
System Informatics (Системная информатика), No.25 (2024) 1

УДК 004.415.52+519.681

Enhancing Verification Condition Generation for Reflex

Programs Through Simple Static Analysis∗

Ishchenko A.D. (Institute of automatics and electrometry, Siberian Branch of

the Russian Academy of Sciences)

Control systems play a crucial role in various domains necessitating high reliability and

proof of correct software operation. To address this, formal methods, such as deductive

verification, are employed to ensure the correctness of safety-critical software mathemati-

cally. This process involves generating verification conditions from the program’s axiomatic

semantics and its requirements. Main disadvantage of manual verification condition gen-

eration is its labor-intensity and prone to human error, which leads to the development

of automated verification condition generators. However, they produce excessive or overly

complex verification conditions that do not accurately reflect the possible program’s op-

erational paths. To mitigate the second issue, domain-oriented languages like Reflex have

been introduced, which adopt a process-oriented paradigm to streamline programming and

simplify verification condition generation. Nevertheless, the inherent switch-case structure

of Reflex can lead to an increase in the number of verification conditions, exacerbating the

first issue and complicating the selection of relevant ones. This paper proposes a simple

static analysis system designed to optimize the generation of verification conditions for Re-

flex programs, enhancing the efficiency of the verification process. It is based on attaching

attributes to different statements. Then, throughout the verification condition generation

these attributes are collected and checked to be compatible with previously collected. If

attributes are incompatible then verification condition are discarded.
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1. Introduction

Control systems are widely used in many areas: from the Internet of Things to programmable

industrial controllers. This requires advanced reliability for such systems and, in particular,

proof of correct operation of used software.

Nowadays, the most common method to ensure correctness is to test the system on digital

models or real-world control objects. It is popular for its simplicity and relative cheapness.

However, this method is incomplete because it does not cover all possible cases. This leads to
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a danger of appearing of rare errors among widely used devices which looked completely safe.

To ensure the correctness of safety-critical software, formal methods are used. They use

formal semantics of the program and its requirements to simplify this challenge by transforming

it into some mathematical problem.

One of these formal methods is deductive verification [5]. It requires defining the axiomatic

semantics of programming language in some logical inference system and formalizing require-

ments. Then program and its requirements are transformed into a set of logical formulas. This

process is called verification condition (VC) generation. Doing it manually is time-consuming

and dangerous because of human factors. To automate this process, verification condition gen-

erators are developed. A generator goes through all possible paths of control flow and creates

VCs for them.

However, the naive realization of the generator may create a lot of excess verification condi-

tions that do not represent the ways the program really could work. Therefore, it is important

to find ways for reducing the amount of VCs and their simplification.

For simplification of creating and verification of control software special domain-oriented

languages are used. One of them is Reflex language [10] created for writing control programs.

It is designed in the style of a process-oriented paradigm. This paradigm represents the program

as a list of processes that are executed sequentially once in a certain period called activation

time thus forming a control loop. Each process consists of several active states created by

the programmer and two inactive states: stop and error. Each state is a list of instructions

that include both ordinary imperative statements (for example, conditional statements) and

special process-oriented statements designed to interact with other processes. The use of the

Reflex language rebuilds the programming style for control programs, which leads, in particular,

to the definition of VCs in terms of control processes and their states and thus makes them

conceptually simpler. However, this also leads to an increase in the number of VCs caused

by the switch-case nature of processes of a Reflex program, and some of these VCs are ’false-

positive’ since they correspond to the paths of the program that are non-reachable in its actual

execution.

In this paper, we propose a static analysis system for Reflex programs that finds such VCs

to optimize the process of VCs generation.

2. Reflex language
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A Reflex program consists of processes, process states, process-oriented statements and C-

like statements.

For interaction with processes and their states, the following instructions are defined:

• restart, start p – sets the current process or process p into its first state;

• stop, stop p – sets current process or process p into stop state;

• error, error p – sets the current process or process p into error state;

• set state s, set next state – sets the current process into state s or state defined after the

current one;

• reset timer – set local time of the current process to 0;

• process p in state k – checks whether process p is in state kind k ∈ {active, inac-

tive,stop,error}.

Besides them, the following C-like constructs are used:

• C-like expressions;

• if-else statements;

• switch-case statements.

3. Static analysis

An increase in the number of VCs occurs in processing the following statements:

• process . . . – enumeration of different process states;

• timeout t . . . – checking cases when timeout t exceeded and when not;

• if (expr) . . . else . . . – checking cases when expr is true or false;

• switch (expr) {case . . . } – checking when expr corresponding to different cases;

In this paper we focus on the first two cases, and for the second one only analyze cases when

timeout parameter t is presented by a constant value. For example (Fig. 1), if in the process

of VC generation some process A starts another process B that contextually appears after the

first one, then, when process B will be processed, it must be in its first state.

Before the analysis program is transformed into canonical form with the conversion of short

forms of operators into full ones:

• restart −→ start p where p is the current process;

• stop −→ stop p where p is the current process;

• error −→ error p where p is the current process;

• set next state −→ set state s where s is the next state of the current process.
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Figure 1: Possible and impossible paths. They are shown by green and red arrows correspond-

ingly

The result of static analysis is a set of attributes. They are used in verification condition

generation to avoid the creation of VCs for impossible paths. They are defined for declarations

of processes, process states and statements included in the bodies of process state declarations.

Let p.A means the value of the attribute A of the declaration of process p, p.s.A does the value

of attribute A of declaration of the state s of process p, p.s.st.A does the value of attribute A

after execution of the statement st of state s of process p.

The following list describes evaluated attributes:

1. p.state := s – contains the current state of process p;

2. p.reachE := true/false – shows whether process p ever reaches error state;

3. p.reachS := true/false – shows whether process p ever reaches stop state;

4. p.startS := true/false – shows whether process p could start in stop state;

5. p.s.st.procChange := f – contains the partial function from process to {start, stop or error}

where, for example, f(p′)=start means that process p′ was started after execution of state-

ment p of process state p of process p;

6. p.s.st.reset := true/false – shows whether timer was reset;

Attributes reachE, reach and reset have false value by default. Attribute startS has default

value false for the first process and true for other processes. Attributes state and procChange

are not defined initially.

A general static analysis scheme is presented in figure 2. The algorithm takes an abstract

syntax tree (AST) of the analyzed program and sets initial attribute values to corresponding

statements. Then, the lifting algorithm is applied to evaluate attributes of more general con-

structions. After that, attributes of more complex properties are set. In conclusion, AST with

set attributes and attributes compatibility rules are provided to the VC generation algorithm.
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Figure 2: Static analysis scheme

3.1. Initial attribute arrangement

Firstly, we define attributes start, stop, error, reset. To do this we traverse AST of a

program and set attributes values in accordance on type of statement st:

if(st ≡ start p′) then

st.procChange.add(p′,start)

if (p ≡ p′) then st.reset := true

if(st ≡ stop p′) then

st.procChange.add(p′,stop)

if (p′≡p) then st.reset := true

if(st ≡ error p′) then

st.procChange.add(p′,stop)

if (p′≡p) then st.reset := true

if(st ≡ reset timer) then st.reset := true

if(st ≡ set state s′) then st.reset := true

where s and p are current state and process, respectively, and ≡ denotes syntactic coincidence.

Attributes reachE and reachS define whether a process ever reaches states stop and error

by being put into them by some processes. So initialization of these attributes is done by the

following algorithm:

if(∃p′∈processes(r)|∃s∈states(p′)|(error p∈body(s))

then p.reachE := true)

if(∃p′∈processes(r)|∃s∈states(p′)|(stop p∈body(s))

then p.reachS := true)

where r is a program, processes(r) returns list of processes of r, states(p) returns list of states

of process p and body(s) returns a list of all statements of state s.

3.2. Lifting algorithm

Lifting is an algorithm designed for evaluating more general properties by lifting attributes to

higher-level statements. Attributes may be lifted to them in two cases: if the attribute belongs
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to a statement that is part of a linear sequence of statements, or if the attribute appears at all

branches of a statement with several paths: if-else, switch-case.

For a statement sequence st lifting is done by the following algorithm:

f := ⊥; reset := false;

for st′ in statements(st)

if (st ’. reset) then reset := true;

f := f ∪ st′.procChange;

st.reset := reset; st.procChange := f;

where statements(st) returns a sequence of statements of compound statement st.

For a branching statement st, the algorithm has the following form:

reset := true; procChange := (first(statements(st))).procChange;

for st′ in statements(st)

if (!st′.reset) then reset := false;

procChange := procChange ∩ st′.procChange;

st.reset := reset; st.procChange := procChange;

where first(l) returns the first element of the list l.

3.3. Additional attribute arrangement

The definition of the attribute startS depends on the value of this attribute in previous

processes and the process starting in them. It is done by the following algorithm:

for p in processes(r)

if (∃ p′ ∈ processes(r)| p′.id < p.id ∧ p′.startS = false ∧

p ∈ first(states(p′)).start) then p.startS := false;

where id is the field defining the number of the process in the order of definition in the program.

In the following example (Fig. 3) processes P2 and P4 become with attributes startS equal

to false because these processes will be start in the first iteration by process P1. Process P3

remains with startS equal to true because it is executed before P4, so statement {startP3}

will take effect only on the second iteration.

The value of attribute state is defined during the generation of VCs. If the generation

algorithm reaches the state s of process p, the attribute p.state is set into the s.

3.4. VC generation

After all attributes are set and lifted to the corresponding structure verification condition

generation starts. The original VC generation algorithm is described in [6] and realized on

GitHub 1. It traverses the abstract syntax tree building up the list of preconditions acc and
1https://github.com/bearhug15/ReflexVCG/tree/before_analysis_add
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Figure 3: Attributes change due to start attribute

stack of marks made on statements which. Later when the formation of the current VC ends it

jumps to the next mark, drops excess preconditions, and continues VC generation from the new

place. Usage of attributes updates described algorithm. In addition to the acc, a passed list

is filled. Passed describes the passed path as a sequence of language constructs which allows

excluding some impossible continuations of this path, based on checking the compatibility of

values of attributes of the constructs. After the completion of VC generation and dropping of

excess preconditions excess path also dropped.

Updated VC generation function for statement st of state st of process p with checking of

VC possibility and filling of passed list of statements is done by the following algorithm:

if (checkComp(passed , p,s,st)) then

add(passed , st); updatePrec(st, acc);

else cutToMark(passed , acc);

where add adds structure st into passed list, checkComp checks whether attributes of st are

compatible with attributes of structures in passed path and return true if they are compatible,

cutToMark cuts passed and acc lists to last mark. updatePrec updates generated VC based

on the existing generation algorithm. The current realization of checkComp is done in table 1:

Realization of created algorithms is on Github 2.

4. Related works

The increasing complexity of programs has led to a significant rise in the number of ver-

ification conditions (VCs), posing a major challenge in deductive program verification. As

highlighted by Hähnle et al. [4] verification of cyber-physical systems, including programmable

logic controllers, is itself one of the modern challenges in the field of deductive verification,

and this issue only makes it harder. Additionally, various techniques aimed at simplifying VCs

2https://github.com/bearhug15/ReflexVCG
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Condition Return value

p.reachE = false ∧ p.state = error false

p.reachS = false ∧ p.startS = false ∧ p.state = stop false

∃p′, s′, st′ ∈ passed. p ∈ p′.s′.st′.start ∧ p.state ̸= first(p) false

∃p′, s′, st′ ∈ passed. p ∈ p′.s′.st′.stop ∧ p.state ̸= stop false

∃p′, s′, st′ ∈ passed. p ∈ p′.s′.st′.error ∧ p.state ̸= error false

∃st′ ∈ passed. p′.s′.st′.reset = true ∧ st ≡ {timeout . . .} false

Otherwise true

Table 1: Table of checkComp rules.

can inadvertently exacerbate this problem. For instance, Leino et al. [7] propose a method

that involves splitting a verification condition into multiple separate conditions, where the con-

junction of these conditions remains equivalent to the original. While such techniques may

offer potential benefits for program verification, they can complicate the situation for Reflex

programs. This complexity arises from the finite state machine abstraction inherent in the

Reflex language, which generates a control flow graph characterized by high coupling and low

cohesion. Consequently, splitting a single condition can lead to the fragmentation of numerous

conditional paths, necessitating the automatic discarding of irrelevant conditions at generation

time, which relies on various forms of static analysis.

Couchot [2] introduces a graph-based technique for reducing verification conditions, utilizing

two types of graphs: the constant dependence graph and the predicate dependence graph. These

graphs facilitate the checking of VC satisfiability and the discharge of unsatisfiable conditions.

However, this approach has notable drawbacks, including the requirement to construct a com-

plete VC prior to checking and its reliance on SAT solvers. Such dependencies can significantly

extend the VC generation process, making program development less efficient. In contrast, our

approach focuses solely on syntax analysis, which is simpler and more time-efficient.

Another perspective on the challenges we address involves identifying unreachable states.

In this context, a combination of process state values and timeout invocations is treated as a

single state, with transitions between these combinations representing state transitions through

iterations of the control loop. Several methods have been proposed to tackle this issue [1, 9].

They are based on three steps: 1)reachable state space over-approximation; 2) debugging; and

3) spurious solution detection. Changing in the last step allows us to vary the accuracy of
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methods to discard more unreachable states. The advantage of these methods is that they

may consider discrete time, which in our case is equivalent to loop iterations. However, these

methods require explicit state formulations, which can be memory-intensive and rely on slow

model-checking techniques. Modification for improvement in analysis accuracy also significantly

slows it.

Additionally, we can frame our problem as a context-free language (CFL) reachability prob-

lem and explore reachability analysis techniques [3, 8]. Given that the reachability of each

process state may be constrained by various statements from earlier parts of the program, this

approach resembles a variant of the all-pairs S-path problem. While applicable in scenarios

where unnecessary processing of stop and error states can be eliminated, this method lacks

completeness, as it does not adequately account for more complex program behaviors.

5. Conclusion

This paper presents our approach to reducing the amount of verification conditions corre-

sponding to the unreachable paths. We created a set of attributes associated with path elements

and a set of heuristics that detect incompatible combinations of attribute values on the paths.

In the future, we plan to expand this analysis with more attributes and heuristics to consider

more unreachable paths.
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