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Process-oriented programming is an approach to the development of control software

in which a program is defined as a set of interacting processes. PoST is a process-oriented

language that extends ST language from the IEC 61131-3 standard. In the field of control

software development, formal verification plays an important role because of the need to

ensure the high reliability of such software. Deductive verification is a formal verification

method in which a program and requirements for it are presented in the form of logical

formulas and logical inference is used to prove that the program satisfies the requirements.

Control software is often subject to temporal requirements. We formalize such requirements

for process-oriented programs in the form of control loop invariants. But control loop

invariants representing requirements are not sufficient for proving program correctness.

Therefore, we add extra invariants that contain auxiliary information. This paper addresses

the problem of automating deductive verification of process-oriented programs. We propose

an approach in which temporal requirements are specified using requirement patterns that

are constructed from basic patterns. For each requirement pattern the corresponding extra

invariant pattern and lemmas are defined. The proposed approach allows us to make the

deductive verification of process-oriented programs more automated.

Keywords: deductive verification, temporal requirements, requirement pattern, loop

invariant, control software, process-oriented programming

1. Introduction

Process-oriented programming [27] is a promising method for developing control software.

This programming paradigm allows one to describe a program as a set of interacting processes.

Each process is an extended finite state machine and is defined by a set of named states that

contain the program code. Besides the active states defined in the code, each process has

two inactive states: the normal stop state STOP, and the error stop state ERROR. Program

execution follows a cyclical pattern; in each iteration of the control loop, all program processes

are executed sequentially in their current states. The duration a process remains in its current

state is controlled by a timeout statement. A timer is associated with each process to control
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this time. The timer resets whenever the process transits to a different state, and it can also

be reset programmatically. Processes have the ability to start and stop other processes, as well

as to check whether another process is active or inactive. When starting, a process is in its

state defined first in the program text. When the program starts, its first process starts while

all subsequent processes remain in the state STOP.

PoST language [28] is a process-oriented language that extends ST language from the IEC

61131-3 standard [1]. A poST program consists of variable declarations and process definitions.

A variable declaration contains declaration of input variables VAR_INPUT whose values are

changed by the environment at each iteration of the control loop, output variables VAR_OUTPUT

that define control signals or local variables VAR. A process definition contains a sequence of

state definitions.

Control software requires formal verification because it has high reliability requirements.

Deductive verification [14] is one of the formal verification methods in which requirements are

formalized in the form of logical formulas, verification conditions that are logical formulas whose

truth guarantees the program correctness are generated, and then the verification conditions

are proved. For each loop in the program, a loop invariant must be specified that is true when

entering the loop and after each its iteration.

An important class of requirements for control software are temporal requirements. To spec-

ify temporal requirements for process-oriented programs, an approach in which requirements

are specified as control loop invariants is proposed in [2]. When describing requirements a

program is considered as a black box, i. e. the requirements do not contain information about

program structure (process states, values of process timers and local variables). However, such

information is needed for proving verification conditions. Therefore, we present a control loop

invariant in the form of conjunction of a formalized requirement and an extra invariant con-

taining information about the program structure. We specify requirements and extra invariants

in the previously developed temporal requirement language DV-TRL [8] that is a variant of

typed first-order logic. This language is based on the update state data type values of which

represent histories of all changes in a program. Specialized functions allow using variables val-

ues at different points in time in requirements. It gives the opportunity to specify temporal

requirements.

Only verification condition generation can be fully automated. The problems of loop invari-

ant synthesis and proving verification conditions are undecidable in general. Nevertheless there
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are approaches to solving these problems in particular cases.

Earlier we developed a set of temporal requirement patterns in our language DV-TRL

[7]. For each requirement pattern, a corresponding extra invariant pattern used for speci-

fying requirement-dependent invariants and a set of lemmas needed for proving verification

conditions were defined. We also developed a set of requirement-independent extra invariant

patterns. This allows automating deductive verification of process-oriented programs with re-

quirements satisfying these requirement patterns. However there are requirements that do not

satisfy previously developed patterns. It has been noted that previously developed patterns

and patterns that could describe new classes of requirements can be made up of a small num-

ber of basic patterns. This paper presents an approach to automation of deductive verification

of process-oriented programs in which requirement patterns can be constructed by combining

basic patterns and corresponding extra invariant patterns and lemmas with their proofs can be

generated automatically.

This paper has the following structure. Section 2 describes our approach to automation of

deductive verification. Section 3 demonstrates our approach on an example. Section 4 discusses

related works on automated loop invariant generation. Section 5 summarizes the results.

2. Approach to Automation of Deductive Verification

This section describes our approach to automation of deductive verification of process-

oriented programs based on patterns and lemmas. The relationship between different kinds

of patterns and lemmas is shown in Figure 1. In this approach, patterns are used to repre-

sent requirements and extra invariants. We use requirement patterns to specify requirements

and extra invariant patterns to specify extra invariants. Extra invariants and their patterns

are divided into requirement-dependent and requirement independent ones. For each pro-

gram, several requirement-independent extra invariants can be defined. For each requirement,

one requirement-dependent extra invariant is defined. Requirement patterns and requirement-

dependent extra invariant patterns are divided into basic and derived ones. All derived re-

quirement patterns and extra invariant patterns are defined by combining basic requirement

and extra invariant patterns respectively. Each basic (derived) requirement pattern has a cor-

responding basic (derived, respectively) extra invariant pattern and a set of lemmas associated

with it. Lemmas for derived patterns are proved using lemmas for basic patterns and used for

proving verification conditions. This allows automatically constructing the derived extra invari-
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Fig. 1. Relationship between different kinds of patterns and lemmas.

ant pattern corresponding to the derived requirement pattern and lemmas using the definition

of the requirement pattern as well as automatically proving these lemmas. Thus, an extra

invariant is a conjunction of requirement independent invariants and a requirement dependent

invariant. For proving verification conditions, we define proof scripts. These scripts, together

with the lemmas allow automatically proving verification conditions.

Earlier we developed a verification condition generator for programs in poST language [28].

In this work, we have developed algorithms for constructing extra invariant patterns for derived

requirement patterns, generating lemmas for them and proving these lemmas. We plan to

develop a verification tool based on these algorithms and the verification condition generator.

User interaction with the verification tool is shown in Figure 2. First, the user determines

requirement-independent extra invariants based on the process-oriented program being verified.

To specify each invariant, the user selects a requirement-independent extra invariant pattern and



System Informatics (Системная информатика), No. 25 (2024) 15

User

Specify parameters
for requirement-

independent extra
invariants

Select requirement

No

Yes

Is there an appropriate derived
requirement pattern?

Define a new derived
requirement pattern

Generate the derived
requirement-

dependent extra
invariant pattern

Generate lemmas

Prove lemmas

Verification tool

Specify parameters
for requirement

pattern and extra
invariant pattern

Generate verification
conditions

Generate proof
scripts

Execute proof scripts

No

Yes

Proven?Refine patterns
parameters 

Yes

No

Are there any
unverified

requirements?

Isabelle/HOL

Refine parameters for
requirement-

independent extra
invariants

Choose and save necessary new
pairs of derived requirement pattern

and dependent extra invariant pattern
with associated lemmas

Fig. 2. User interaction with the verification tool.

specifies parameter values for it. Then the fol-

lowing actions are performed for each require-

ment to be verified. The user selects a de-

rived requirement pattern or creates it using

basic patterns if there is no appropriate pat-

tern. In the latter case, the verification tool

generates the corresponding derived extra in-

variant pattern and lemmas that are proved in

Isabelle/HOL [20]. For each derived require-

ment pattern, there is a natural language de-

scription of behavior that can be specified us-

ing this pattern and examples of known uses.

For each basic requirement pattern, there is a

natural language description of propositions

specified by this pattern and examples of de-

rived patterns in the definitions of which this

basic pattern is used. This information al-

lows a user to identify similar requirements

and choose a pattern.

Each basic pattern is parameterized by two

update states: s1 (an update state in which

the pattern instance should be true) and s

(the update state in which the loop invariant

should be true). The definition of a basic re-

quirements pattern R has the following form:

R ≡ λs.λ(s1, p1, ..., pm, A1, ..., An).

R′(s1, s, p1, ..., pm, A1(s, rj1), ..., An(s, rjn)),

where p1,..., pm are constant parameters, R′

is a parameterized formula of the DV-TRL

language without negations in which the for-

mula parameters A1,..., An do not appear in

premises of implications, rji (i=1,..., n) are
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variables of the update state data type bound

by quantifiers in R′ such that rji ≤ s and A1,..., An are formula parameters whose values are

requirement parameter formulas defined as follows: 1) atomic formulas and their negations are

requirement parameter formulas, 2) if A1 and A2 are requirement parameter formulas, then

λ(s, s1).A1(s, s1)∧A2(s, s1) and λ(s, s1).A1(s, s1)∨A2(s, s1) are requirement parameter formu-

las, 3) if P is a requirement pattern with m′ constant parameters and n′ formula parameters,

p1,..., pm′ are constants of the appropriate types and A1,..., An′ are requirement parameter

formulas, then λ(s, s1).P (s, s1, p1, ..., pm′ , A1, ..., An′) is a requirement parameter formula.

The definition of a derived pattern has the following form:

R ≡ λs.λ(p1, ..., pm, A1, ..., An).R
′(s, p1, ..., pm, Ah1 , ..., Ahu , Aj1(s), ..., Ajv(s)),

where s is the update state in which the requirement should be fulfilled; p1,..., pm are constant

parameters; Aj1 ,.., Ajv are formula parameters that are requirement parameter formulas; Ah1 ,...,

Ahu are formula parameters whose values are pattern parameter formulas that are defined as

follows: 1) atomic formulas parameterized by one update state and their negations are pattern

parameter formulas, 2) if A1 and A2 are pattern parameter formulas then λs1.A1(s1) ∧ A2(s1)

and λs1.A1(s1)∨A2(s1) are pattern parameter formulas; R′ is a parameterized formula that has

the form P (s, p1, ..., pm′ , A1, ..., An′) where P is a derived requirement pattern with m′ constant

parameters and n′ formula parameters, p1,..., pm′ are constants of the appropriate types and

A1,..., An′ are parameterized formulas of the appropriate types. A derived requirement pattern

can also be combined with other patterns. But in general, the value of not every parameter

of a derived pattern may contain nested patterns. In this scheme, only the values of the the

parameters Aj1 ,..., Ajr ({j1; ...; jr} ⊂ {1; ...;n} can contain nested patterns. Values of other

formula parameters Ah1 ,..., Ahu (r + u = n) cannot contain nested patterns.

Next, the user specifies parameter values for these patterns. After the requirement has been

formalized and a requirement-dependent extra invariant has been defined using patterns, the

verification tool generates verification conditions based on the process-oriented program and

proof scripts for proving the verification conditions. These proof scripts are executed in the

Isabelle/HOL. If the verification conditions have been proved, the user proceeds to verification

of another requirement, if any. If some verification conditions are not proved, the user refines

pattern parameters, and the verification tool proceeds to re-generation of verification conditions.

If there are no unverified requirements, the verification tool saves necessary pairs of derived
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requirement and extra invariant patterns with associated lemmas, and the verification of the

program is completed.

We refer a reader to our report1 for more details about our approach. In this paper, we only

demonstrate our approach on an example.

3. Example

PROGRAM Controller 
  VAR_INPUT 
    hands : BOOL; 
  END_VAR 
  VAR_OUTPUT 
    dryer : BOOL; 
  END_VAR 
  PROCESS Ctrl 
    STATE waiting 
      IF hands  THEN 
        dryer := TRUE; 
        SET NEXT; 
      ELSE 
        dryer := FALSE; 
      END_IF 
    END_STATE 
    STATE drying 
      IF hands  THEN 
        RESET TIMER; 
      END_IF 
      TIMEOUT T#1s THEN 
        SET STATE waiting; 
      END_TIMEOUT 
    END_STATE 
  END_PROCESS 
END_PROGRAM 

 

Fig. 3. Hand dryer

control program in

poST language.

In this section, we consider an example of constructing a derived re-

quirement and the corresponding extra invariant pattern and specifying a

requirement and extra invariants according the patterns.

Let us consider a hand dryer control program as an example. The

hand dryer includes a sensor indicating whether there are hands, a fan

and a heater. The program receives the input signal from the sensor and,

depending on the input signal, controls the fan heater. If the hands appear,

the fan heater turns on. If the hands are removed, then after a certain

time the fan heater turns off.

The hand dryer control program is presented on Figure 3:

Two variables are declared in the program: the input variable hands,

which shows the presence of hands under the fan heater, and the output

variable dryer, which determines whether the fan heater is turned on.

One process Ctrl is defined. It has two states waiting and drying. In

the state waiting, the presence of hands is checked. If there are hands,

the fan heater turns on and the process Ctrl transits to the state drying. If the hands are

absent, the fan heater turns off. In the state drying, the presence of hands is also checked.

If there are hands, the timer of the process is reset. The timeout is set in this state. After 1

second, the process Ctrl transits to the state waiting.

The following requirement on the hand dryer control program is needed to be verified: "If

there are no hands, then the fan heater should turn off after no more than 1 second if the hands

do not reappear during this time".

The following designations are used in the patterns discussed below:

• s, s1 . . . sn, r, r1 . . . rm are states;

• A1,A2,A3 are arbitrary logical formulas;

1https://github.com/ivchernenko/PSSV2024-report
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• p(s) returns the previous external state. An external state is a state at the point of transfer

of variable values from controller to control object in the control loop. Otherwise, the

state is internal ;

• s ≤ r returns true if s = r, or s ≤ p(r);

• s1 ≤ . . . ≤ sn is short for s1 ≤ s2 ∧ . . . ∧ sn−1 ≤ sn;

• s < r returns true if s ≤ r and s ̸= r

• e(s) returns true if state s is external;

• n(s1, s2) returns the number of external states between states s1 and s2;

• s[x] is a value of program variable x in state s;

• getPstate(s, p) is the state of process p in update state s;

• ltime(s, p) is the value of the timer of process p in state s;

• consecutive(s1, s2) returns true if e(s1) ∧ e(s2) ∧ s1 ≤ s2 ∧ n(s1, s2) = 1.

Let us describe verification of the program step by step.

The first step of verification is determining requirement independent extra invariants. One

of the requirement-independent extra invariant patterns states that if process p is in state q,

variable x has value v. This pattern is defined as follows:

λs.getPstate(s, p) = q −→ s[x] = v

The following property of the hand dryer control program can be specified using this pattern:

"If the process Ctrl is in the state drying, the variable dryer has the value TRUE". The

parameters have the following values:

p ≡ Ctr l ; q ≡ drying ; x ≡ dryer ; v ≡ True .

Next, the verification of the requirement formulated above is performed. This requirement

satisfies the following derived requirement pattern: "If event A1 has occurred, then event A3

should occur no more than after time t and after the occurrence of A1 and before the occurrence

of A3, the condition A2 should be true". This pattern is defined as follows:

DRP (s, t, A1, A2, A3) ≡

BRP2(s, s, (λr2r1.¬A1(r1) ∨BRP1(r2, r1, t, A2, A3))) .

Here, s is an update state in which the requirement should be satisfied, t is a constant

parameter, A1, A2 and A3 are formula parameters, and a value of A1 cannot contains nested

patterns and values of A2 and A3 can. In this definition, the following two basic requirement

patterns BRP1 and BRP2 defined in the knowledge base are used.

The first pattern BRP1 defined below asserts that no later than time t after the start of the
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time counting in state s1, event A2 will occur and from the start of the time counting to the

occurrence of event A2, condition A1 is fulfilled.

BRP1(s, s1, t, A1, A2) ≡

n(s1, s) ≥ t −→

(∃r2.e(r2) ∧ s1 ≤ r2 ≤ s ∧ n(s1, r2) ≤ t ∧A2(s, r2)∧

(∀r1.(e(r1) ∧ s1 ≤ r1 ≤ r2 ∧ r1 ̸= r2 −→ A1 (s, r1 ) ) ) ) ,

In this definition, s and s1 are the update states in which a control loop invariant and the

pattern instance are satisfied respectively, t is a constant parameter, and A1 and A2 are formula

parameters. The inequality n(s1, s) ≥ t in the premise is necessary because if time t has not

passed since the start of the countdown in state s1, then event A2 may not occur until the final

state s. This definition asserts that there is an external state r2 between the states s1 and s

such that the time elapsed from state s1 to state r2, no more than t and A2 is satisfied in the

state r2. Moreover, for each external state r1 between the states s1 and r2, including s1, but

excluding r2, the condition A1 is satisfied.

The second pattern BRP2 defined below asserts that a condition A1 should always be true

between iterations of the control loop up to the current state s1.

BRP2(s, s1, A1) ≡

∀r1.e(r1) ∧ r1 ≤ s1 −→ A1(s, r1)

In this definition, s and s1 are the update states in which a control loop invariant and the

pattern instance are satisfied respectively, A1 is a formula parameter. This definition asserts

that the condition A1 is satisfied in each external update state up to the state s1.

In the definition of the derived requirement pattern DRP, the instance of the pattern BRP2 is

satisfied in the state s because the instance is the control loop invariant. The bound variables

r2 and r1 correspond to the update states in which the control loop invariant and the parameter

A1 of the pattern BRP2 are satisfied respectively. The value of the parameter A1 of the basic

pattern BRP2 is the disjunction. Its first disjunct is the negation of the derived requirement

pattern parameter A1. The second disjunct is an instance of the pattern BRP1 that is satisfied in

the update state r1 and the values of the parameters t, A1 and A2 of which are the parameters

t, A2 and A3 of the derived pattern respectively.

The basic extra invariant pattern BIP1 corresponding to the basic requirement pattern BRP1

is defined as follows:

BIP1(s, s1, t, t1, A1, A2)

(∃r2.e(r2) ∧ s1 ≤ r2 ∧ r2 ≤ s ∧ n(s1, r2) ≤ t ∧A2(s, r2)∧

(∀r1.e(r1) ∧ s1 ≤ r1 ∧ r1 < r2 −→ A1(s, r1)))∨
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n(s1, s) < t1(s)∧

(∀r1.e(r1) ∧ s1 ≤ r1 ∧ r1 ≤ s −→ A1(s, r1))

An instance of this extra invariant pattern asserts that the corresponding instance of the re-

quirement pattern is fulfilled, but it also additionally asserts that the maximum waiting time

for the event A2 in state s is t1(s). In this definition, s and s1 are the update states in which

a control loop invariant and the pattern instance are satisfied respectively, t is a constant pa-

rameter, its value in an instance of the pattern BIP1 is equal to the value of the parameter t in

the corresponding instance of the pattern BRP1, t1 is an additional parameter that is a function

depending on s, A1 and A2 are formula parameters, their values are not equal in general, but

related to the values of the parameters A1 and A2 respectively in the corresponding instance

of the pattern BRP1. This definition asserts that either there is an external state r2 between

the states s1 and s such that the time elapsed from state s1 to state r2 is no more than t, A2 is

satisfied in the state r2 and for each external state r1 between the states s1 and r2, including s1,

but excluding r2, the condition A1 is satisfied or the time t1(s) has not passed after the start

of the countdown in the state s1 and for each external state r1 between s1 and s, the condition

A1 is satisfied in r1.

The basic extra invariant pattern BIP2 corresponding to the basic requirement pattern BRP2

coincides with BRP2 for s1 = s, i. e., BIP2 is defined as follows:

BIP2(s,A′
1) ≡

∀r1.e(r1) ∧ r1 ≤ s −→ A′
1(s, r1)

This pattern is parameterized by one update state s because an instance of this pattern is an

extra invariant, and it is satisfied in the state s. The value of the parameter A1 in the pattern

BIP2 is not equal in general, but related to the value of the parameter A1 in the corresponding

instance of of the pattern BRP2.

After the user has defined the derived requirement pattern, the corresponding derived extra

invariant pattern DIP is constructed. It is defined as follows:

DIP (s, t, t1, A1, A2, A3) ≡

BIP2(s, (λr2r1.¬A1(s1) ∨BIP1(r2, r1, t, t1, A2, A3)))

In this definition, s is the update state in which the extra invariant is satisfied, t is a constant

parameter, its value is equal to the value of the parameter t in the corresponding instance of the

pattern DRP, t1 is an additional parameter that is a function depending on the update state s,

A1, A2 and A3 are formula parameters, and the value of the parameter A1 is equal to the value

of the parameter A1 in the corresponding instance of the pattern DRP and the values of A2 and
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A3 are not equal in general, but related to the values of the parameters A2 A3 respectively in

the corresponding instance of the pattern DRP. The instance of the pattern BIP2 is satisfied in

the state s. The bound variables r2 and r1 correspond to the update states in which the control

loop invariant and the parameter A1 of the pattern BIP2 are satisfied respectively. The value

of the parameter A1 in the pattern BIP2 is the disjunction. The first disjunct is the negation of

the deriverived pattern parameter A1. The second disjunct is the instance of the pattern BIP1

that is satisfied in the state r1. The values of the parameters t, t1, A1 and A2 in the pattern

BIP1 are parameters t, t1, A2 and A3 in the derived pattern DIP.

After defining the derived requirement and extra invariant patterns, the user specifies the

following pattern parameters:
A1 ≡ λ(s, r1).r1[hands] = False;

A2 ≡ λ(s, r2).r2[dryer] = True ∧ r2[hands] = False;

A3 ≡ λ(s, r3).r3[dryer] = False ∨ r3[hands] = True;

t ≡ 10;

t1 ≡ λs. i f getPstate(s, Ctrl) = drying then ltime(s, Ctrl) e l s e 10 .

Next, lemmas for these derived patterns are generated and proved in Isabelle/HOL, verifi-

cation conditions and proof scripts for them are generated. These proof scripts are executed in

Isabelle/HOL, and all verification conditions are proved. Since this derived requirement pattern

is common, it is saved to the knowledge base along with the associated derived extra invariant

pattern and the lemmas.

4. Related Work

There is a wide variety of methods of finding loop invariants. These include abstract inter-

pretation [10], induction-iteration method [26], template-based methods [9], recurrence analysis

[15], using failed proof attempts [25] and invariant strengthening on demand [16], dynamic anal-

ysis [21] and machine learning [22]. Abstract interpretation and template-based methods are

the most common approaches to the static loop invariant inference [12]. Let us consider the

works closest to this one on the automatic generation of loop invariants.

Template-based methods of loop invariant generation are most successfully applied within

the domain of linear arithmetic [6]. In [9], a method of linear loop invariants generation based

on templates is proposed. Invariants have the form of linear inequalities. The authors generate

constraints on the template parameters that are coefficients in the inequality. These constraints

ensure that the invariant is true when the program enters the loop and after an iteration if it

was true before the iteration. Farkas’ Lemma is used to generate the constraints. The obtained
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constraints can be solved by quantifier elimination. But because quantifier elimination is a

costly process, the authors simplify the constraints using various techniques. In our work, extra

invariants are not linear inequalities relating the values of program variables in one point, but

formulas relating the values of the variables at different points in time and containing quantifiers

over update states (in patterns). Currently the values of pattern parameters are specified

manually, but our lemmas can be used to generate constraints on our pattern parameters.

In this case, the constraints will be quantifier-free. We plan to investigate the problem of

generating the constraints in the future.

To find the values of template parameters, SMT solvers can be used. In [24], an approach

based on user-defined templates is proposed. The authors reduce the problem of searching the

template parameters values to satisfiability solving, that allow using off-the-shelf solvers. The

values of template parameters are not constants, but expressions and predicates. To find such

values, the authors make assumptions about the domain that allow them to reduce this problem

to finding constants. An SMT solver is used to obtain these values. In our work, the values

of the pattern parameters are conditional expressions including not only constants, but also

terms containing process timers. To reduce the problem of finding such expressions to finding

constants, we could consider instances of constraints for different paths in the program.

In STeP [17], two approaches to invariant generation are used: the bottom-up approach in

which invariants are generated by static analysis of the program and the top-down approach

that is goal-oriented. In the top-down approach, unproven verification conditions are used to

strengthen invariants. If some verification condition cannot be proven, the weakest precondition

with respect to the invariant to be proven and the transition that the verification condition

corresponds to is computed. The strengthened invariant is the conjunction of the original in-

variant to be proven and this weakest precondition. In our work, we also use both bottom-up

and top-down (i. e., requirement-dependent) invariants. We could also use invariant strength-

ening. This approach would need to be used together with the heuristic of replacing a constant

with a term. But it was noted that extra invariants needed for proving requirements satisfying

the same pattern are similar and can also be described by a pattern.

This study [3] is devoted to the deductive verification of programs written in the LD language

from the IEC 61131-3 standard. Temporal requirements for LD programs are specified using

timing charts. The verification process employs the Why3 deductive verification system. The

authors formalized LD instructions as functions within Why3. In this framework, an event
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and the subsequent stable state in a timing chart are modeled as a loop in Why3, where

the loop’s body corresponds to one iteration of the LD program’s control loop, and the loop

guard represents the condition that the input must meet at the moment of the event and

during the stable state. The verified requirements are framed as invariants of this loop. To

model fixed-duration sequences of events, a time counter is introduced, which increments with

each iteration. If certain verification conditions cannot be established, counterexamples are

generated for further analysis. Since the invariants are insufficient, the authors use automatic

generation of additional loop invariants. The authors use the abstract interpretation method to

automatically generate loop invariants. A former prototype for Why3 system does not support

boolean variables that appear in programs representing LD programs and timing charts in

Why3. The authors encode Boolean variables as integer variables with constraints that allow

using existing methods to generate loop invariant with Boolean variables. In our work, we

verify programs in more expressive process-oriented languages. To specify requirements, we use

first-order logic instead of timing charts. We represent a program as one infinite control loop,

not as several loops. We have also noted that extra invariant patterns can be defined to specify

auxiliary properties and use these patterns instead of the abstract interpretation.

The paper [5] explores the auto-active method for automating deductive verification. This

approach requires users to supply supplementary guiding annotations, such as assertions, ghost

code, and lemma functions, to achieve a higher degree of proof automation. As a result, it en-

ables the use of automatic solvers in scenarios where interactive provers employed traditionally.

The authors implement auto-active verification for C programs within the Frama-C framework.

In our study, we do not use ghost code and lemma functions. However, we can incorporate

formalized requirements as annotations in the program. For instance, the control loop invari-

ant INV at the start of an iteration can be expressed with the annotation ASSUME INV, while

the invariant at the end can be represented with ASSERT INV. Additionally, we can use the

annotation ASSERT to add extra assertions at any point in the program.

In [19], an approach that allows one to make requirement specifications reusable using object-

oriented concepts. In this approach, in addition to declarative specifications, a subset of the

programming language is used to set requirements. To specify temporal requirements, loops

with loop invariants and variants are used. The authors chose Eiffel as a programming lan-

guage. Their approach is based on the specification drivers that are routines provided with con-

tracts and capture some behavioral properties of their formal parameters through the contracts.
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Then the authors describe requirement patterns using classes called seamless object-oriented

requirement templates. Each such class contains a specification driver and deferred features

corresponding to the requirement pattern parameters. To create a requirement from a pattern,

a class presenting the requirement and called "seamless object-oriented requirement" inheriting

from the class representing the requirement pattern and implementing the deferred features is

created. In our work, we verify programs in process-oriented languages, not object-oriented

languages. We also define requirement patterns, but define their in the typed first-order logic

and do not use a programming language in requirements. We specify temporal requirements

as invariants of the control loop that is a concept in control software.

In [13], a template-based method is combined with abstract interpretation and dynamic

analysis to generate loop invariants. A template is a Boolean combination of linear inequalities.

Each path in the program satisfies the inductiveness condition: if the corresponding template

instance is true at the beginning of the path, the corresponding template instance must be

true at the end of the path. This inductiveness condition is translated into a constraint.

Constraints are non-linear and difficult to solve. Therefore, static and dynamic analysis is used.

Test executions for the dynamic analysis are generated by other tools. Concrete or symbolic

execution can be used in the dynamic analysis. In the dynamic analysis, program variables in

templates are replaced with their values. This allows one to obtain linear constraints. First,

abstract interpretation is applied to generate some invariant that are not sufficient, and then

other invariants are generated in a goal directed way. In our work, we use only pattern-

based method without combining it with other methods. Similar to that work, we use both

requirement-independent invariants that are not goal directed and the requirement-dependent

invariants that are goal directed.

The paper [4] presents a template-bas4ed approach to loop invariant generation in the com-

bined theory of linear arithmetic and uninterpreted function symbols. First, the authors apply

purification, i. e., replacing subterms that are application of an uninterpreted function to ex-

pressions with a new variable with saving the definition of this variable. Then constraints are

generated and solved. Our invariants are in the theory of update states possibly combined with

the theory of arithmetic. Using our lemmas and some heuristics that we plan to develop, we

could generate constraints that do not contain update states.

In [23], a method of loop invariant generation combining template-based approach and pred-

icate abstraction is proposed. The authors developed three algorithms: two algorithms itera-
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tively compute fixed-points, and one algorithm uses constraint solving. An invariant solution

is a mapping each unknown in templates to some set of predicates such that the verification

conditions are true. The authors use SMT solvers to find invariant solutions.

5. Conclusion

In this paper, we have presented an approach to deductive verification of process-oriented

programs in which temporal requirements are specified using combination of basic patterns.

In this approach, a set of basic requirement patterns is defined. For each such basic pat-

tern, the corresponding basic extra invariant pattern and lemmas are defined. Then the basic

requirement patterns can be combined to define derived requirement patterns. For each de-

rived requirement pattern, the corresponding extra invariant pattern and lemmas for proving

verification conditions are constructed.

The approach proposed in this paper will allow one to automatically determine the extra

invariant pattern and lemmas needed to prove verification conditions for a given requirement

and prove these lemmas. Having generalized previously developed strategies for proving veri-

fication conditions so that the strategies are parameterized by the appropriate lemma, we can

automate proving verification conditions. Thus the only task that has not yet been automated

is finding values of parameters of an extra invariant pattern.

Currently, our basic requirement pattern set contains 9 patterns. Using them, we have

defined 11 common derived patterns defining classes including at least two requirements and 4

special derived patterns. This patterns have allowed us to specify and verify all requirements

from our collection containing 76 requirements. However, our pattern system currently does

not allows one to specify some classes of requirements, for example, requirements that state

that some event should or should not happen within a time interval after or before some other

event considered in [18] as well as requirements stating that some event should not happen after

(before) some delay after (before) some other event. Also requirements stating that an event

must occur k times considered in [11] cannot be easily specified. We plan extend our pattern

system in the future to cover these classes of requirements.

In the future, we also plan to develop tools for generation of the derived extra invariant

patterns, the lemmas and scripts for proving these lemmas as well as scripts for proving veri-

fication conditions. We also plan to develop a heuristic algorithm for finding the value of the

parameters of extra invariant patterns.
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