
System Informatics (Системная информатика), No. 5 (2015) 55

УДК 004.8

Kinds and language of conceptual transition systems∗

Anureev I.S. (Institute of Informatics Systems)

The language CTSL of specification of conceptual transition systems which are a formal-

ism for description of dynamic discrete systems on the basis of their conceptual structure

is proposed. The basic kinds of conceptual transition systems are considered. The basic

predefined elements and operations of the CTSL language are defined.

Keywords: transition systems, conceptual structures, ontologies, ontological elements,

conceptual transition systems, conceptuals, CTSL

1. Introduction

Development of formalisms, languages and tools for describing the conceptual structure of

various systems is an important problem of the modern knowledge industry. Description of

changes of the conceptual structure of the system when it functions is an another important

problem.

The formalism of description (specification) of systems – conceptual transition systems

(CTSs) – that solves these problems was proposed in [1]. To our knowledge, CTSs are the

only formalism which meets the following requirements (as is shown in [1]):

1. It describes the conceptual structure of the specified system.

2. It describes the content of the conceptual structure of the specified system, i. e. it

describes the specified system in the context of the conceptual structure.

3. It describes the change of the conceptual structure of the specified system.

4. It describes the change of the content of the conceptual structure of the specified system,

i. e. it describes the change of the specified system in the context of the conceptual

structure.

5. It is quite universal to specify typical ontological elements (concepts, attributes, concept

instances, relations, relation instances, individuals, types, domains, and so on.).

6. It provides a quite complete classification of ontological elements, including the determi-

nation of their new kinds and subkinds.

7. It is based on the conception ’state – transition’ of the usual transition systems, keeping

∗Partially supported by RFBR under grants 15-01-05974 and 15-07-04144.

56 Anureev I.S. Kinds and language of conceptual transition systems

their simplicity and universality and adding a conceptual ’filling’. This requirement is

important since the simplicity of determination of transition systems makes them an

universal formalism to describe the behavior of various systems (algorithms, programs,

software models, computer systems, and so on.).

8. It supports reflection of any order, i. e. allows to specify: the system (reflection of the

order 0), the specification of the system (reflection of the order 1), the specification of

the specification of the system (reflection of the order 2) and so on. Specifications of the

higher order (with reflection of the higher order) impose restrictions on the specifications

of the lower order (with reflection of the lower order).

Comparison of CTSs with the formalisms such that abstract state machines [2, 3], ontological

transition systems [5, 6] and domain-specific transition systems [7] which partially meet these

requirements was made in [1].

In contrast to abstract state machines [11, 12] and ontological transition systems [6], there is

no specification language which describes CTSs. The language CTSL (Conceptual Transition

System Language) of specification of CTSs is defined in this paper.

Contrary to state which has the detailed conceptual structure in CTSs, the transition relation

in CTSs is quite general. Kinds of CTSs which concretize the transition relation are considered

in this paper. They are defined in CTSL that thus describes concretizations of the transition

relation which are important in practice.

The paper has the following structure. The preliminary concepts and notation are given in

section 2. The main constructs of the CTSL language are described in section 3. The basic

kinds of CTSs, predefined elements and operations in CTSL are defined in sections 4, 5 and 6,

respectively.

2. Preliminaries

Let bool = {true, false}; int, nat and nat0 denote the sets of integers, natural numbers and

natural numbers with zero, respectively; obj, fun, set, lab, arg, and val denote sets of objects,

functions, sets, labels, function arguments and function values, respectively.

The names of the variables which take the values from the set with the name aw, where a

is a symbol, and w is a word, are denoted by ȧw, ȧw1, ȧw′ and so forth. For example, ṡet, ṡet1,

ṡet′ are the names of the variables which take the values from the set set. Depending on the

context, the name of a variable is interpreted as either the variable, or the value of the variable.

System Informatics (Системная информатика), No. 5 (2015) 57

Let sup(ḟun) and ω denote the support of ḟun and the indeterminate value of ḟun, respec-

tively.

Let ḟun(ȧrg1 ← v̇al1, . . ., ȧrgṅat ← v̇alṅat) denote the function ḟun′ such that ḟun′(ȧrg) =

ḟun(ȧrg), if ȧrg is distinct from ȧrg1, ..., ȧrgṅat, and ḟun′(ȧrgṅat′) = v̇alṅat′ , if 1 ≤ ṅat′ ≤ ṅat.

Let {ȧrg1:v̇al1, . . ., ȧrgṅat:v̇alṅat} denote the function ḟun such that

sup(ḟun) = {ȧrg1, . . ., ȧrgṅat}, and ḟun(ȧrg1) = v̇al1, ..., ḟun(ȧrgṅat) = v̇alṅat. The arguments

ȧrg1, ..., ȧrgṅat are pairwise distinct.

The terms used in the paper are context-dependent. Contexts have the formJȯbj1, . . ., ȯbjṅatK, where the embedded contexts ȯbj 1, ..., ȯbj ṅat have the form: l̇ab:ȯbj, l̇ab:

or ȯbj.

The context in which some embedded contexts are omitted is called a partial context. All

omitted embedded contexts are considered bound by the existential quantifier, unless otherwise

specified.

Let ȯbj Jȯbj1, . . ., ȯbjṅatK denote the object ȯbj in the context Jȯbj1, . . ., ȯbjṅatK.
Let cts denote a set of conceptual transition states [8]. Let ato, ele, eleStr, ordStr and sta

denote sets of atoms, elements, element structures, ordered structures and conceptual states inJċtsK.
Let samp, body, cond and var be sets of elements called samples, bodies, conditions and

variables, respectively. Let varSet be a set of unsorted structures. Elements of v̇arSet are

called variables.

3. The CTSL language

The CTSL language is a language of specification of CTSs. Atoms, elements and the tran-

sition relation are key notions of CTSL.

3.1. Atoms and elements

Atoms in CTSL represent atoms of CTSs which are specified by CTSL. An object ȯbj is

called an atom in CTSL, if

• either ȯbj is a sequence of Unicode symbols except for the whitespace symbols and the

symbols ", ’ }, }, (,), [,], :, ; and ,;

• or ȯbj has the form "ȯbj1", where ȯbj1 is a sequence of Unicode symbols in which each

occurrence of the character " is preceded by the symbol ’.

58 Anureev I.S. Kinds and language of conceptual transition systems

Elements in CTSL represent elements of CTSs which are specified by CTSL. They are defined

as in CTSs [1] except that the whitespace symbols and the semicolon are element delimiters

along with comma. For example, (ėle1, ėle2), (ėle1; ėle2) and (ėle1 ėle2) represent the same

element.

The definition of the transition relation in CTSL uses the notion of substitution.

3.2. Substitutions

A function ḟun ∈ ele → ele is called a substitution. Let sub be a set of substitutions.

A function subF ∈ ele → ele is called a substitution function in JṡubK, if the following

properties hold:

• if ėle ∈ sup(ṡub), then subFJṡubK(ėle) = ṡub(ėle);

• if ėle′ ∈ sup(ṡub), and ṡub(ėle′) = (ėle1, . . ., ėleṅat0), then
subFJṡubK(ėle .:: ėle′) = (subFJṡubK(ėle), ėle1, . . ., ėleṅat0));

• if ėle′ ∈ sup(ṡub), and ṡub(ėle′) /∈ ordStr ∪ {()}, then subFJṡubK(ėle .:: ėle′) = VωW;

• if ėle′ ∈ sup(ṡub), and ṡub(ėle′) = (ėle1, . . ., ėleṅat0), then
subFJṡubK(ėle′ ::. ėle) = (ėle1, . . ., ėleṅat0), subFJṡubK(ėle));

• if ėle′ ∈ sup(ṡub), and ṡub(ėle′) /∈ ordStr ∪ {()}, then subFJṡubK(ėle′ ::. ėle) = VωW;

• if ėle′ ∈ sup(ṡub), ṡub(ėle′) = {ėle1, . . ., ėleṅat0}, and subFJṡubK(ėle), ėle1, . . ., ėleṅat0
are pairwise distinct, then subFJṡubK(ėle .::u ėle′) = {subFJṡubK(ėle), ėle1, . . ., ėleṅat0};

• if ėle′ ∈ sup(ṡub), and ṡub(ėle′) /∈ unoStr ∪ {{}}, then subFJṡubK(ėle .::u ėle′) = VωW;

• if ėle′ ∈ sup(ṡub), ṡub(ėle′) = {ėle1, . . ., ėleṅat0}, and subFJṡubK(ėle), ėle1, . . ., ėleṅat0
are not pairwise distinct, then subFJṡubK(ėle .::u ėle′) = VωW;

• if ȧto /∈ sup(ṡub), then subFJṡubK(ȧto) = ȧto;

• if () /∈ sup(ṡub), then subFJṡubK(()) = ();

• if {} /∈ sup(ṡub), then subFJṡubK({}) = {};

• if ȯrdStr ∈ sup(ṡub), and ȯrdStr has the form (ėle1, . . ., ėleṅat), then
subFJṡubK(ȯrdStr) = (subFJṡubK(ėle1), . . ., subFJṡubK(ėleṅat));

• if u̇noStr ∈ sup(ṡub), and u̇noStr has the form {ėle1, . . ., ėleṅat}, then
subFJṡubK(u̇noStr) = {subFJṡubK(ėle1), . . ., subFJṡubK(ėleṅat)};

• if l̇abStr ∈ sup(ṡub), and l̇abStr has the form {l̇ab1:ėle1, . . ., l̇abṅat:ėleṅat}, then
subFJṡubK(l̇abStr) =

{subFJṡubK(l̇ab1):subFJṡubK(ėle1), . . ., subFJṡubK(l̇abṅat):subFJṡubK(ėleṅat)}.
An element ėle is called an instance in Jėle′, ṡubK, if subFJṡubK(ėle′) = ėle. An element ėle′

is called a sample in Jėle, ṡubK, if subFJṡubK(ėle′) = ėle. Let samp be a set of samples.

System Informatics (Системная информатика), No. 5 (2015) 59

3.3. The transition relation

The transition relation in CTSL is defined on programs. Programs in CTSL include macros

and the executable element. Macros are used to simplify the representation of the executable

element. The notion of the executable element is defined in section 4.2.

An element ėle of the form (macro v̇ar ḃody) is called a macro. The elements v̇ar and ḃody

are called a variable and a body in JėleK. Let macro be a set of macros.

An element ėle of the form (prog ṁacro1 . . . ṁacroṅat0 ėle′) is called a program in CTSL.

The element ėle′ is called an executable element in JėleK. Let prog be a set of programs in

CTSL.

A function traRel ∈ prog × tra → bool is called the transition relation in prog:, if

traRel(ṗrog, ṫra) if and only if either ṗrog has the form (prog ėle), and

traRel(ṫra(1)($exeEle ← ėle)), or ṗrog has the form
(prog (macro v̇ar ḃody) ṁacro1 . . . ṁacroṅat0 ėle),

and
traRel((prog subFJ{v̇ar:ḃody}K (ṁacro1) . . . subFJ{v̇ar:ḃody}K(ṁacroṅat0)

subFJ{v̇ar:ḃody}K(ėle)), ṫra).
The conceptual $exeEle is defined in section 4.2

4. Basic kinds of CTSs

Basic kinds of CTSs are defined in this section.

4.1. CTSs with transition values

A CTS with transition values is characterized by the fact that its transitions can return

values.

The conceptual (0:val) is called a transition value specifier. Let $val denote (0:val). An

element ėle is called a value in JṫraK, if traRel(ṫra), and ėle = ṫra(2)($val). Thus, the individual

val specifies a transition value. A transition ṫra returns a value ėle, if ėle is a value in JṫraK.
A conceptual ċon is called an exception, if ċon(1) = exception. Thus, the concept exception

specifies exceptions. Let exc be a set of exceptions. A transition ṫra returns (or generates) an

exception ėxc, if ėxc is a value in JṫraK. The element ėxc(0) specifies usually information about

the generated exception, and the elements ėxc(i̇nt), where i̇nt < 0, concretizes usually a kind

of this information. A transition ṫra is normally executed, if ṫra returns no exception.

60 Anureev I.S. Kinds and language of conceptual transition systems

A system ċts is called a CTS with transition values, if ṡta($val) ̸= ω for all sta such that sta

is admissible in JċtsK.
4.2. CTSs with executable elements

A CTS with executable elements is a CTS with transition values which is characterized by

the fact that its transitions are associated with executable elements, and executable elements

can return values.

A function traRel ∈ ele × tra → bool is called the transition relation in Jele:K. It specifies

transitions initiated by executable elements. An element ėle is executed in Jṫra, traRelJele:KK, if

traRelJele:K(ėle, ṫra). An element ėle is executed in Jṡta, traRelJele:KK, if there exists ṡta ′ such

that ėle is executed in J(ṡta, ṡta′), traRelJele:KK. An element ėle executes (initiates) a transition

ṫra, if ėle is executed in Jṫra, traRelJele:KK.
The conceptual (0:exeEle) is called an executable element specifier. Let $exeEle denote

(0:exeEle). Thus, the individual exeEle specifies an executable element.

A CTS with transition values ċts is called a CTS in JtraRelJele:KK, if traRel(ṫra) if and only

if ṫra(1)($exeEle) ̸= ω, and

• either ṫra(1)($exeEle) is executed in Jṫra, traRelJele:KK,
• or ṫra(1)($exeEle) is not executed in Jṫra, traRelJele:KK, and

ṫra(2) = ṫra(1)($val ← (-1:unknownElement, 0:ėle, 1:exception)).
An element v̇al is called a value in Jėle, ṫraK, if ėle is executed in JṫraK, and v̇al is a value inJṫraK.
Executable elements in such CTSs can be partitioned into defined and predefined ones. In

this case, the transition relation traRelJexe:K is defined as the union of the transition relations

traRelJpredef:K and traRelJdef:K such that traRelJpredef:K, traRelJdef:K ∈ ele × tra → bool. An

element ėle is called predefined in JtraRelK, if there exists ṫra such that traRelJpredef:K(ėle, ṫra).

An element ėle is called defined in JtraRelK, if there exists ṫra such that traRelJdef:K(ėle, ṫra).

In the case of partitioning executable elements into predefined and defined ones, a CTS inJtraRelJele:KK is redefined as follows: traRel(ṫra) if and only if ṫra(1)($exeEle) ̸= ω, and

• ṫra(1)($exeEle) is executed in Jṫra, traRelJpredef:KK, or

• ṫra(1)($exeEle) is not executed in Jṫra, traRelJpredef:KK, and ṫra(1)($exeEle) is executed

in Jṫra, traRelJpredef:KK, or

• ṫra(1)($exeEle) is not executed in Jṫra, traRelJpredef:KK and Jṫra, traRelJdef:KK, and

ṫra(2) = ṫra(1)($val ← (-1:unknownElement, 0:ėle, 1:exception)).

System Informatics (Системная информатика), No. 5 (2015) 61

CTSs with executable elements can be used, for example, to specify abstract machines

of programming languages. In this case, executable elements are executable constructs of

programming languages.

4.3. CTSs with execution contexts

CTSs with execution contexts generalize CTSs with executable elements and transition

values. They are characterized by the fact that elements are executed in execution contexts,

and their values are stored in these contexts.

An element ėle is called an execution context in JṡtaK, if
ṡta((0:ėle, 1:executionContext)) ̸= ω.

Thus, the concept executionContext describes execution contexts. Let exeCont be a set of

execution contexts in JṡtaK
Specifiers of transition values and executable elements are redefined in CTSs with execution

contexts.

A conceptual (-1:val, 0:ėxeCont, 1:executionContext) is called a transition value specifier inJėxeContK. Let $val denote (-1:val, 0:ėxeCont, 1:executionContext). An element ėle is called a

value in Jṫra, ėxeContK, if traRel(ṫra), and ėle = ṫra(2)($val). Thus, the attribute val specifies

a transition value in execution contexts. A transition ṫra returns a value ėle in JėxeContK, if

ėle is a value in Jṫra, ėxeContK. An element v̇al is called a value in Jėle, ṫra, ėxeContK, if ėle is

executed in Jṫra, ėxeContK, and v̇al = ṫra(2)($val).

A transition ṫra returns (or generates) an exception ėxc in JexeContK, if ėxc is a value inJṫra, ėxeContK. A transition ṫra is normally executed in JexeContK, if ṫra returns no exception

in JexeContK.
A conceptual (-1:exeEle, 0:ėxeCont, 1:executionContext) is called an executable element

specifier in JexeContK. Let $exeEle denote (-1:exeEle, 0:ėxeCont, 1:executionContext). Thus,

the attribute exeEle specifies an executable element in execution contexts. The same element

can be executed in different execution contexts.

A function traRel ∈ ele × ele × tra → bool is called the transition relation in JexeCont:K.
It specifies transitions initiated by elements which are executed in execution contexts. An

element ėle is executed in Jṫra, ėxeContK, if traRelJexeCont:K(ėle, ėxeCont, ṫra). An element

ėle is executed in Jṡta, ėxeContK, if there exists ṡta such that ėle is executed in J(ṡta, ṡta′),

ėxeContK. An element ėle executes (initiates) a transition ṫra in JėxeContK, if ėle is executed

in Jṫra, ėxeContK.

62 Anureev I.S. Kinds and language of conceptual transition systems

A CTS ċts is called a CTS in JtraRelJexeCont:KK, if ṡta($val) ̸= ω for all ṡta and ėxeContJṡtaK
such that ṡta is admissible in JċtsK, and traRel(ṫra) if and only if there exists ėxeContJṡtaK
such that ṫra(1)($exeEle) ̸= ω, and either ṫra(1)($exeEle) is executed in Jṫra, ėxeContK, or

ṫra(1)($exeEle) is not executed in Jṫra, ėxeContK, and
ṫra(2) = ṫra(1)($val ← (-1:unknownElement, 0:ėle, 1:exception)).

4.4. CTSs with counters

CTSs with counters are CTS with executable elements and transition values which are

characterized by the fact that they can define named counters and generate new elements

based on them.

A conceptual (0:ėle, 1:counter) is called a counter specifier with name ėle. Let cou and nam

be sets of counter specifiers and their names, respectively. An element ċou is called a counter

in ṡta, if ṡta(ċou) ̸= ω. Thus, the concept counter defines counters. The element ṡta(ċou) is

called a value in Jcou:ċou, ṡtaK.
An element ċon is called generated in JċouK, if ċon has the form (0:ṅat, 1:ṅam), and ṅam is

a name of ċou. Thus, the name of a counter is a concept for elements generated by this counter.

An element ėle of the form (newCount ṅam) is called an element generator in Jconc:ṅamK
and defined as follows: traRel(ėle, ṫra) if and only if either ṫra(1)(ċou) ̸= ω, and ṫra(2) =

ṫra(1)(ċou ← ṫra(1)(ċou) + 1, $val ← (0:ṫra(1)(ċou) + 1, 1:ṅam)), or ṫra(1)(ċou) = ω, and

ṫra(2) = ṫra(1)(ċou ← 1, $val ← (0:1, 1:ṅam)).

An element ṅam is called a name in JėleK. An element generator generates a new element

by the counter with the name which coincides with the name of the generator, and adds this

counter, if it was not.

A CTS with executable elements and transition values ċts is called a CTS with counters, if

the element (newCount ṅam) is predefined in JċtsK.
4.5. CTSs with history varibles

CTSs with history varibles are CTSs with counters which are characterized by the fact that

they can define variables storing the history of values of $val.

A conceptual (0:ṅat, 1:hvar) is called a history variable specifier. Let hvar be a set of history

variable specifiers. An element ḣvar is called a history variable in ṡta, if ṡta(ḣvar) ̸= ω. Thus,

the concept hvar defines history variables. An element ṡta(ḣvar) is called a value in Jhvar:ḣvar,
ṡtaK.

System Informatics (Системная информатика), No. 5 (2015) 63

An element ėle of the form (hvar (ėle1, . . ., ėleṅat) ėle′) is called a history variable generator

in J(ėle1, . . ., ėleṅat), ėle′K and defined as follows: traRel(ėle, ṫra) if and only if there exist ṡta0,

ṡta1, . . ., ṡtaṅat such that ṡta0 = ṫra(1), traRel((newCount hvar), (ṡtaṅat′−1
, ṡtaṅat′)) for all

1 ≤ ṅat′ ≤ ṅat, and traRel(ṡtaṅat($exeEle ← ėle′′, $val ← ṫra(1)($val)), ṫra(2)), where ėle′′ is

the result of replacement ėle1, . . ., ėleṅat in ėle′ by ṡta1($val), . . ., ṡtaṅat($val), respectively.

The elements ėle1, . . ., ėleṅat are called variables in JėleK, and ėle′ are called a body in JėleK.
A history variable generator generates new history variables corresponding to the variables of

the generator and replace all occurences of the generator variables in its body by these history

variables.

A CTS with counters ċts is called a CTS with history variables, if the element (hvar (ėle1,

. . ., ėleṅat) ėle′) is predefined in JċtsK.
4.6. CTSs with defined conceptuals

CTSs with defined conceptuals specify definitions of conceptuals.

A conceptual ċon′ is called a definition in Jċon, ṡtaK, if ṅat is an order in JċonK,
ċon′ = ċon ∪ {(ṅat + 1):conDef}, and ṡta(ċon′) ̸= ω. An element ṡta(ċon′) is called a body

in Jdef:ċon′, ṡtaK. Thus, the definition of a conceptual of the order ṅat is characterized by the

attribute conDef of the order ṅat + 1.

A CTS ċts is called a CTS with defined conceptuals, if semantics of conceptuals sem is

redefined by the following way:

• if ṡta(ċon) ̸= ω, then sem(ċon, ṡta) = ṡta(ċon);

• if ṡta(ċon) = ω, ċon′ is a definition in Jċon, ṡtaK, and ėle is a body in Jdef:ċon′, ṡtaK, then

sem(ċon, ṡta) = sem(ėle, ṡta);

• otherwise, sem(ċon, ṡta) = ω.

4.7. CTS with transition rules

An element ėle of the form (rule ėle1 var v̇arSet then ėle2) is called a transition rule, if the

elements of v̇arSet are pairwise distinct. The elements ėle1, v̇arSet and ėle2 are called a sample,

variable specifier and body in JėleK, respectively. The elements of v̇arSet are called variables

in JėleK. Let rul, samp, and body be sets of transition rules and their samples and bodies,

respectively.

A function traRel ∈ ele × rul × tra → bool is called the transition relation in Jrul:, ċtsK,

64 Anureev I.S. Kinds and language of conceptual transition systems

if traRelJrule:K(ėle, ṙul, ṫra) if and only if there exists ṡub such that sup(ṡub) = v̇arSet, ėle

is an instance in Jṡamp, ṡubK, traRelJċtsK(ṫra(1)($exeEle ← subFJṡubK(ḃody)), ṫra(2)), and

ṫra(2)($val) ̸= (-1:ruleNotExecutable, 0:ṙul, 1:exception).

A transition rule ṙul is a transition rule in JṡtaK, if ṡta(0:ṙul, 1:rule) ̸= ω. Thus, the concept

rule defines a set of transition rules in JṡtaK.
A CTS with executable elements ċts is a CTS in JtraRelJrul:, ċtsKK, if traRelJdef:K(ėle, ṫra) if

and only if there exists ṙul such that ṙul is a transition rule in ṫra(1), and

traRelJrule:, ċtsK(ėle, ṙul, ṫra).

There are shortcuts for the frequently used kinds of transition rules.

An element ėle of the form (rule ṡamp var v̇arSet where ėle′ then ḃody) is called a conditional

transition rule, and ėle′ is called a condition in JėleK. It is a shortcut for the rule (rule ṡamp

var v̇arSet then (if ėle′ then ḃody else ($val ::= (-1:ruleNotExecutable, 0:ėle, 1:exception)))).

The elements (... ::= ...) and (if ... then ... else ...) are defined in sections 5.3 and 5.5,

respectively.

An element ėle of the form (rule ṡamp var v̇arSet hvar ȯrdStr then ḃody) is called a transition

rule with history variables, the element ȯrdStr is called a history variable specifier in JėleK, and

the elements of ȯrdStr are called history variables in JėleK. It is a shortcut for the rule (rule

ṡamp var v̇arSet then (hvar ȯrdStr ḃody)). The element (hvar ...) is defined in section 4.5.

An element ėle of the form (rule ṡamp var v̇arSet catch ėle′ then ḃody) is called a transition

rule with the return handler, and the element ėle′ is called a return variable specifier. It is a

shortcut for the rule (rule ṡamp var v̇arSet then (seq (catch ėle′) ḃody)). The elements (seq ...)

and (catch ...) are defined in sections 5.6 and 5.9, respectively.

Combinations of these kinds of rules can include not more than one occurence of the part

catch ėle defined last, and any number of the parts where ėle and hvar ȯrdStr defined from

right to left. For example, the rule (rule ṡamp var v̇arSet hvar ȯrdStr′ where ėle hvar ȯrdStr′′

catch ėle′ then ḃody) is defined by the following sequence of transformations:

1. (rule ṡamp var v̇arSet hvar ȯrdStr′ where ėle hvar ȯrdStr′′ catch ėle′ then ḃody) →

2. ėle′′ ≡ (rule ṡamp var v̇arSet hvar ȯrdStr′ where ėle catch ėle′ then (hvar ȯrdStr′′ ḃody))

→

3. (rule ṡamp var v̇arSet hvar ȯrdStr′ catch ėle′ then (if ėle then (hvar ȯrdStr′′ ḃody)) else

($val ::= (-1:ruleNotExecutable, 0:ėle′′, 1:exception))) →

4. (rule ṡamp var v̇arSet catch ėle′ then (hvar ȯrdStr′ (if ėle then (hvar ȯrdStr′′ ḃody)) else

System Informatics (Системная информатика), No. 5 (2015) 65

($val ::= (-1:ruleNotExecutable, 0:ėle′′, 1:exception)))) →

5. (rule ṡamp var v̇arSet then (seq (catch ėle′) (hvar ȯrdStr′ (if ėle then (hvar ȯrdStr′′ ḃody))

else ($val ::= (-1:ruleNotExecutable, 0:ėle′′, 1:exception))))).

The element ṙul adds the rule ṙul to ṡta: traRel(ėle, ṫra) if and only if

ṫra(2) = ṫra(1)((0:ṙul, 1:rule) ← true).

The element ėle of the form (delete ṙul) removes the rule ṡta from ċts : traRel(ėle, ṫra) if

and only if ṫra(2) = ṫra(1)((0:ṙul, 1:rule) ← ω).

The element ėle of the form (deleteRules) removes all rules from ṡta: traRel(ėle, ṫra) if and

only if ṫra(2) = ṫra(1)((0:ṙul1, 1:rule) ← ω, . . ., (0:ṙulṅat, 1:rule) ← ω), where

{ṙul1, . . ., ṙulṅat} is a set of all transition rules in ṫra(1).

4.8. CTSs with types

CTSs with types specify types of elements and literals of these types.

Let type ⊂ ele. An element ṫype is called a type. A function lit ∈ type → 2ele is called a

literal function in JtypeK. An element ėle is called a literal in JṫypeK, if ėle ∈ lit(ṫype).

An element (ėle is ṫype) is called a characteristic element in JṫypeK and defined as follows:

traRel(ėle, ṫra) if and only if either ėle ∈ lit(ṫype), and ṫra(2)($val) = true, or ėle /∈ lit(ṫype),

and ṫra(2)($val) = false.

A CTS ċts is called a CTS with types in Jtype, litK, if type is a set of types, lit is a literal

function in JtypeK, and (ėle is ṫype) is a predefined element in ċts for each ṫype.

The set type of the CTSL language includes the following basic types:

• element such that lit(element) = ele;

• atom such that lit(atom) = ato;

• emptyStr such that lit(emptyElement) = {(), {}};

• emptyOrdStr such that lit(emptyOrdStr) = {()};

• emptyUnoStr such that lit(emptyUnoStr) = {{}};

• eleStr such that lit(eleStr) = eleStr ;

• ordStr such that lit(ordStr) = ordStr ;

• unoStr such that lit(unoStr) = unoStr ;

• labStr such that lit(labStr) = labStr ;

• int such that lit(int) = int ;

• nat such that lit(nat) = nat ;

66 Anureev I.S. Kinds and language of conceptual transition systems

• nat0 such that lit(nat0) = nat0 ;

• bool such that lit(bool) = bool ;

• rule such that lit(rule) = rule;

• macro such that lit(macro) = macro;

• program such that lit(program) = prog.

5. Basic predefined elements in CTSL

Basic predefined elements in CTSL are defined in this section.

5.1. The element omega

The element (omega) is called an indeterminate return and defined as follows:

traRel(ėle, ṫra) if and only if ṫra(2) = ṫra(1)($val ← ω). It returns an indeterminate value.

5.2. The elements ordStrToUnoStr and unoStrToOrdStr

The element ele of the form (ordStrToUnoStr ȯrdStr) is called a converter inJordStr:, unoStr:K and defined as follows: traRel(ėle, ṫra) if and only if either

ėle = (ėle1, . . ., ėleṅat), and ṫra(2) = ṫra(1)($val ← {ėle1, . . ., ėleṅat}), or ėle /∈ ordStr,

and ṫra(2) = ṫra(1)($val ← (0:ėle, 1:exception)). It converts elements of ordStr into elements

of unoStr.

The element ele of the form (unoStrToOrdStr u̇noStr) is called a converter inJunoStr:, ordStr:K and defined as follows: traRel(ėle, ṫra) if and only if either

ėle= {ėle1, . . ., ėleṅat}, and ṫra(2) = ṫra(1)($val ← (ėle′1, . . ., ėle′ṅat)), where

(ėle′1, . . ., ėle′ṅat) is a permutation of (ėle1, . . ., ėleṅat), or ėle /∈ unoStr, and

ṫra(2) = ṫra(1)($val ← (0:ėle, 1:exception)). It converts elements of unoStr into elements

of ordStr.

5.3. The assignment

The element ėle of the form (ċon ::= ėle′) is called an assignment and defined as follows:

traRel(ėle, ṫra) if and only if there exists ṡta such that traRel(ṫra(1)($exeEle ← ėle′), ṡta), and

ṫra(2) = ṡta(ċon ← ṡta($val)). It assign the value of ėle′ to ċon. The elements ċon and ėle′

are called the left-hand and right-hand sides in JėleK, respectively.

5.4. The element skip

System Informatics (Системная информатика), No. 5 (2015) 67

The element ėle of the form (skip) is defined as follows: traRel(ėle, ṫra) if and only if

ṫra(1) = ṫra(2). It executes an action which does not change a state. In particular, it does not

change the value of $val.

5.5. The conditional element

The element ėle of the form (if ċond then ėle1 else ėle2) is called a conditional element and de-

fined as follows: traRel(ėle, ṫra) if and only if there exists ṡta such that

traRel(ṫra(1)($exeEle ← ċond), ṡta), and

• ṡta($val) = true, and traRel(ṡta($exeEle ← ėle1), ṫra(2)), or

• ṡta($val) = false, and traRel(ṡta($exeEle ← ėle2), ṫra(2)), or

• ṡta($val) /∈ {true, false}, and ṫra(2) = ṡta($val ← (0:ėle,1:exception)).

The elements ċond, ėle1 and ėle2 are called a condition, then-branch and else-branch in JėleK.
The element ėle executes then-branch or else-branch depending on the value of the condition.

The element (if ċond then ėle) is a shortcut for the element (if ċond then ėle else (skip)).

5.6. The sequential composition

The element ėle of the form (seq ėle1 . . . ėleṅat0) is called a sequential composition. The

elements ėle1, . . ., ėleṅat are called elements in JėleK, and their sequence is called a body inJėleK. The element ėle executes its elements sequentially from left to right.

Semantics of the element (seq) coincides with semantics of the element (skip).

The element ėle of the form (seq ėle1, . . ., ėleṅat) is defined as follows: traRel(ėle, ṫra) if and

only if there exists ṡta such that traRel(ṫra(1)($exeEle ← ėle1), ṡta), and traRel(ṡta($exeEle ←

(seq ėle2, . . ., ėleṅat)), ṫra(2)).

5.7. Evaluators

The element ele of the form (* ḃody *) is called an evaluator and defined as follows:

traRel(ėle, ṫra) if and only if there exists ṡta such that traRel(ṫra(1)($exeEle ← ḃody), ṡta),

and either ṡta($val) /∈ exc, and traRel(ṡta($exeEle ← ṡta($val)), ṫra(2)), or ṡta($val) ∈ exc,

and ṫra(2) = ṡta.

The element ḃody is called a body in JėleK. The element ėle first executes ḃody , and then

executes the value of ḃody .

5.8. Quoters

68 Anureev I.S. Kinds and language of conceptual transition systems

The element ėle of the form (quote ḃody) is called a quoter and defined as follows:

traRel(ėle, ṫra) if and only if ṫra(2) = ṫra(1)($val ← ḃody). The element ḃody is called a

body in JėleK. The element ėle changes a state only in $val, and assign ḃody to $val.

The object ’ḃody is a shortcut for the element (quote ḃody). For example, ’true is a shortcut

for (quote true).

5.9. Return handlers

The element ėle of the form (catch v̇ar ḃody) is called a return handler and defined as

follows: traRel(ėle, ṫra) if and only if there exists ṡta such that traRelJele:K((newCount retVar),

(ṫra(1)($val ← true), ṡta)), and
traRel(ṡta(exeEle ← subFJ{v̇ar ← ṡta($val)}K(ḃody)), ṫra(2)).

The elements v̇ar and ḃody are called a return variable and body in JėleK, respectively. An

element of the form (ṅat, retVar) is called a return variable. The element ėle stores the current

value of $val into a new return variable v̇ar′, resets the value of $val to true and executes the

body of ėle in which all occurences of the return variable in JėleK are replaced by v̇ar′. It models

exception handling in CTSL.

5.10. Selectors

The element ėle of the form (select ėle′ from ṡamp var v̇arSet for ċond) is called a selector

and defined as follows: traRel(ėle, ṫra) if and only if ṫra(2) = ṫra(1)($val ← ṡet), where ṡet

∈ unoStr is a set of subFJṡubK(ėle′) such that subFJṡubK(ṡamp) is a conceptual in Jṫra(1)K,
sup(ṡub) = v̇arSet, and there exists ṡta such that traRel(ṫra(1)($exeEle ← subFJṡubK(ċond)),

ṡta), and ṡta($val) ̸= (-1:notSelected, 1:exception).

The elements ėle′, ṡamp, v̇arSet and ċond are called a selection specifier, sample, set of

variables and condition in JėleK.
Thus, the element ėle returns the set of instances of the selection specifier ėle′ for all substi-

tutions ṡub defined on variables from v̇arSet such that there exists a conceptual in ṡta which is

an instance of the sample ṡamp in JṡubK, and the instance of the condition ċond in JṡubK does

not return the exception (-1:notSelected, 1:exception).

The element ėle of the form (select ėle′ from ṡamp var v̇arSet where ċond) is a shortcut for the

element (select ėle′ from ṡamp var v̇arSet for (if ċond then (skip) else ($val ::= (-1:notSelected,

1:exception)))). The element ċond is called a condition in JėleK.

System Informatics (Системная информатика), No. 5 (2015) 69

5.11. The conditional pattern matching

The element ėle of the form (if ėle′ matches ṡamp var v̇arSet for ċond then ėle1 else ėle2) is

called a conditional pattern matching and defined as follows: traRel(ėle, ṫra) if and only if

1. either there exist ṡub and ṡta such that sup(ṡub) = v̇arSet, ėle′ is an instance inJṡamp, ṡubK, traRel(ṫra($exeEle ← subFJṡubK(ċond)), ṡta), ṡta($val) ̸= (-1:notMatch,

1:exception), and traRel(ṡta($exeEle ← subFJṡubK(ėle1)), ṫra(2)).

2. or the condition 1 does not assert, and traRel(ṫra(1)($exeEle ← ėle2), ṫra(2)).

The elements ėle′, ṡamp, v̇arSet , ċond , ėle1, and ėle2 are called a matched element, pattern,

set of variables, condition, then-branch and else-branch in JėleK.
Thus, the element ėle executes the instance of the then-branch ėle1 in JṡubK, if ėle′ is the

instance of the sample ṡamp in JṡubK, and the instance of ċond in JṡubK does not return the

exception (-1:notMatch, 1:exception). Otherwise, the element ėle executes the else-branch ėle2.

The element ėle of the form (if ėle′ matches ṡamp var v̇arSet for ċond then ėle1) is a shortcut

for the element (if ėle′ matches ṡamp var v̇arSet for ċond then ėle1 else (skip)).

The element ėle of the form (if ėle′ matches ṡamp var v̇arSet where ċond then ėle1 else ėle2)

is a shortcut for the element (if ėle′ matches ṡamp var v̇arSet for (if ċond then (skip) else

($val ::= (-1:notSelected, 1:exception))) then ėle1 else ėle2). The element ċond is called a

condition in JėleK.
5.12. Iterators

The element ėle of the form (foreach v̇ar in ėle′ do ḃody) is called an iterator and defined as

follows: traRel(ėle, ṫra) if and only if there exists ṡta such that traRel(ṫra(1)($exeEle ← ėle′),

sta), and

• ṡta($val) is an empty structure, and ṫra(2) = ṡta, or

• ṡta($val) ∈ exc, and ṫra(2) = ṡta, or

• ṡta($val) ∈ ato ∪ labStr \ exc, and ṫra(2) = ṡta($val ← (0:ėle, 1:exception)), or

• ṡta($val) ∈ ordStr ∪ unoStr, and
traRel(ṡta($exeEle ← (hvar v̇ar (foreach1 v̇ar in ṡta($val) do ḃody))), ṫra(2)).

The elements v̇ar , ėle′ and ḃody are called an iteration variable, iteration structure specifier

and body in JėleK, respectively.

The element (foreach1 v̇ar in ėle′ do ḃody) is defined by the rules:

(if (foreach1 x in () do y) var (x, y) then (skip))

70 Anureev I.S. Kinds and language of conceptual transition systems

(if (foreach1 x in {} do y) var (x, y,) then (skip))

(if (foreach1 x in (v .:: w) do z) var (x, y, v, w)

then (seq (x ::= ’v) z (foreach1 x in w do z)))

(if (foreach1 x in (v .::u w) do z) var (x, y, v, w)

then (seq (x ::= ’v) z (foreach1 x in w do z)))

Thus, the element ėle executes sequentially ḃody in Jvar:v̇ar, val:ėle′′K for elements of the

structure ṡtr, where ṡtr is the value of ėle′. Executing ḃody in Jvar:v̇ar, val:ėle′′K is executing

ḃody when the value of the variable v̇ar is equal to ėle′′.

5.13. The element throw

The element ėle of the form (throw ḃody) is defined by the rule:

(if (throw x) var (x) where (x is exception) then ($val ::= ’x))

The element ḃody is called a body in JėleK.
5.14. Branching

The branching elements specify the order of execution of elements called branches and what

branches are executed.

The element ėle of the form (orBranching ėle1 ... ėleṅat0) is called an or-branching and

defined as follows: traRel(ėle, ṫra) if and only if either ṅat0 = 0, and ṫra(1) = ṫra(2), or ṅat0

> 0, and there exists ṡta such that traRel(ṫra(1)($exeEle ← ėle1), ṡta), and

• ṡta($val) = (-1:failBranch, 1:execution), and traRel(ṡta($exeEle ← (orBranching or ėle2

... ėleṅat)), ṫra(2)), or

• ṡta($val) ̸= (-1:failBranch, 1:execution), and ṫra(2) = ṡta.

The elements ėle1, ..., ėleṅat are called branches in JėleK.
Thus, the element ėle executes branches sequentially until the next branch is normally

executed, i. e. is executed without returning the exception (-1:failBranch, 1:execution).

The element ėle of the form (andBranching ėle1 ... ėleṅat0) is called an and-branching and

defined as follows: traRel(ėle, ṫra) if and only if either ṅat0 = 0, and ṫra(1) = ṫra(2), or ṅat0

> 0, and there exists ṡta such that traRel(ṫra(1)($exeEle ← ėle1), ṡta), and

System Informatics (Системная информатика), No. 5 (2015) 71

• ṡta($val) /∈ exc \ {(-1:stopBranch, 1:execution)}, and traRel(ṡta($exeEle← (orBranching

or ėle2 ... ėleṅat)), ṫra(2)), or

• ṡta($val) ∈ exc \ {(-1:stopBranch, 1:execution)}, and ṫra(2) = ṡta.

The elements ėle1, ..., ėleṅat are called branches in JėleK.
Thus, the element ėle executes branches sequentially until the next branch return an excep-

tion which is distinct from the exception (-1:stopBranch, 1:execution).

6. Basic operations in CTSL

Basic operations in CTSL are defined in this section. Let ope be a set of operations.

6.1. Boolean operations

The set ato includes atoms true and false which specify the corresponding boolean values.

The element ėle of the form (ėle1 and ėle2) specifies the boolean operation of conjunction.

Semantics of ėle coincides with semantics of the element
(if ele1 then (if (ele2) then ’true else ’false) else ’false).

The elements (ėle1 ȯpe ėle2), where ȯpe ∈ {or, =>, <=>} specifying the boolean operations

of disjunction, implication and equivalence are defined in the similar way.

The element ėle of the form (not ėle′) specifies the boolean operation of negation. Semantics

of ėle coincides with semantics of the element (if ele′ then ’false else ’true).

6.2. Equality and inequality of elements

The element ėle of the form (ėle1 = ėle2) specifies the operation of equality = on elements.

Semantics of ėle coincides with semantics of the pseudoelement

(hvar ($x, $y)

(seq ($x ::= ėle 1) ($y ::= ėle 2)

(if V$sta($x) = $sta($y)W then ($val ::= ’true) else ($val ::= ’false)))

Pseudoelements are extension of elements by constructs VȯbjW, where ȯbj is either a property

or an expression. The object $sta denotes the current state.

The element ėle of the form (ėle1 != ėle2) specifies the operation of inequality != on elements.

It is defined in the similar way.

6.3. Integer operations and relations

72 Anureev I.S. Kinds and language of conceptual transition systems

The element ėle of the form (ėle1 + ėle2) specifies the integer addition +. Semantics of ėle

coincides with semantics of the pseudoelement

(hvar ($x, $y)

(seq

($x ::= ėle 1) (if V$sta($x) /∈ intW then ($val ::= ’(0:ėle , 1:exception)))

($y ::= ėle 1) (if V$sta($y) /∈ intW then ($val ::= ’(0:ėle , 1:exception)))

($val ::= V$sta($x) + $sta($y)W)))
The element ėle of the form (ėle1 div ėle2) specifies the quotient of ėle1 divided by ėle2.

Semantics of ėle coincides with semantics of the pseudoelement

(hvar ($x, $y)

(seq

($x ::= ėle 1) (if Vṡta($x) /∈ intW then ($val ::= ’(0:ėle , 1:exception)))

($y ::= ėle 2)

(if Vṡta($y) /∈ int \ {0}W then ($val ::= ’(0:ėle , 1:exception)))

($val ::= V$sta($x) div $sta($y)W)))
The elements (ėle1 ȯpe ėle2), where ope ∈ {-, *, mod} specifying the integer operations -, *

and mod are defined in the similar way.

The element ėle of the form (ėle1 < ėle2) specifies the integer relation <. Semantics ėle

coincides with semantics of the pseudoelement

(hvar ($x, $y)

(seq

($x ::= ėle 1) (if V$sta($x) /∈ intW then ($val ::= ’(0:ėle , 1:exception)))

($y ::= ėle 2) (if V$sta($y) /∈ intW then ($val ::= ’(0:ėle , 1:exception)))

(if V$sta($x) < $sta($y)W then ’true else ’false)))

The elements (ėle1 ȯpe ėle2), where ope ∈ {<=, >, >=} specifying the integer relations <=,

> and >= are defined in the similar way.

7. Conclusion

In this paper the language CTSL of CTSs is proposed and the following kinds of CTSs are

defined: CTSs with transition values specifying values of transitions, CTSs with executable

elements specifying elements which can be executed, CTSs with execution contexts specify-

ing contexts in which elements are executed, CTSs with counters specifying generation of new

System Informatics (Системная информатика), No. 5 (2015) 73

elements which are instances of the given concepts, CTSs with history variables specifying vari-

ables which store a history of changing the conceptual $val, CTSs with defined conceptuals

specifying definitions of conceptuals, CTSs with transition rules specifying executed elements

based on the pattern matching and reduction of their execution semantics to execution seman-

tics of other elements, CTSs with types specifying types of elements and literals of these types.

Basic predefined elements and operations used in applications of CTSs are also presented.

We plan to use the CTSL language to solve problems of designing and prototyping soft-

ware systems as well as specification of operational and axiomatic semantics of programming

languages.

In the case of specification of operational semantics of a programming language, a CTS

specifies the abstract machine of the language.

In the case of specification of axiomatic semantics of a programming language, a CTS spec-

ifies a generator of verification conditions for programs in the language, based on its axiomatic

semantics.

References

1. Anureev I.S. Conceptual Transition Systems // System Informatics. 2015. Vol. 5. P. 1–41.

2. Gurevich Y. Abstract state machines: An Overview of the Project // Foundations of Information

and Knowledge Systems. Lect. Notes Comput. Sci. 2004. Vol. 2942. P. 6-13.

3. Gurevich Y. Evolving Algebras. Lipari Guide // Specification and Validation Methods. Oxford

University Press, 1995. P. 9-36.

4. Anureev I.S. Operational Ontological Approach to Formal Programming Language Specification

// Programming and Computer Software. 2009. Vol. 35. N 1. P. 35-42.

5. Anureev I.S. Ontological Transition Systems // Bulletin of the Novosibirsk Computing Center,

Series Computer Science. 2007. Vol. 26. P. 1-17.

6. Anureev I.S. A Language of Actions in Ontological Transition Systems // Bulletin of the Novosi-

birsk Computing Center, Series Computer Science. 2007. Vol. 26. P. 19-38.

7. Anureev I.S. Domain-Specific Transition Systems and their Application to a Formal Definition of a

Model Programming Language // Bulletin of the Novosibirsk Computing Center, Series Computer

Science. 2014. Vol. 34. P. 23–42.

8. Anureev I.S. Conceptual Transition Systems // System Informatics. 2015. N 1. (In Russian). (To

appear).

9. Anureev I.S. Kinds and Language of Conceptual Transition Systems // System Informatics. 2015.

N 1. (In Russian). (To appear).

10. Huggins J. Abstract State Machines Web Page. URL: http://www.eecs.umich.edu/gasm (accessed:

01.09.2015).

74 Anureev I.S. Kinds and language of conceptual transition systems

11. AsmL: The Abstract State Machine Language. Reference Manual. 2002. URL:

http://research.microsoft.com/fse/asml/doc/AsmL2 Reference.doc (accessed: 01.09.2015).

12. XasM — An Extensible, Component-Based Abstract State Machines Language. URL:

http://xasm.sourceforge.net/XasmAnl00/XasmAnl00.html (accessed: 01.09.2015).

