure can be arbitrary, irregular and ever closed on itself.

To summarize our analysis, we list the key features of control systems that we deem most

signi�cant for control software development:

∙ openness � i. e. communication with an external environment,

∙ cyclic and inde�nite execution,

∙ event-driven polymorphic behavior,

∙ operations with time intervals,

∙ concurrency,

∙ hierarchical structure.

3. Hyperprocess Model

From practice it is apparent that the Finite State Automaton (FSA) concept is particularly

promising for use in logical control. FSAs implicitly assume presence of an external environ-

ment, can execute cyclically and exhibit event-driven polymorphic behavior. However, our

analysis of control system features shows that the model also needs to support concurrency,

hierarchy and timed operations.

Furthermore, the FSA model is tailored for hardware implementation. This is due to histori-

cal circumstances of when the model was created [22]. Negative e�ects of this become apparent

even on the conceptual level, in the terms �input alphabet� and �output alphabet� which, while

simple and convenient for theoretical studies, appear awkward and obscure from a modern

programmer's standpoint. This leads to general misunderstanding and discourages usage of a

potentially very powerful concept [23]. E�ciency in practice requires that more conventional

programming concepts, like variables and statements be supported. With this in mind, we have

constructed an FSA-based model of control software, that is suitable for the domain of control

software development. Here we will outline its basic structure and key properties that are nec-

essary to lay a foundation for Re�ex language. A more detailed description of the hyperprocess

model can be found in [24].

The control software is represented as a hyperprocess � an ordered set of processes, which

are cyclically activated with the period 𝑇𝐻 . Mathematically, the hyperprocess is de�ned by a

triplet:

𝐻 =< 𝑇𝐻 , 𝑃, 𝑝1 >, where (1)

System Informatics (Системная информатика), No. 12 (2018) 89

∙ 𝑇𝐻 is the period of activation,

∙ 𝑃 is a �nite nonempty ordered set of processes (𝑃 = 𝑝1, 𝑝2, . . . , 𝑝𝑀 , where 𝑀 is the

number of processes),

∙ 𝑝1 is the �rst marked process, 𝑝1 ∈ 𝑃 .

At this point we can assume that a process is just a function, or a set of instructions (in

programming sense). Note that the word �ordered� refers to textual description of a program. It

should also be noted that a kind of perfect synchrony hypothesis [25] is assumed in this model.

In contrast to the original hypothesis, which states that neither computation nor communication

takes any physical time, we assume a relaxed statement to be true: the latency period for

calculation overhead is less or equal than the period of activation 𝑇𝐻 . This seems to be a less

idealistic and quite reasonable condition for software implementation.

A process denotes a polymorphic subroutine � it is a set of mutually exclusive subroutines

(i.e. blocks of sequential program code) which is handled as a uni�ed entity. We will further

refer to these subroutines as process state functions. For any cycle of hyperprocess activation,

each process is reduced to one of its state functions as determined by the current state of

that process. That state function is called the current function of the process and provides

instructions to be executed during that hyperprocess activation. In particular, it can contain

instructions that change the state of the process for the next cycle. State functions containing

no instructions are referred to as passive and correspond to inactive states of the process. Each

process also keeps track of how many hyperprocess cycles it has spent in its current state.

Formally, 𝑖-th process is a quintuple

𝑝𝑖 =< 𝐹𝑖, 𝐹
𝑝
𝑖 , 𝑓

1
𝑖 , 𝑓

𝑐𝑢𝑟
𝑖 , 𝑇𝑖 >, where (2)

∙ 𝑝𝑖 ∈ 𝐻, 𝑖 = 1, 2, . . . ,𝑀 ,

∙ 𝐹𝑖 is a set of mutually exclusive functions,

∙ 𝐹 𝑝
𝑖 is a set of mutually exclusive passive functions, 𝐹 𝑝

𝑖 ⊂ 𝐹𝑖,

∙ 𝑓 1
𝑖 is the �rst function (or marked active function), (𝑓 1

𝑖 ∈ 𝐹𝑖) ∧ (𝑓 1
𝑖 /∈ 𝐹 𝑝

𝑖),

∙ 𝑓 𝑐𝑢𝑟
𝑖 is the current function, 𝑓 𝑐𝑢𝑟

𝑖 ∈ 𝐹𝑖,

∙ 𝑇𝑖 is the current time.

In programming, particularly in C, the term function is equivalent to a subroutine � a set of

instructions or statements, that specify mathematical calculations, conditional actions etc. In

the hyperprocess model we rather prefer to accentuate the event-driven and reactive features of

the model. A state function is therefore de�ned as a set of events and reactions to the events.

90 Liakh T. V., Rozov A. S., Zyubin V. E. Reflex Language: a Practical Notation for Cyber-Physical Systems

Formally, 𝑗-th functions of 𝑖-th process is a twain

𝑓𝑗𝑖 =< 𝑋𝑗𝑖, 𝑌𝑗𝑖 >, where (3)

∙ 𝑋𝑗𝑖 is a set of events,

∙ 𝑌𝑗𝑖 is a set of reactions.

As events we consider any changes or superpositions of changes inside or outside the hyper-

process that are of importance to the control algorithm. The event is connected to a reaction

it stimulates. Reactions are superpositions of actions, including calculations, change of output

values, state transitions, communication with other processes, etc. A state with no events has

has no reactions:

(𝑋𝑗𝑖 = ∅) ⇒ (𝑌𝑗𝑖 = ∅). (4)

Passive functions can then be de�ned as follows in terms of events and reactions:

(𝑓𝑗𝑖 ∈ 𝐹 𝑝
𝑖) ⇔ (𝑋𝑗𝑖 = ∅). (5)

In essence, the process concept is a modi�cation of the FSA model. The input and output

alphabets have been removed and states of automaton along with its transition relation have

been replaced with state functions. Transitions between states are part of the instructions

within state functions. The input and output alphabets have been replaced with events and

reactions. The transition relation of automaton is spread across state functions and expressed

with a special reaction:

𝑠𝑒𝑡_𝑠𝑡𝑎𝑡𝑒(𝑝𝑖, 𝑓
𝑗
𝑖) ≡ (𝑓 𝑐𝑢𝑟

𝑖 := 𝑓 𝑗
𝑖 , 𝑇𝑖 := 0).

Thus, the original FSA model was preserved within the process model. Describing software

with multiple automata provides logically parallel execution with granularity of the functions.

The hyperprocess execution can be described in a following way: the hyperprocess is cyclically

activated with a period 𝑇𝐻 . upon each activation the current state function 𝑓 𝑐𝑢𝑟
𝑖 for each process

𝑝𝑖 ∈ 𝑃 is executed. With each activation, the process time 𝑇𝑖 for the process is incremented.

Execution of a state function consists of sequentially testing for each of its monitored events

and executing corresponding reactions for events that are detected.

To provide means for time-tracking and communication between processes, special events

and reactions are de�ned. A process can check whether another process is in a passive state:

𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝑝𝑖) ⇔ (𝑓 𝑐𝑢𝑟
𝑖 ∈ 𝐹 𝑝

𝑖).

For time tracking purposes, a timeout event can be monitored:

𝑡𝑖𝑚𝑒𝑜𝑢𝑡(𝑝𝑖, 𝑇𝑡𝑖𝑚𝑒𝑜𝑢𝑡) ⇔ (𝑇𝑖 > 𝑇𝑡𝑖𝑚𝑒𝑜𝑢𝑡).

This event is triggered once the process 𝑝𝑖 has been executing with the same state function

System Informatics (Системная информатика), No. 12 (2018) 91

for a number of hyperprocess cycles given by 𝑇𝑡𝑖𝑚𝑒𝑜𝑢𝑡. To allow divergence and convergence of

control �ow, processes can start and stop other processes:

𝑠𝑡𝑎𝑟𝑡(𝑝𝑖) ≡ (𝑓 𝑐𝑢𝑟
𝑖 := 𝑓 1

𝑖 , 𝑇𝑖 := 0),

𝑠𝑡𝑜𝑝(𝑝𝑖) ≡ (𝑓 𝑐𝑢𝑟
𝑖 := 𝑓 𝑠𝑡𝑜𝑝

𝑖), where 𝑓 𝑠𝑡𝑜𝑝
𝑖 ∈ 𝐹 𝑝

𝑖 .

These two reactions in conjunction with the 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 event facilitate arrangement of the pro-

cesses into a hierarchic structure, with higher level processes starting lower-level processes

being a rough equivalence of calling subroutines in procedural programming. With this model

we therefore have preserved the original cyclic, event-driven and polymorphic nature of the

FSA model, and extended it to support concurrency, hierarchy and time tracking.

4. Introduction to Reflex Syntax

The hyperprocess model presented above, underlies the Re�ex programming language, which

is a dialect of the C programming language. The C language has been chosen for better learn-

ability as many mainstream programming languages nowadays have C-like syntax. Additional

constructs have been introduced for controlling processes and tracking time intervals. Two kinds

of passive functions are used: the STOP-function is for a normal �nishing of the process, and

the ERROR-function is to indicate an abnormal �nish. Re�ex also provides constructs for link-

ing internal software variables to physical I/O signals. The direct and inverse transformations

between registers of I/O modules and internal variables are automated.

Re�ex syntax is demonstrated here using a simple example of a program controlling a hand

dryer like those often found in public restrooms (Listing 1). A formal Re�ex syntax de�nition

in EBNF can be found in Appendix A.

Here, the program uses input from an IR sensor, indicating presence of hands under the dryer

and controls the fan and heater with a joint output signal. The basic requirement is that the

dryer is on while hands are present and turns o� automatically otherwise. As the person using

the dryer rubs and turns their hands, the signal from the binary IR sensor will pulse between

"on" and "o�". To avoid erratic toggling of the dryer heater and fan, the program should not

react to this switching and the actuators should only be turned o� once the sensor signal is a

steady "o�". The algorithm can meet such requirement only by measuring the duration of the

o� state of the sensor. In this case, a duration longer than a certain given value (for example,

1 s) would be regarded as the "hands removed" event.

92 Liakh T. V., Rozov A. S., Zyubin V. E. Reflex Language: a Practical Notation for Cyber-Physical Systems

PROGR HandDryerController {
TACT 100;
CONST ON 1;
CONST OFF 0;
/* direction , name , address , offset , size of the port */
INPUT SENSOR_INPUT_PORT 0 0 8; /*IR sensor input port*/
OUTPUT ACTUATOR_OUTPUT_PORT 1 0 8; /* output to heater and fan*/
PROC Init {

BOOL S_HANDS_UNDER_DRYER = {SENSOR_INPUT_PORT [1]} FOR ALL;
BOOL C_TURN_ON_DRYER = {ACTUATOR_OUTPUT_PORT [1]} FOR ALL;
STATE Waiting {

IF (S_HANDS_UNDER_DRYER == ON) {
C_TURN_ON_DRYER = ON;
SET NEXT;

}
ELSE C_TURN_ON_DRYER = OFF;

}
STATE Drying {

IF (S_HANDS_UNDER_DRYER == ON) RESET TIMEOUT;
TIMEOUT 10 { SET STATE Waiting; }

}
} /* \PROC */

} /* \PROGRAM */

Listing 1: Hand dryer example in Re�ex

General program structure. A Re�ex program is an aggregate of concurrently running

communicating processes de�ned in textual form with the PROC keyword:

PROC <process name > { <process body > }

The process that is de�ned �rst in program text is the process 𝑝1 that is initially in active state

upon start of the program.

The TACT directive at the top sets the hyperprocess activation period 𝑇𝐻 speci�ed in mil-

liseconds.

Main part of the process body is a list of state function de�nitions:

STATE <state name > { <state body > }

The �rst de�ned state in process body corresponds to it starting state 𝑓 1
𝑖 into which the process

is transitioned by a START PROC instruction (or initially for 𝑝1). Passive states STOP and ERROR

are not explicitly de�ned in the program.

Statements. A state body is de�ned with a sequential block of code, that includes statements

like expression calculations (this include assignments), C-like selection statements IF/ELSE and

SWITCH that de�ne events and their corresponding reactions, process control statements and one

optional timeout statement.

The syntax for the selection statements is very similar to that in C:

System Informatics (Системная информатика), No. 12 (2018) 93

IF (<expression >) <statement > ELSE <statement >

Each of the <statement> blocks here can either be a single, semicolon terminated statement,

or a compound statement enclosed in braces.The ELSE part is optional. Nested IFs are sup-

ported, i.e. each of the <statements> blocks above can in turn contain selection statements,

much like in C language. The C-like SWITCH statement has also been included in Re�ex:

SWITCH(<expression >) {
CASE <value >:

<statement >
...
DEFAULT:

<statement >
}

Re�ex-speci�c process control constructs include state transitions, control statements and

activity predicates that can be used in expressions. State transitions set the process state for

the next activation cycle:

SET STATE <state name >;

A reserved keyword NEXT can be used here in lieu of explicit state name to denote a transition

to the state that is de�ned next to the current along the text.

The START/STOP/ERROR statements allow processes to start/stop other processes and to stop

themselves - either normally or in error state. These statements are responsible for divergence

and convergence of control �ow:

START PROC <process name >;
STOP PROC <process name >;
STOP;
ERROR;

To provide means for tracking time, timeout statements have been introduced in Re�ex:

TIMEOUT <value in hyperprocess clocks > <statement >

This statement can only be used once in a state function and should then be the last

statement in the state body. It allows to specify a reaction to the event of the process spending

more than the speci�ed amount of time in its current state. It is worth noting that though

the timeout value here is speci�ed in hyperprocess clocks and so the accuracy depends on the

hyperprocess activation period 𝑇𝐻 de�ned with the TACT directive at the top of the program

text.

One use of timeouts is to implement a non-blocking delay, but a more typical application is for

when a process waits for some external event, and that event not arriving withing a reasonable

time interval would mean a malfunction of external components. Specifying a timeout serves as

94 Liakh T. V., Rozov A. S., Zyubin V. E. Reflex Language: a Practical Notation for Cyber-Physical Systems

a safety mechanism to prevent the process from locking in the waiting state forever, not unlike

hardware watchdogs found in microcontrollers. However, it is often the case that some other

event can signify that the system is still functioning normally, and the process can stay in its

current state for more time. In this situation the RESET TIMEOUT; statement can be used.

Expressions. Expressions in Re�ex can be used in conditions for IF or SWITCH selection

statements or in expression statements:

<expression >;

A typical example of this kind of expression statement is assignment of value to a variable.

Re�ex supports most of expressions found in C, including assignments, comparisons, arithmetic,

bitwise and logical operations.

One type of expressions that is new in Re�ex is the process activity check predicates. Pro-

cesses are able to check whether other processes are in their active or passive states using the

selection statement in conjunction with ACTIVE/PASSIVE predicates, e.g.:

IF (PROC <process name > IN STATE ACTIVE) { ... }

In the above example, the IF condition will be satis�ed if the process at question is currently

in any state other than STOP and ERROR.

Ports and variables. The process body can contain variable de�nitions with port bindings

and scope directives:

<type > <variable name > = <port binding > <scope directive >;

Supported types are BOOL for Boolean values as well as INT, SHORT, LONG, FLOAT and DOUBLE

that behave the same way as in C. The FOR ALL scope directive is to indicate that this variable

can be used by any processes in the program. Port binding makes the variable being read into

from an input port or written into the port if that port is de�ned as output. Ports used in the

program are de�ned before the process de�nitions in the following format:

<direction > <port name > <base address > <offset > <size in bits >;

Re�ex also supports constant de�nitions:

CONST <constant name > <constant value >;

Supported types for constant values here are the same as for variables. Unnamed constants

can also be used in expressions, though it is generally deemed a bad practice in programming.

System Informatics (Системная информатика), No. 12 (2018) 95

5. Translational Semantics

Semantics of a programming language can be preserved when that language is translated into

another (target) programming language [26]. This is especially valuable if the target language

is widely used and its semantics are well-known and a�xed in standards. A translator has

been implemented, that parses programs written in Re�ex and produces C code, that can

consequently be compiled into executable code for the target platform. C has been chosen

as the target language for two reasons. Firstly, C served as the basis for Re�ex, and many

lower-level Re�ex syntax elements have the same meaning as their identical C counterparts.

Secondly, the C language is widely spread, used across many application domains and can be

easily compiled for almost any known computational platform, thus providing cross-platform

compatibility. The semantics of Re�ex is therefore de�ned by this translation and here we use it

to demonstrate the meaning of Re�ex programs, by providing equivalent C code for key Re�ex

constructs.

Structure and Execution of an Equivalent C Program

The states of all processes are stored in an array of the following structure:

struct StateWord{
unsigned long T; /*Ticks spent without a state change */
unsigned char cur_state; /*Index of current state*/

}ProcStates[PROC_NUM]; /*Array of process states */
#define STATE_OF_ERROR 254
#define STATE_OF_STOP 255

Listing 2: State word structure

Here T corresponds to time 𝑇𝑖 in the process model and cur_state is the index of current state

function: 𝑓 𝑐𝑢𝑟
𝑖 = 𝑓 𝑗

𝑖 ⇒ 𝑗 − 1 = cur_state. The �rst state function 𝑓 1
𝑖 has an index of 0 and

indices of special states stop and error are de�ned as the last two indices in the range. Note

that cur_state is 8-bit here, as typical process in practice has 5 states only and few processes

need more than 10 states.

Upon start, the program performs platform-dependent initialization, including that of the

time service, which tracks the activation period 𝑇𝐻 . Process states are also initialized: all times

are set to zero, and all state indices are set to STOP, except for the �rst process, which is set to

be in its �rst state. After that the program runs in an in�nite loop, activating the hyperprocess

with period 𝑇𝐻 , speci�ed by the TACT directive (Listing3). In the presented implementation, the

time service is external to Re�ex program and its interface is comprised of the TH_Elapsed �ag.

96 Liakh T. V., Rozov A. S., Zyubin V. E. Reflex Language: a Practical Notation for Cyber-Physical Systems

Alternative implementations could have the in�nite loop be empty and hyperprocess activation

placed inside a timer interrupt service routine.

void main (void){
SysInit (); /* Platform specific code*/
InitProcesses (); /*Set p1 to start , the rest to STOP*/
for (;;){ /* Indefinite cycic execution */

if(TH_Elapsed){/* Activation period TH*/
TH_Elapsed = 0;
HyperProcess (); /* Activate hyperprocess */

}
}

}

Listing 3: Program execution

When activated, the hyperprocess reads and stores all used input port values, consequently

executes all processes, writes all output port values that have been changed and, �nally, in-

crements time counters of all processes. Together with the previous listing, this makes up a

simple round-robin cooperative concurrency algorithm. The reasons behind Input and Output

functions are discussed later in the text. IncrementProcTicks here increments the T values in

the ProcStates array for all processes. These values are further used in timeout statements.

void HyperProcess (void){
Input(); /*Read and store input port values */
Process0 (); /* Execute first process */
Process1 (); /* Execute second process */
...
ProcessN (); /* Execute last process */
Output (); /* Output port values that have changed */
IncrementProcTicks (); /* Increase all T values by 1*/

}

Listing 4: Hyperprocess execution

Below is the equivalent C code for process Init from the hand dryer example demonstrated

in 4. It uses a classic switch-style implementation of a �nite state automaton. Another common

FSA implementation in C involves tabular representation of the state machine with function

pointers used for state functions. However, we �nd that the switch-based version is simpler,

provides a more readable C-code and causes less overhead, especially with a signi�cantly limited

stack size. Resulting C code could be made even more readable by using enumerators for process

and state indices.

void Process0 (void) { /* Process Init*/
switch (ProcStates [0]. cur_state) {

case 0: /*State Waiting */

System Informatics (Системная информатика), No. 12 (2018) 97

if (P0V0 == C_0) { /*IF(S_HANDS_UNDER_DRYER == O)*/
P0V1 [1] = C_0; /* C_TURN_ON_DRYER = ON;*/
Set_State(0, 1); /*SET NEXT;*/

}
else P0V1 [1] = C_1; /* C_TURN_ON_DRYER = OFF;*/
break;

case 1: /*State Drying */
if (P0V0 == C_0) /*IF(S_HANDS_UNDER_DRYER == ON)*/

Set_State(0, 1); /*RESET TIMEOUT;*/
if (Timeout(0, 12)) /* TIMEOUT 12*/

Set_State(0, 0); /*SET STATE Waiting */
break;

default:
break;

}
}

Listing 5: Example of process execution

Semantics of Special Control Statements and Expressions

Many statements and expressions de�ned in Re�ex, are borrowed from C along with their

semantics. Hence, out focus is on those constructs that are unique to Re�ex and not present in

C. Here we de�ne the semantics of specialized constructs that are necessary for process func-

tioning and inter-process communication, namely the state transition, the start/stop/restart

operators, the timeout statement, and the active/passive expressions.

Given this code is found inside a state function of process 𝑝𝑖, state 𝑆 has index 𝑗 and process

𝑃 has index 𝑘, and statement <RS> translates to statement <CS> in the resulting code, the

following translation rules apply for specialized Re�ex statements and logical expressions:

SET STATE s; →

⎧⎨⎩ ProcStates[i].cur_state = j;

ProcStates[i].T = 0;

RESTART; →

⎧⎨⎩ ProcStates[i].cur_state = 0;

ProcStates[i].T = 0;

START PROC P; →

⎧⎨⎩ ProcStates[k].cur_state = 0;

ProcStates[k].T = 0;

STOP PROC P; → ProcStates[k].cur_state = STATE_OF_STOP;

STOP; → ProcStates[i].cur_state = STATE_OF_STOP;

ERROR; → ProcStates[i].cur_state = STATE_OF_ERROR;

RESET TIMEOUT; → ProcStates[i].T = 0;

TIMEOUT N <RS> → IF(ProcStates[i].T > N) <CS>

PROC P IN STATE ACTIVE ⇔

⎧⎨⎩ ProcStates[i].cur_state != STATE_OF_STOP &&

ProcStates[i].cur_state != STATE_OF_ERROR

98 Liakh T. V., Rozov A. S., Zyubin V. E. Reflex Language: a Practical Notation for Cyber-Physical Systems

PROC P IN STATE PASSIVE ⇔

⎧⎨⎩ ProcStates[i].cur_state == STATE_OF_STOP ||

ProcStates[i].cur_state == STATE_OF_ERROR

Variables and Ports So far we have de�ned semantics for most syntax constructs that are

new in Re�ex, i.e. not present in C. One important point that has been left out so far, is how

Re�ex treats variables that are associated with I/O ports. In our hand dryer example we have

two variables associated with I/O ports. The input variable S_HANDS_UNDER_DRYER contains the

binary value from the IR sensor and the output variable C_TURN_ON_DRYER is written by the

program to control the joint fan/heater actuator. While all internal variables are treated in

Re�ex the same way as they would be in C, variables bound to ports have a somewhat di�erent

semantics.

For input variables, their value is read from the corresponding bit of a corresponding port in

the Input function at the start of hyperprocess execution (see Listing 4) and cannot be modi�ed

during the hyperprocess execution.

As for the output variables, their values are read in the Input function as well, but are

stored in a double-bu�ered manner, i.e. each value is stored in two instances, both used

when evaluating and executing expressions. One instance is only used in read operations and

maintains its initial value throughout the hyperprocess execution, so that each process reads

the same value, regardless of their order. The second instance stores the modi�ed value, used

in write operations. This can be seen in Listing 5: variable C_TURN_ON_DRYER is translated into

an array with two values char P0V1[2], and only the second value P0V1[1] is used in write

operations. At the end of hyperprocess execution, the Output function is called, that checks

what output values have been modi�ed and stores those as corresponding bits in the output

ports.

6. Practical Example

The Re�ex language has passed strong examination in several complex projects. One such

application was in an automated control system for a single crystal growth furnace [27]. The

task involved typical industrial environment and equipment with distributed functioning, in-

telligent sensors, four-coordinate motion subsystem, actuators, gas-vacuum subsystem with

doubled pumps, cooling subsystem, heater subsystem, conventional logic and analog I/O mod-

ules, complex algorithm with active reaction on faults. A Micro PC with a CPU685E, 300 MHz

[28] processor has been used as computational platform.

System Informatics (Системная информатика), No. 12 (2018) 99

Ðèñ. 1: Single Crystal Growth Furnace

The control system has been implemented with all control logic written in Re�ex. The

following results have been obtained:

∙ the control algorithm has naturally �t the hyperprocess model with a surprisingly large

quantity of concurrent processes (more than 760),

∙ low time consumption for process execution has been logged (2 microseconds per process),

∙ at peak load, full cycle of hyperprocess execution took 8 milliseconds (about 10 microsec-

onds a process),

∙ the Re�ex language showed to be easily understood by project members who were previ-

ously not familiar with programming,

∙ locality of change was preserved throughout the whole development of the system,

Overall, the language has received favorable comments from programmers, and what is more,

very good responses have been received from control system developers with strong background

in the IEC 61131-3 standard. The language has been praised for being more �exible and

comfortable as compared to the IEC languages. The �exibility of the approach and Re�ex

language was recently used in the project on dynamic veri�cation of control programs [29].

100 Liakh T. V., Rozov A. S., Zyubin V. E. Reflex Language: a Practical Notation for Cyber-Physical Systems

7. Conclusion

In this work we have presented a novel programming language Re�ex that provides a prac-

tical notation for digital control systems. The hyperprocess model underlying Re�ex takes

is compliant with primary features of control software � cyclic execution, event-driven and

polymorphic behavior, concurrency, etc. The language syntax is similar to C and provides

time-interval operations as well as means for inter-process communication that encourage hier-

archical organization of control software. A translator from Re�ex to C has been implemented

and semantics of key Re�ex constructs has been demonstrated based on this translation.

The language has been successfully used in multiple industrial applications and demon-

strated promising qualities, producing easily readable, maintainable code and overall robust

and dependable software.

Further direction of work would be to research applicability of veri�cation methods to soft-

ware speci�ed in Re�ex.

References

1. Hoare C. A. R. Communicating Sequential Processes. Prentice Hall, 1985. – 256 p.

2. Harel D. Statecharts: a Visual Formalism for Complex Systems. / In: Science of Computer Pro-

gramming 8. Elsevier Science Publishers B. V., North-Holland. 1987. P. 231–274.

3. Lynch N., Tuttle M. An Introduction to Input/Output Automata // CWI Quarterly. 1989. No 2.

P. 219–246.

4. Berry G. The Foundations of Esterel // In: Plotkin, G., Stirling, C., and Tofte, M. (eds.) Proof,

Language and Interaction: Essays in Honour of Robin Milner, MIT Press, Foundations of Com-

puting Series. 2000. P. 425–454.

5. Milner R. Communication and Concurrency. Series in Computer Science. Prentice Hall, 1989.

– 300 p.

6. Shoshmina I. V. Developing formal temporal requirements to distributed program systems //

System Informatics. 2016. No. 8 P. 33–42.

7. Davis J., Schneider S. An Introduction to Timed CSP // PRG-75, PRG Programming Research

Group Oxford. 1989.

8. Chen L., Anderson S., and Moller F. A Timed Calculus of Communicating Systems // Technical

Report LFCS-90-127, University of Edinburgh. 1990.

9. Kaynar D. K., Lynch N., Segala R., Vaandrager F. Timed I/O Automata: A Mathematical Frame-

work for Modeling and Analyzing Real-Time Systems // 24th IEEE International Real-Time Sys-

tems Symposium (RTSS’03), IEEE Computer Society Cancun, Mexico. 2003). P. 166–177.

10. Staroletov S. Design and Implementation a Software for Water Purification with Using Automata

System Informatics (Системная информатика), No. 12 (2018) 101

Approach and Specification Based Analysis // System Informatics. 2017. No10. P. 33–44.

11. Shabaldina N., Gromov M. Using BALM-II for deriving parallel composition of timed finite state

machines with outputs delays and timeouts: work-in-progress // System Informatics. 2016. No. 8

P. 33–42.

12. Abadi M., Lamport L. An Old-fashioned Recipe for Real Time // ACM Transactions on Program-

ming Languages and Systems, Vol. 16 (5), ACM Press New York, Sept 1995. P. 1543–1571.

13. IEC 61131-3: Programmable controllers Part 3: Programming languages, International Elec-

trotechnical Commission Std., Rev. 2.0, 2003.

14. Basile F., Chiacchio P., and Gerbasio D. On the Implementation of Industrial Automation Systems

Based on PLC // IEEE Trans. on Automation Science and Engineering, Oct 2013, vol. 10, no. 4,

pp. 990–1003.

15. Crater K. C. When Technology Standards Become Counterproductive. Control Technology Corpo-

ration. 1992.

16. Thramboulidis K. and Frey G. An MDD Process for IEC 61131-based Industrial Automation Sys-

tems // in 16th IEEE International Conference on Emerging Technologies and Factory Automation

(ETFA11), September 5-9, 2011, Toulouse, France, 2011. P. 1–8

17. IEC 61499: Function Blocks for Industrial Process Measurement andControl Systems, Parts 1 – 4,

International Electrotechnical Commission Std., Rev. 1.0, 2004/2005.

18. Wagner F., Schmuki R., Wagner T., and Wolstenholme P. Modeling Software with Finite State

Machines.Boston, MA, USA: Auerbach Publications, 2006.

19. Malyshkin V.E. Parallel computing technologies 2016 // The Journal of Supercomputing, Vol. 73,

Iss. 2, Springer, 2017. P. 607–608.

20. Zyubin V.E. Multicore Processors and Programming. Open Systems J., N7-8. 2005. P. 12–19 (in

Russian).

21. Zyubin V.E. Text and Graphics: What Language Does Programmer Need? // Open Systems J.,

2004. No 1. P. 54–58 (in Russian).

22. Glushkov V. M. The Synthesis of Digital Automata. PhisMathGis, Moscow. 1962 (in Russian)

23. Wagner F., Wolstenholme P.: Misunderstandings about State Machines // IEE J. Computing and

Control Engineering, Vol. 16. No 4, Aug 2004. P. 45.

24. Zyubin V. E. Hyper-automaton: A Model of Control Algorithms // in IEEE International Siberian

Conference on Control and Communications (SIBCON-2007). Proceedings of the IEEE Interna-

tional Siberian Conference on Control and Communications, O. Stukach, Ed. Tomsk, Russia: IEEE,

2007, pp. 51–57. Available: https://doi.org/10.1109/SIBCON.2007.371297.

25. Kof L., Schätz B. Combining Aspects of Reactive Systems // In: Proc. of Andrei Ershov Fifth Int.

Conf. Perspectives of System Informatics. Novosibirsk. 2003. P. 239–243.

26. Slonneger K. and Kurtz B. L. Formal syntax and semantics of programming languages / Addison-

Wesley Reading, 1995, – 340 p.

27. Lubkov A. A., Zyubin V. E., Kurochkin A. V., Budnikov K. I. A Control System Architecture

for a Single Crystal Growing Furnace.// In: Proc. of the Second IASTED Int. Conf. Automation,

102 Liakh T. V., Rozov A. S., Zyubin V. E. Reflex Language: a Practical Notation for Cyber-Physical Systems

Control, and Applications. 2005. P. 166–169.

28. CPU686E. CPU Card. Technical Specifications. Fastwel Inc. 2005.

29. Liakh T., Zyubin V. Model Checking of Industrial Control Algorithms in Combination with Virtual

Objects // System Informatics. 2016. No 8. P. 11–20. (In Russian).

A. Appendix A. Reflex formal syntax in EBNF

program = "PROGR", id, "{", [tact], [{ const_or_enum_spec }],
[{ function_decl }], [{ register_spec }], {process_spec},
"}";

tact = "TACT", int_num , ";";

const_or_enum_spec = const_spec | enumerator_spec;
const_spec = "CONST", const_id , const_exp_body , ";";
enumerator_spec = "ENUM", "{", enumerator_list , "}";
enumerator_list = enumerator | (enumerator , ",", enumerator_list);
enumerator = const_id | (const_id , "=", const_exp_body);
const_exp_body = const_pref_term |

(const_pref_term , {const_infix , const_pref_term });
const_pref_term = [const_prefix], const_term;
const_prefix = "~" | "!" | "+" | "-";
const_infix = "+" | "-" | "*" | "/" | "%" | "<<" | ">>" | "&" |

"^" | "|" | "&&" | "||";
const_term = number | const_id | "(", const_exp_body ,")" ;
const_id = id;

function_decl = c_type_spec , func_id , "(", c_type_spec_list , ")", ";";
c_type_spec_list = c_type_spec | (c_type_spec , ",", c_type_spec_list);
func_id = id;

register_spec = ("INPUT" | "OUTPUT "), reg_id , addr_1 , addr_2 ,
register_size;

addr_1 = int_num;
addr_2 = int_num;
register_size = "8" | "16";
reg_id = id;

process_spec = "PROC", proc_id , "{", [var_list], {func_state}, "}";
proc_id = id;
var_list = {var_spec | var_decl };
var_spec = (phys_var_spec | calc_var_spec),

visibility_spec , ";";
phys_var_spec = int_type_spec , var_id , "=",

"{", reg_bits_spec_list , "}";
reg_bits_spec_list = reg_bits_spec |

(reg_bits_spec , ",", reg_bits_spec_list);
reg_bits_spec = reg_id , "[", int_num , "]";
calc_var_spec = (c_type_spec | "BOOL"), var_id;
visibility_spec = "LOCAL" | ("FOR", "ALL") | ("FOR", proc_id_list);
proc_id_list = proc_id | (proc_id , "," , proc_id_list);

var_decl = "FROM", "PROC", proc_id , var_id_list , ";";
var_id_list = var_id | (var_id , ",", var_id_list);

func_state = "STATE", func_state_id , "{",
([func_state_body],timeout_react_spec) |

System Informatics (Системная информатика), No. 12 (2018) 103

timeout_react_spec , "}";
func_state_body = {react_spec };
react_spec = ";" | ("{", func_state_body , "}") | switch_spec |

event_react_spec | start_spec | stop_spec |
error_spec | loop_decl | set_cur_sf_spec |
restart_cur_proc_spec | reset_timer_spec |
var_equation;

switch_spec = "SWITCH", "(", event , ")", "{", {case_spec}, "}";
case_spec = "CASE", int_num , ":", func_state_body ,

["BREAK", ";"];

event_react_spec = event_react_body , [rev_event_react_body];
event_react_body = "IF", "(", event , ")", react_spec;

rev_event_react_body= "ELSE", react_spec;

start_spec = "START", proc_id , ";";
stop_spec = "STOP", [proc_id], ";";
error_spec = "ERROR", [proc_id], ";";
loop_decl = "LOOP", ";";
set_cur_sf_spec = "SET", ("STATE", func_state_id) | "NEXT", ";";
restart_cur_proc_spec = "RESTART", ";";
reset_timer_spec = "RESET", "TIMEOUT", ";";

var_equation = var_id , "=", event , ";");

event = var_pref_post_term |
var_pref_post_term , {var_infix , var_pref_post_term };

var_pref_post_term = var_prefix , term , [var_postfix];
var_prefix = [("~" | "!" | "++" | "--" | "+" | "-" | "*" | "&")],

["(", c_type_spec ,")"];
var_postfix = "++" | "--";
var_infix = "+" | "-" | "*" | "/" | "%" | "<<" | ">>" | "&" | "^" |

"|" | "&&" | "||" | "=" | "*=" | "/=" | "%=" | "+=" |
"-=" | "<<=", | ">>=" | "&=" | "^=" | "|=" | "<" | ">"|
"<=" | ">=" | "==" | "!=";

term = number | const_id | var_id | function |
situation | "(", event , ")";

function = func_id , "(", func_param_list , ")";
func_param_list = event | (event , {",", event});

situation = "PROC", proc_id , "IN", "STATE",
(func_state_id | "ACTIVE" | "PASSIVE ");

timeout_react_spec = "TIMEOUT", (number | const_id | var_id),
react_spec;

func_state_id = id;

var_id = id;

c_type_spec = "VOID" | "FLOAT" | "DOUBLE" |
([" SIGNED" | "UNSIGNED"],
("SHORT" | "INT" | "LONG"));

int_type_spec = "BOOL" | "SHORT" | "INT" | "LONG";
float_type_spec = "FLOAT" | "DOUBLE ";

id = letter , {letter | decimal_digit };

number = int_num | float_num;
int_num = octal_num | decimal_num | hex_num;

letter = ("A" ... "Z") | ("a" ... "z") | "_";

104 Liakh T. V., Rozov A. S., Zyubin V. E. Reflex Language: a Practical Notation for Cyber-Physical Systems

octal_num = "0", [{ octal_digit }], ["U" | "u"] | ["L" | "l"];
octal_digit = "0" ... "7";
decimal_num = (decimal_digit - "0"), [{ decimal_digit }], ["U" | "u"] |

["L" | "l"];
decimal_digit = octal_digit | "8" | "9";
hex_num = hex_prefix , {hex_digit}, ["U" | "u"] | ["L" | "l"];
hex_digit = decimal_digit | ("A" ... "F") | ("a" ... "f");
float_num = decimal_float_num | hex_float_num;

decimal_float_num = (fractional_part , [exponent_part], [float_suffix])|
(decimal_sequence , exponent_part , [float_suffix]);

hex_float_num = hex_prefix , (hex_fractional_part | hex_sequence),
bin_exponent_part , [float_suffix];

hex_prefix = "0x" | "0X";

fractional_part = ([decimal_sequence], ".", decimal_sequence) |
(decimal_sequence , ".");

exponent_part = ("e" | "E"), [sign], decimal_sequence;
sign = "+" | "-";

hex_fractional_part = ([hex_sequence], ".", hex_sequence) |
(hex_sequence , ".");

bin_exponent_part = ("p" | "P"), [sign], decimal_sequence;

hex_sequence = {hex_digit };
decimal_sequence = {decimal_digit };

float_suffix = "f" | "F" | "l" | "L";

Listing 6: Re�ex Grammar Speci�cation

	Introduction
	Specific Features of Control Software
	Hyperprocess Model
	Introduction to Reflex Syntax
	Translational Semantics
	Practical Example
	Conclusion
	References
	Appendix A. Reflex formal syntax in EBNF

