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The paper concerns recent advances in reaching the goal of industrial operating system

(OS) verification. By industrial OS we mean a system actively used in some industrial

domain, elaborated and maintained for a significant time, not a proof-of-concept OS de-

veloped with mostly research intentions. We consider decomposition of this goal into tasks

related with various functional components of OS and various properties under verification,

and application of different verification methods to those tasks. This is a trial to explicate

and summarize the experience of several projects on various OS components and different

OS features verification conducted in ISP RAS.
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1. Introduction

Modern industrial operating systems, which are used for plenty of real-life applications, are

rather complex. They are not just very large pieces of code, they also have a great number of

heterogeneous features, should operate on a large variety of hardware from diverse manufac-

turers, and are to provide for application developers numerous interfaces, which are expected

not only to work correctly, but also to use underlying hardware in effective, efficient, and fault-

tolerant way. By industrial operating system (OS) we mean in this article an OS actively

used in some industrial domain (or a general purpose one), elaborated and maintained for a

significant time. We do not discuss here OSes developed with certain research purposes or

as a proof-of-concept, they may be much more simple than industrial ones and have different

specifics.

An OS is supposed to perform two main tasks.

• It should organize operation of multiple applications on some machine, managing hard-

ware resources, and protect applications from interfering each other.

• It should provide interface for application developers to use those resources in a convenient

way, and also to transfer data between applications, if needed.
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Fig. 1. Main parts of general purpose OS

The main part of an OS is a kernel, which works in privileged processor mode (kernel mode)

and so has unbounded access to all system resources. Kernel manages application access to

hardware resources, sets access policies, and prevents their violation. Some functions that do

not require privileged mode are also sometimes included into kernel for efficiency.

Applications can interact with kernel mostly with system calls, which are calls of kernel

functions with switch into privileged mode. There are additional ways to interact with kernel,

like special file systems (procfs, sysfs, debugfs) in Linux. To provide convenient environment

for application developers OS usually provides system libraries and utilities, implementing fre-

quently used functions that require interaction with kernel. To solve tasks that need activity

from the kernel side, system services are provided. Such tasks include communication protocols,

managing special devices, etc. Corresponding services can work in kernel mode or in user mode.

Figures 1 and 2 show the structure of general purpose OS and real-time OS correspondingly.

The above sketchy review of OS structure gives some hints on its complexity. The verification

of industrial OS is also rather complex, especially if one takes into consideration the following.

• A plenty of features of modern OS provide various feature interaction cases and corner

cases, where much more scrutinized inspection of required behavior is necessary.

• Multitasking support in modern OS makes checking behavior correctness much more

intricate.

• Basic OS functionality must be available in spite of some faults in hardware or software
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Fig. 2. Main parts of real time OS

components. This fault tolerance should also be verified.

• Modern OS usually supports network communications and provides a workplace for many

users. It ensures certain security policies, setting restrictions on data and operations

available for different users and processes. Those restrictions should be preserved in case

of faults and attacks from malicious users or software components coming from network.

• Support of huge variety of heterogeneous hardware is usually implemented as deep con-

figurability of an OS. So, one needs verification of OS behavior in various possible con-

figurations, the total number of which is usually larger than astronomical numbers.

• The mere code size and number of functions in modern OS are great. The size of Linux

kernel version 4.1 is reported [1] to be about 20.3 million lines of code (LOC), while

drivers part, which is created and supported by diverse developers and is responsible for

most of bugs is about 11.5 million LOC. The size of Windows XP is estimated as 45

million LOC [2]. The number of functions in system libraries of Debian 7.0 is about 720

thousand [3], while the number of system calls is about 350.

The numbers provided make the goal of thorough verification of industrial OS unreachable at

this moment. Nevertheless, the developer community needs some methods to assure correctness,

efficiency, security, and fault tolerance of modern OSes. The only reasonable way to help is

to use various available verification methods to ensure those properties for some parts of OS

code or functionality, or to ensure only a few critical properties on OS as a total. Important
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results of partial verification are faults and errors found, so, although we cannot now guarantee

strict correctness or security of an OS, we can come closer to them (if we do not forget about

that ultimate goal in routine quality assurance processes). Thus, increasing scalability of used

methods and tools step by step, we can enlarge the verified parts of code and functionality,

targeting to reach the goal of complete verification somewhen in future.

In this paper we review the activity on verification of different parts and features of OSes

performed in the Institute for System Programming of Russian Academy of Sciences in a dozen

of projects conducted last 20 years. This activity uses and integrates different methods of

verification for different OS properties and components, applying them to Linux OS and several

specialized real-time OSes. The main methods used are as follows.

• Testing and dynamic analysis. Testing can be performed in different ways. The

most lightweight testing focuses on producing test cases for basic behavior of functions,

skipping consideration of complex or even non-so-often cases. The main target test com-

pleteness criterion for such testing is coverage of functions. The most thorough testing is

intended to provide as strict and accurate checks as possible. It uses formal specification

of required behavior, tries to formulate presumptions and strict guarantees concerning the

correctness of tested system, and is targeted on coverage of all conditions met both in code

and requirements, along with some corner cases (buffers overflow, failures of underlying

hardware, processing simultaneous events, etc.). Various testing methods between these

two extremes are also used. The main properties under test are functional, but testing

is also the main method to check efficiency and fault tolerance. Along with testing other

dynamic analysis methods, not requiring preparation of test suites, can be used.

• Static analysis. Static analysis also presents a wide range of approaches, from simple,

quick, and lightweight checkers seeking a bounded number of bug patterns and producing

a lot of false positives — reports on bugs, which actually aren’t, to rather complex tools

using formal specifications and configurable analyses, capable to catch very intricate bugs,

requiring large effort during their configuration, usually with not-so-high numbers of false

positives. Static analysis is widely used to check various code, but usually more complex

and powerful techniques are applied to components with more strict requirements, like

OS kernel modules.

•Deductive verification. Deductive verification is used to verify most important security

or correctness properties. There are well-known examples of OS kernel verification [4–6],
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but in all cases the verified code is much smaller than kernels of typical industrial OS.

Nevertheless, deductive verification techniques can be applied to industrial OS code and

provide valuable results.

Below we explicate and try to summarize the experience obtained by ISP RAS in dozens of

projects, where some kind of verification was performed on various components of industrial

OSes (Linux and several real-time OSes for specific domains). The paper organized as follows.

In Section 2 we provide review of testing techniques used to check different OS components.

Section 3 reports on application of various static analysis techniques, usually in conjunction with

some dynamic analysis. Section 4 describes our results in deductive verification of OS security.

Then the Conclusion sums up the exposition and describes possible further development.

2. Testing and dynamic analysis

ISP RAS develops OS components testing methods since its foundation in 1994. The first

such results are related with KVEST [7], a method for test generation based on formal spec-

ifications of functional behavior in form of software contracts, used to construct several test

suites for real-time OS developed and maintained by Nortel Networks.

2.1. Formal approaches

Later this approach was refined and extended into UniTESK method [8]. The basic ideas of

the method are as follows.

• Requirements to library functions behavior are specified as software contracts — precon-

ditions, postconditions, and data type invariants (they may be considered as common

parts of pre- and postconditions of all functions dealing with those data types). Software

contracts are written in extension of C language or with the help of specialized libraries

in pure C/C++.

• Test completeness criteria are formulated as coverage of branches in postconditions. If

there is a need to add some situations to coverage goals, they are formulated as specific

additional branches, not related with behavior restrictions.

• Test scenarios are represented as extended finite state machines, for which execution of

all reachable transitions guarantees coverage of all coverage goals (branches) specified in

postconditions of functions called (each transition corresponds to a sequence of function

calls). The control state of test scenario is a generalization of data structures used in
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specifications of functions tested by this scenario.

• Testing is performed by automatic traversal of a state machine defined in test scenario.

Each call to a function under test is augmented with call to the oracle function generated

from postcondition and evaluating correctness of the results obtained.

• Testing of parallelism is based on interleaving semantics [9]. It is performed by gathering

all the observed events (function calls, function returns, and others) and constructing

a linear sequence of those events, in which all pre- and postconditions hold. If such a

sequence cannot be constructed, a bug is recorded.

UniTESK was used for conformance test suite creation for Core part of Linux Standard

Base (LSB), which describes system libraries and almost coincides with POSIX, in OLVER

Project [10], where 1532 functions of LSB Core was formally specified and tested. The same

method was applied in conformance test suite development for ARINC-653 part 1 standard [11]

describing 54 functions.

Another test construction method, not using formal specifications, but based on formal

investigation of requirements was used to create conformance tests for mathematical functions

working with floating-point numbers in POSIX system libraries [12]. The method uses as

test data specific floating point values, including numbers having patterns in mantissa (like

0000FFFFAAAA in hexadecimals), boundaries of domains of specific function behavior (such

behaviors include monotonicity, sign preservation, well-known asymptotics), and so-called worst

cases, numbers, for which correct function calculations requires much more precision than in

average. For now test suites for 104 functions was developed.

2.2. Informal approaches

Several other methods used for test construction in ISP RAS are not based on formal spec-

ifications, but targeted on strict requirements traceability, so that tests are developed to check

certain explicitly formulated requirements and they report on violation of this requirements

(providing their ids) when find some bug.

The first method [13] is based on manual test case development with further parameterization

making a test case a template. For test execution each template is supplemented with several

arrays of arguments that are put in place of corresponding parameters. The method was used

to create tests for more than 4000 functions in Linux system libraries, they detected about 40

bugs.
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Another approach [14] provides automatic generation of sanity tests (checking only basic

functionality) on the base of initialization procedures for data type values and libraries and

preconditions of functions specified manually and stored in a database. This method provides

rather surface testing, but can be used for massive test generation with little effort. It was

applied to Linux libraries containing about 20000 functions.

2.3. Fault tolerance testing and dynamic analysis

For monitoring Linux kernel modules KEDR framework [15] was developed in ISP RAS. It

makes possible to intercept calls from single kernel module, and so to observe its behavior in

dynamics. On the base of KEDR the following verification techniques are implemented.

• KEDR Leak Check used to detect memory leaks in kernel modules. It is more convenient

for leak detection then kmemleak [16] included in Linux distribution, but cannot be used

to check kernel core code.

• Kernel Strider [17] used to detect data races, situations when several threads read and

write one region of memory in unordered manner. Kernel Strider gathers information on

module execution, which is then analyzed by ThreadSanitizer [18], data race detection

tool developed by Google.

• KEDR Fault Simulation [19] used for fault tolerance testing. The testing organized in

a following way. First, the module under test is executed in ordinary way and KEDR

detects all calls to functions (system calls or calls of hardware-specific operations) that

can fail, but very rare do this during real work. Second, for each call the test is executed,

in which this call is simulated as failed. This approach helped to detect several bugs in

mature file system drivers like ext4.

A specific example of monitoring used to detect data races is given by RaceHound tool [20],

which implements the same idea as DataCollider [21]. It detects memory regions where a

thread can write, sets hardware breakpoint on access to such regions, and inserts additional

wait intervals around memory access operations in other threads in runtime. If this leads to an

access to the tapped memory from another thread, a data race is reported.

3. Static analysis

To get more efficiency a large part of general purpose OS code is working in kernel mode,

where it has many possibilities to damage important OS data structures. Since the code of
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Linux drivers, which also works in kernel mode, is usually written by developers having good

knowledge of hardware and not-so-good in rules of correct operation within Linux kernel, this

naturally leads to the situation where more than a half of bugs detected in kernel is related

with drivers code [22]. The similar relation is true for Windows OS [23].

To make development of kernel modules less error-prone, one needs specific tools that can

check the rules of correct kernel application program interface (API) usage. Microsoft Research

offers Static Driver Verifier tool [24] (called SLAM earlier) capable to solve this task for Win-

dows. The similar solution is suggested by ISP RAS for Linux under the name of Linux Driver

Verification (LDV) framework [25, 26]. The method used by LDV is the following.

• The rules of correct kernel API usage are specified as software contracts in specific no-

tation extending C language. They are interpreted as aspect advices that should be

inserted at the points where the specified API functions are called in the module under

check. Being inserted in the module code, advice code creates error, if the rules specified

are violated.

• The usage model is created for the module functions. This is important for driver mod-

ules, since their functions are not called explicitly. The usage model defines all possible

sequences of function calls.

• The code of the module under check is processed by aspect weaver, which inserts rule

checking code, and augmented by the usage model.

• The main check is performed by static verifier tool (most often BLAST [27] and CPAChe-

cker [28] are used). The tool analyzes the code trying to solve reachability task — whether

the error creation instruction can be reached in some execution. If it is reachable, then

the corresponding execution scenario demonstrates a bug, incorrect use of kernel API, else

the code uses the API functions correctly. Reachability task is solved with the help of

counterexample guided abstraction refinement technique (CEGAR) [29], which constructs

automatically more and more precise models of code execution, until the error-reaching

path in model can be re-executed in real code, or becomes unreachable in the refined

model.

LDV detects 5-8 bugs in almost each release of Linux kernel, for now the total number of

found bugs is about 2500. It is used routinely to check about 4000 kernel modules.

Another example of static analysis usage is provided by a tool CPALocator [30] developed

on the base of CPAChecker and used to search race conditions in OS code.
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4. Deductive verification

Deductive verification is usually considered as the most strict and accurate verification tech-

nique, at the same time it requires a lot of effort and highly qualified staff to perform it in a

productive way. A good review of deductive verification use for OS code is provided by [31].

In ISP RAS projects deductive verification was used to verify security properties of a Linux-

based OS modified for specific use in government agencies [32, 33]. The OS is intended to

implement a complex security model (called MROSL DP) integrating mechanisms of lattice-

based mandatory access control, mandatory integrity control, and role-based access control. All

the security mechanisms are implemented with the help of Linux Security Module (LSM) [34],

which provides interceptor functions for all access operations in Linux.

First, MROSL DP model was formalized in Event-B and its main security properties (that

no subject with less access level can get access to an object with higher confidentiality level; no

subject can get access to an object, for which the subject has no a role having right to access

to, etc.) were proved. Second, main LSM functions were also formally specified in so-called

detailed model, for which the corresponding security properties were also proved. On the third

step the contracts of LSM functions should be translated in ACSL, an extension of C language

used in code verification framework Frama C/Jessie [35], and this framework should verify the

behavior of C code on conformance with the contracts.

Althoug the project is not finished yet, a number of faults was found in the security model

itself due to formalization, and several bugs were detected in code during its partial verification.

5. Conclusion

In this paper we provide a systemized review of verification activities used to check various

components and features of industrial OS in ISP RAS projects. Although the ultimate goal

— the thorough verification of an OS widely used in real-life — still remains unreachable,

our experience shows that important advances in that direction were made by research and

development community in last years.

The methods and tools developed for different purposes and using different basic approaches

— testing, monitoring, static analysis, deductive verification — can enrich each other by bor-

rowing specific modeling or reasoning technique, as it can be shown on example of memory

modeling in static analysis and deductive verification tools [36].

One also can see during a last decade an impressive progress in verification techniques
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applicable to real software. In the domain of OS verification such progress can be illustrated

by a method for deductive verification of multithreaded C programs working with shared data

proposed in ISP RAS [37]. We hope that in one-two years it will be implemented and we can

see results of its experimental evaluation.

Another direction of future research concerns possibilities to reuse verification artefacts cre-

ated by some methods in other ones [38].
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