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In this paper, we formally describe real-time systems with an abstract scheduler using

Kripke structures. This formalization allows us to refine the abstract scheduler in its

terms. We illustrate this approach with a non-preemptive global fixed priority scheduler

(NE-GFP). We also formulate a safety property for real time systems using linear temporal

logic LTL. We implement our formalization of real-time systems with a NE-GFP scheduler

in language Promela used in the SPIN verification tool and make experiments for proving

or disproving the safety property to evaluate the effectiveness of our approach.
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1. Introduction

Classical real-time systems proposed in [11] are a set of tasks that occur from time to time

with period P or more, have a deadline D and execution time C. In the modern world, such

systems arise literally at every step – these are embedded systems, and Internet of Things

systems, and technological processes, business processes, and automatic control systems in

the automotive industry, avionics, space industry, etc. These tasks can use the resources of

one or more processors. As a rule, there are significantly fewer processors than tasks, so the

question of scheduling their execution naturally arises. There are different ways to specify

schedulers depending on the subject domain. For example, in some cases it is possible to allow

interruption of low-priority tasks, while in other cases such an approach can lead to a system

failure. The main question for real time systems described in terms of execution time, deadline

and periodicity is the question of safety: is it true that in a given set of tasks with fixed features

and a given scheduler, no task will ever miss its deadline?

This problem has been solved for many years for various real time systems and various

schedulers. For systems with only one processor, the problem has been studied quite well [11].

However, for multiprocessor systems, the problem of a very large number of task behavior vari-

ants arises, and exact methods for checking the safety property turn out to be poorly applicable

in an explicit form. Approaches based on near-optimal scheduling have been proposed [2], but
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exact schedulers are preferable and exact approaches continue to develop [3, 4, 8, 12, 17].

In addition to the development of specialized methods for precise schedulability verification,

there is a small number of works using general formal methods for analyzing programs and sys-

tems. In particular, [9, 16] proposes the representation of static-priority global multiprocessor

scheduling and non-Preemptive self-suspending real-time tasks using timed automata, which

make the verification of the safety of real time systems rather resource-consuming. In [13], a

special case of a real time system was modeled in the Promela language of the SPIN verification

tool [7], and in [15] authors present a Promela model for real-time system on a single-processor.

In [6], graph games is used to make easier the reachability problem in exact shedulability test.

In our work, we formally represent real-time systems with an abstract scheduler as Kripke

structures, which are used to verify parallel and distributed systems using model checking.

Such formalization allows us to refine the abstract scheduler in terms of the proposed Kripke

structure and obtain specific real-time systems. We present an example of refining the abstract

scheduler to a non-preemptive GFP scheduler. In addition, we formulate the safety property

in terms of liner temporal logic LTL [5]. We model our formalization of real-time systems with

a non-preemptive GFP scheduler in the Promela language of the SPIN and conduct a series of

experiments to prove or disprove the safety property to clarify the performance of our method.

The rest of the paper has the following structure. In Section 2, we recall base definitions of

real-time systems and scheduling and formalise real-time systems as Kripke structures. Section

3 considers features of the Promela and describes the Promela model for a real-time system

with the non-preemptive global fixed priority scheduler. The conclusion is given in Section 4.

2. A Real-time Kripke Structure

We consider that a real-time system is a set of tasks T = (T1, ..., Tn), where each task

Ti = (Ci, Di, Pi) has an execution time Ci, a relative deadline Di, and a minimum period Pi.

Each task Ti ∈ T can generate a potentially infinite number of jobs, every of which requires

Ci units of time. These jobs must be completed before Di time units after the release time.

Release time instants are separated by at least Pi time units. If there are no other restrictions

on jobs’ releases, these tasks are refereed as sporadic tasks. In this paper, we study the base

case of real-time systems in which all task parameters are integers. All jobs are executed on m

processors. If the number processors is less then number of tasks (m < n), we need a scheduler

to decide which task’s job to run next. We assume that scheduling decisions are taken at
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discrete time instants starting from 0. The schedulability test problem is to detect if every jobs

of every task in the real-time system is finished before its deadline. For the rest of the paper

we fix above real-time system T .

We would like to deal with real-time system T as with a finite model to apply model checking

techniques. Inspired by the paper [1], we introduce current values of task parameters as follows.

For every task i ∈ T , let tuple si = (i, C ′
i, D

′
i, P

′
i , reli, badi) be a state of task i, where

• C ′
i ≤ Ci is time left until a job of this task ends;

• D′
i ≤ Di is time until the deadline of a job of this task;

• P ′
i ≤ Pi is time until the the next admissible release of a job of this task;

• reli ∈ B is boolean variable which marks a job release: it becomes true when task i

release a job, and it becomes false when the job is completed.

• badi ∈ B is boolean variable which marks that a job misses the deadline soon: it is false

if C ′
i ≤ D′

i, and it becomes true otherwise.

For brevity, we refer to boolean constants true and false as 1 and 0, respectively. For rep-

resenting the processors’ load, we also introduce variable busy: a number of jobs currently

executing at some moment (busy ≤ m).

A scheduler must exactly define conditions under which each task can execute its job and

conditions for permitting a job execution. There are many types of schedulers, for example,

• Global fixed priority (GPF). The set of tasks are ordered: T1 has the highest priority, Tn

has the lowest priority and a major task job has priority over a minor task job;

• Earliest deadline first (EDF). The task with the closest deadline has the highest priority;

• Non-preemptive. No job can be interrupted by other job (even from a major task);

• Preemptive. A job can be interrupted by other job from a major task.

In our Kripke structure, for modeling an abstract scheduler we use an abstract predicate

go(i, s, t) that is true if task i can execute the job at state t which is a successor of state

s, and false otherwise. Further, we specify go(i, s, t) for the non-preemptive GPF scheduler.

For calculating the change of processor load busy, we also need to compute a modification

number – a quantity of tasks which jobs are just finished or released and just admitted to

execution by the scheduler. For this, we introduce predicate fin(i, s) for just finished jobs that

is true if task i finishes its job in state s, i.e. s.C ′
i = 0, and false otherwise. To compute the

modification number, we treat go(i, s, t) and fin(i, s) as integer numbers (1 for true and 0 for

false).
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Let Prop be a set of propositions consisting of arithmetic comparisons of current values of

task parameters and propositions about a number of running jobs.

Now, we define real-time system T with an abstract scheduler as a real-time structure MT =

(ST , sT0 , R
T , LT ), where

• the finite set of states ST =
∏n

i=1({i} × [0..Ci]× [0..Di]× [0..Pi]× B× B)× [0..m];

for global state s ∈ ST , si = (i, C ′
i, D

′
i, P

′
i , reli, badi) is a projection of s on task i, and

s.C ′
i, s.D′

i, s.P ′
i , s.reli, s.badi and s.busy are projections of s on its components;

• the initial state sT0 =
∏n

i=1{(i, Ci, Di, Pi,0,0)} × {0};

• the total transition relation RT ∈ ST × ST is defined by composing relations for i-task

projections of global states s and t. (s, t) ∈ RT iff t.busy = s.busy +
∑n

i=1(go(i, s, t) −

fin(i, s)) and one of the following points holds:

1. si = (i, Ci, Di, Pi,0,0), and

(a) ti = (i, Ci, Di, Pi,0,0) – task i do nothing;

(b) ti = (i, Ci, Di − 1, Pi − 1,1,0), and ¬go(i, s, t) – task i releases the job and it is

not started;

(c) ti = (i, Ci − 1, Di − 1, Pi − 1,1,0), and go(i, s, t) – task i releases the job and it

is immediately started;

2. si = (i, C ′
i, D

′
i, P

′
i ,1,0), ti = (i, C ′

i, D
′
i − 1, P ′

i − 1,1,0) with s.D′
i > 0, and ¬go(i, s, t)

– task i is waiting for permitting its job;

3. si = (i, C ′
i, D

′
i, P

′
i ,1,0), ti = (i, C ′

i − 1, D′
i − 1, P ′

i − 1,1,0) with 0 < s.C ′
i < Ci,

0 < s.D′
i < Di, s.C ′

i ≤ s.D′
i, and go(i, s, t) – task i executes a job;

4. si = (i, 0, D′
i, P

′
i ,1,0), or si = (i, Ci, D

′
i, P

′
i ,0,0), or si = (i, Ci, Di, P

′
i ,0,0), and

(a) if s.P ′
i = 0

i. ti = (i, Ci − 1, Di − 1, Pi − 1,1,0), and go(i, s, t) – task i finishes its job

normally, and it is releasing and starting its job at this moment;

ii. ti = (i, Ci, Di−1, Pi−1,1,0), and ¬go(i, s, t) – task i finishes its job normally,

and it is releasing and not starting its job at this moment;

iii. ti = (i, Ci, Di, Pi,0,0) – task i finishes its job normally, and it is not releasing;

(b) if s.D′
i = 0 and s.P ′

i > 0 then ti = (i, Ci, Di, P
′
i − 1,0,0) – task i finishes its job

normally and waiting for the next release;

(c) if s.D′
i > 0 then ti = (i, Ci, D

′
i − 1, P ′

i − 1,0,0) – task i finishes its job normally

and waiting for the next release;
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5. si = (i, C ′
i, C

′
i − 1, P ′

i ,1,0) and ti = (i, C ′
i, C

′
i − 1, P ′

i ,0,1) – a job of task i will miss

the deadline definitely;

6. si = (i, C ′
i, C

′
i − 1, P ′

i ,0,1) and ti = (i, C ′
i, C

′
i − 1, P ′

i ,0,1) – task i is in the bad state

forever.

• evaluation function L : Prop −→ 2S
T is standard: it assigns comparison propositions to

those states in which they are true.

To refine the abstract scheduler, we need to specify predicate go(i, s, t). This predicate for

all types of schedulers uses information about the load of processors busy and the system tasks:

their parameters, priorities, time from releases, time until deadlines, etc. All this information

is available at the system states s and t, hence go(i, s, t) can be formulated in terms of our

real-time Kripke structures. For example, in the case of non-preemptive global fixed priority

scheduler, predicate go(i, s, t) = (|Maji| + s.busy < m), where Maji = {j ∈ [1..n] | j <

i ∧ ((s.relj = 1 ∧ s.Cj = Cj) ∨ (s.relj = 0 ∧ t.relj = 1))} is a set of released jobs with higher

priority that have not yet started.

We mark a state of real-time system T with D′
i = C ′

i−1 for some task i as a bad state because

in this case there is no time left to meet the deadline. Bad states in the Kripke structure MT

is a set Bad_States = {s ∈ ST | ∃i ∈ [1..n] : s.badi = 1}. Let proposition bad be true in state

s if
∨n

i=0(s.badi = 1) is true, and be false otherwise. Hence, the exact schedulability test for

real-time system T is to check if LTL formula ΦT = G(¬bad) is satisfiable in MT : the real-time

systems never reaches a state in which some task in its bad state.

3. A Real-time System with a Non-preemptive Global Fixed Priority

Scheduler in Promela

In this section, we describe implementation of real-time structure MT for real-time system

T in Promela – an input language of model checker SPIN. Promela language is used to describe

parallel communicating processes based on the CSP formalism [10]. Promela program consists

of parallel processes communicating through channels or shared variables. The execution of

a set of Promela parallel processes exploits the interleaving semantics. Interleaving can be

bounded by atomic and d_step statements, which permit interruption of specified sequence

of process actions. The Promela language includes blocking control-flow statements if and

do. Promela model can be verified by model checker SPIN against LTL requirements, hence it

assumes only finite types for model variables. Our real-time structure MT has a finite number
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of states and its representation in Promela does not require data abstractions.

We model MT in Promela to perform exact schedulability test, i.e. to detect if every jobs

of every task is completed before its deadline. We specify an abstract scheduler of MT as a

non-preemptive global fixed priority scheduler. For simplicity, we also set the period Pi be equal

to Di for every i. Below, we give the implementation details skipping some code for brevity.

The initial Promela process starts the scheduler and NumPrc number of tasks with synthetic

parameters Ci and Di naming each task by its number i. Specific non-synthetic real-time

systems can be modelled by operator run task(i, C_i, D_i) for particular Ci and Di.
1 init{
2 atomic{
3 run scheduler ();
4 for (i : 0 .. NumPrc -1){ run task(i, i+1, 2*(i+2)); }}
5 }

Listing 1: Promela-process for launching the system

Following the definition of MT , we describe tasks that release and execute their jobs as

Promela processes that implement transition relation RT almost directly. For example, the

Promela code for Point 2 of the definition is given in Listing 2 (lines 8–20). In green comments

of this listing, we give explanations of the task actions. If a task fails its deadline, it sets special

boolean variable BAD to true (line 26).
1 proctype task (byte me; byte C; byte D) {
2 bool go = false; // predicate go(i,s,t) computed by the scheduler
3 bool release = false; // a variable for marking job realeases
4 byte C_cur = C; // C’ -- time left until a job ends
5 byte D_cur = D; // D’ -- time until the deadline
6 do
7 :: atomic{ C_cur == C && D_cur == D && !release -> // can release a job
8 if
9 :: release = true; // releases a job

10 request ! me // requests the scheduler for job execution
11 work ++; // action for synchronization step
12 responce[me] ? go // receives the responce from the scheduler
13 if
14 :: go ->
15 C_cur --; D_cur --; busy ++; // executes the job , point 2.c
16 :: else -> D_cur --; // waits , point 2.b
17 fi
18 :: work ++; // do nothing , point 2.a
19 fi
20 responce[me] ? _ // action for synchronization step
21 }
22 :: atomic{ C_cur == C && D_cur > 0 && D_cur < D && C_cur <= D_cur && release

-> // release and not started
23 ...
24 :: atomic{ C_cur > D_cur && release -> // fails deadline
25 BAD = true; // point 6
26 break;
27 }
28 od
29 }

Listing 2: Promela-process for tasks
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In our model, the scheduler gives permission for job executions and synchronises Promela

processes for tasks to prevent unwanted interleaving. First, the scheduler collects requests

for job executions in boolean array req_prc (lines 4–6). Second, following non-preemptive

and GFP settings, the scheduler knowing the number of free processors (line 10) scans the

array of requests from its first element in the order (line 11). If it finds that the next in

line task i asks for its job execution and there are free processors (line 13), it sends signal

go to this task (lines 14) and decreases the number of free processors (lines 15). When the

number of free processors becomes zero (line 16), the scheduler sends the rest of requesting

tasks the message with the prohibition of its job execution (line 17). After scheduling actions,

this Promela process performs synchronization between tasks, resetting the number of work

tasks executing their step and sending them permission to continue working (line 24). The

scheduler’s scanning, communication and synchronisation actions are placed in an atomic block,

the sequence of actions of which is treated by SPIN as a single computational step. This placing

provides synchronisation between the tasks and the scheduler and decreases the model checking

computational complexity.
1 proctype scheduler (){
2 ...
3 do
4 :: atomic{ work > 0 && !end -> ...
5 request ? num; req_prc[num] = true; // collects requests
6 ... }
7 :: atomic{ work == NumPrc && empty(request) -> ...
8 if
9 :: NumReqs > 0 -> // there are some requests

10 free = MAX - busy; // number of free processors
11 for (i : 0 .. NumPrc - 1){
12 if
13 :: req_prc[i] && free != 0 ->
14 responce[i] ! true; ... // go!
15 free --;
16 :: req_prc[i] && free == 0 ->
17 responce[i] ! false; ... // don’t go!
18 :: else -> skip;
19 fi
20 } ...
21 :: else -> skip; // no requests
22 fi
23 // actions for synchronization step:
24 work = 0; for (i : 0 .. NumPrc - 1){ responce[i] ! true }
25 }
26 :: BAD -> break;
27 od
28 }

Listing 3: Promela-process for the scheduler

To exactly test a real-time system for schedulability, we check LTL formula []!BAD in SPIN

tool. If this formula is satisfiable in the real-time system, no its task misses its deadline.

We made some experiments with SPIN model checker (version 6.5.1), on a CPU with 4 cores
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and 8 GB RAM. We definitely prove the safety of our real-time system for 5 tasks and 4

processors. When we increase the number of tasks by one, the SPIN verification time becomes

too long (more then an hour) for proving safety. But if a real-time system is unsafe, SPIN

discovers it very quickly: for 40 tasks and 20 processors it takes only 0.074 seconds to find the

counterexample (the sequence of task releases leading to missing some deadline).

The complete Promela model for real-time systems with the non-preemptive global fixed

priority scheduler is located in the repository [18].

4. Conclusion

In this paper, we formalise real-time systems with an abstract scheduler as a Kripke structure

– the real-time Kripke structure. We show that this abstract scheduler can be refined in terms

of a real-time Kripke structure. In particular, we present a non-preemptive global fixed priority

scheduler by specifying conditions under which tasks’ jobs are started.

In future, we plan to refine the abstract scheduler for other types of schedulers, i.e. preemp-

tive GPF scheduler, preemptive and non-preemptive EDF scheduler, etc. These specifications

can used for modeling real-time systems in input languages of model checkers in order to perform

exact schedulability tests and for teaching. We also plan to use our formalisation of real time

systems to develop new effective algorithms for the exact schedulability test, e.g. backtracking

based algorithms.
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