УДК 519.681.2, 519.681.3

Тестовые эквивалентности с обратимостью для временных сетей Петри

Боженкова Е.Н. (Институт систем информатики СО РАН)

В статье определяется и исследуется семейство тестовых эквивалентностей в контексте непрерывно-временных безопасных сетей Петри (ВСП) с возможностью отмены (обратимости) выполненных действий. Тестовые эквивалентности рассматриваются в интерливинговой и шаговой семантиках, семантике частичного порядка и комбинации этих семантик. Для представления вычислений ВСП используется частично-упорядоченная семантика временных причинных Обратимость действий рассматривается как возможность сетей-процессов. отмены в вычислении одиночных или параллельных действий, максимальных в данном вычислении относительно отношения причинной зависимости. устанавливается иерархия взаимосвязей между рассматриваемыми эквивалентностями.

Ключевые слова: временные сети Петри, тестовые эквивалентности, отмена действий, обратимые вычисления

1. Введение

При моделировании и изучении поведения вычислительных процессов было введено значительное количество поведенческих эквивалентностей. При этом также активно исследовались и взаимосвязи эквивалентностей в разных семантиках от интерливинговой до семантик частичного порядка (см., например, классический обзор Р. ван Глаббека [34]). При интерливинговом подходе невозможно различить процессы с паралелльным и последовательным поведением. Для увеличения мощности эквивалентностей были введены шаговая семантика, в которой сравнение поведения происходит относительно выполнения множества независимых действий, и семантика частичного порядка, при которой в качестве подпроцессов выполнения берутся уже частично-упорядоченные множества.

В множестве известных подходов к определению понятия эквивалентности, от трассовой до бисимуляционной, большой подкласс занимают тестовые эквивалентности. Понятие тестовой эквивалентности параллельных процессов было предложено М. Хеннесси и Р. де Николой в статье [15]. Тест — это специальный процесс, который выполняется параллельно с тестируемым процессом. Такое выполнение считается успешным, если тест достигает выделенного успешного состояния, и процесс проходит тест, если каждое его совместное выполнение с процессом является успешным. Два процесса считаются тестово эквивалентными, если они проходят одни и те же наборы тестов. Для облегчения применения тестовой эквивалентности обычно используются определения на основе найденных альтернативных характеризаций, в одном из наиболее распространенных определений тест состоит из процесса-эксперимента и допустимого множества возможных его продолжений вместо единственного действия ([4, 11]). Так, альтернативные характеризации временных тестовых эквивалентностей с использованием понятия допустимых множеств в работах [12] и [23] были даны для систем переходов с дискретным временем, в [5] — для непрерывно-временных структур событий. Другой подход к альтернативной характеризации был предложен в статьях [19] и [13], в них авторы нашли характеризации тестовых предпорядков для алгебр процессов с временными ограничениями через трассы отказов.

Для модели сетей Петри интерливинговые тестовые отношения были исследованы в работе [9], в которой кроме альтернативной характеризации получены результаты по дискретизации временных характеристик модели, сопоставленных фишкам и дугам.

Для представления семантики частичного порядка в модели сетей Петри обычно используются причинные сети-процессы ([20, 28, 35]), в которых выполнениям переходов соответствуют события, разметке — условия, частичный порядок моделируется отношениями причинной зависимости и параллелизма. Сравнение разновидностей тестовой эквивалентности в частично-упорядоченной семантике сетей Петри было проведено в статье [32].

Для сетей Петри с временными характеристиками частично-упорядоченная семантика была предложена для дискретно-временных сетей Петри в работах [2, 33], где время в модель введено как длительность срабатывания перехода; для непрерывно-временных безопасных сетей Петри (ВСП) — в работе [6], где переходам сопоставлены интервалы временных задержек их срабатывания. В работе [8] сравнение моделей временных автоматов и временных сетей Петри проведены с использованием интерливинговой трассовой и бисимулиционной эквивалентностями.

Иерархия трассовых и бисимуляционных эквивалентностей в частично-упорядоченной семантике ВСП изучалась в работе [37]. Для этой же модели исследования тестовых

эквивалентностей в семантиках причинных сетей-процессов и причинных деревьев проведены в работах [1, 10], при этом установлено совпадение данных семантик в контексте тестовых эквивалентностей.

Для увеличения выразительной мощности в вычислительные модели стали вводить возможность отменить выполнение некоторых действий. Такие модели с обратимостью нашли применение в моделировании биохимических реакций, отладке микропроцессоров и программных систем. В ходе исследований выделилось три основные способа введения отмены действий: обратный ход; причинная обратимость и произвольная обратимость. Метод обратного хода подразумевает, что отмена действий производится в том же порядке, в котором действия происходили (см., например, [14]). При отмене действий в методе причинной обратимости выбор происходит среди максимальных действий в текущем вычислении, т.е действия, для которых они являются необходимыми предшественниками, уже отменены или еще не были соверешны (см. [24]). Такой метод используется для моделирования систем, протоколов, при отладке программ ([21, 22, 36]). При методе произвольной обратимости, правила отмены действий задаются в самой модели (см., например, [3, 25, 31]). Расширение таких вычислительных моделей как сети Петри и структуры событий возможностью отмены действий и их взимосвязи исследовались для разных подходах к обратимости. Так в [24] найдено соответствие между подклассом обратимых первичных структур событий с причинной обратимостью и обратимыми Осетями. В [25] предложен подкласс сетей Петри, в котором реализована произвольная обратимость, и для него установлено соответствие с произвольно-обратимыми структурами событий. Среди других исследований проводились поиски способов построения сетей с обратимостью из обычных (см., например, [7, 24]).

Для моделей с обратимыми вычислениями также изучаются и поведенческие эквивалентности. Иерарахия эквивалентностей с причинной обратимостью в интерливинговой, шаговой семантиках, семантиках частичного порядка и сохраняющих историю исследована И.Филипсом и И.Улидовски для стабильных структур конфигураций с причинной обратимостью в работе [29]. Авторами установлено, что бисимуляции с обратимостью сильнее обычных бисимулиций, так интерливинговая бисимуляция с интерливинговой обратимостью сильнее сохраняющей историю бисимуляции без обратимости. Эти же авторы ввели логику ЕІL в работе [30], расширив логику НМL ([18]) модальностями обратимости, что позволило дать логическую характеризацию подклассу сохраняющих

историю бисимуляций.

Отметим, что исследования эквивалентнтостей с учетом прошлого поведения делались и без введения в модель отмены действий. Например, в [16] подход к исследованию прошлого вычислений совпадает с методом обратного хода, интерливинговые (back-forth) бисимуляции определены на последовательностях вычислений. При таком определении бисимулиции введение обратимости не привнесло дополнительных возможностей, т.е. они оказазались слабее бисимуляций с причинной обратимостью из [29]. В работе [27] исследовалась δ -бисимуляция на путях с использованием максимальных независимых элементов, что дало некоторое усиление, но такой подход отличается от причинной обратимости и слабее нее.

Цель данной работы — изучить тестовые эквивалентности с возможностью отмены выполненных действий в контексте безопасных ВСП, в которых переходы помечены временными интервалами и каждый переход, имеющий достаточное количество фишек во входных местах, должен срабатывать в момент времени, когда значение его счетчика принадлежит его временному интервалу.

Для представления вычислений ВСП используется частично-упорядоченная семантика причинных сетей-процессов. Тестовые эквивалентности для обычных прямых вычислений рассматриваются в семантиках от интерливинга до семантики частичного порядка, а обратимость действий рассматривается как прошлое вычислений с точки зрения причинной обратимости в интерливинговой и шаговых семантиках. Материал статьи разбит на части следующим образом. В первых двух главах будут рассмотрены основные определения ВСП и причинных сетей-процессов. Далее, в гл. 4, будут введены понятия обратимости действий. Гл. 5 посвящена определению тестовых эквивалентностей в разных семантиках с обратимостью. В гл. 6 будут исследованы взаимосвязи тестовых эквивалентностей. Заключительные замечания будут приведены в гл.7.

2. Временные сети Петри: синтаксис и шаговая семантика

В этой главе рассмотрим базовую терминологию непрерывно-временных сетей Петри и их шаговую семантику. Сначала напомним определения структуры и поведения сетей Петри. Пусть Act — множество действий.

Определение 1. (Помеченная над Act) сеть Петри (СП) — это набор $\mathcal{N} = (P, T, F, M_0, L)$, где P — конечное множество мест, T — конечное множество переходов ($P \cap T = \emptyset$

и $P \cup T \neq \emptyset$), $F \subseteq (P \times T) \cup (T \times P)$ — отношение инцидентости, $\emptyset \neq M_0 \subseteq P$ — начальная разметка, $L: T \to Act$ — помечающая функция. Для элемента $x \in P \cup T$ определим множество ${}^{\bullet}x = \{y \mid (y,x) \in F\}$ входных и множество $x^{\bullet} = \{y \mid (x,y) \in F\}$ выходных элементов, которые для подмножества $X \subseteq P \cup T$ элементов обобщаются соответственно до множеств ${}^{\bullet}X = \bigcup_{x \in X} {}^{\bullet}x$ и $X^{\bullet} = \bigcup_{x \in X} x^{\bullet}$.

Pазметка M СП \mathcal{N} — это произвольное подмножество P. Переход $t \in T$ готов сработать при разметке M, если ${}^{\bullet}t \subseteq M$. Обозначим через En(M) множество всех переходов, готовых сработать при разметке M.

Непустое множество переходов $\emptyset \neq U \subseteq T$ называется *шагом*, готовым сработать при разметке M, если $\forall t \in U \ \delta \ t \in En(M)$ и $(\forall t \neq t' \in U \colon {}^{\bullet}t \cap {}^{\bullet}t = t^{\bullet} \cap t'^{\bullet} = \emptyset^{1}$. Если шаг U готов сработать при разметке M, то его срабатывание приводит к новой разметке $M' = (M \setminus {}^{\bullet}U) \cup U^{\bullet}$ (обозначается $M \xrightarrow{U} M'$).

Под непрерывно-временной сети Петри (ВСП) [6] понимается СП, в которой с каждым переходом связан временной интервал, указывающий возможные временные моменты срабатывания перехода, готового по наличию фишек в его входных местах; готовый переход может сработать, только когда достигнута нижняя граница и не превышена верхняя граница его интервала, и, если он еще не сработал, то обязан сработать, когда достигнута верхняя граница его интервала.

Область \mathbb{T} временных значений — множество неотрицательных рациональных чисел. Считаем, что $[\tau_1, \tau_2]$ — замкнутый интервал между двумя временными значениями $\tau_1, \tau_2 \in \mathbb{T}$. Также, бесконечность может появляться как правая граница в открытых справа интервалах. Пусть Interv — множество всех таких интервалов.

Определение 2. (Помеченная над Act) временная сеть Петри (ВСП) — это пара $\mathcal{TN} = (\mathcal{N}, D)$, где \mathcal{N} — (помеченная над Act) базовая сеть Петри и $D: T \to Interv$ — статическая временная функция, сопоставляющая каждому переходу временной интервал. Границы временного интервала $D(t) \in Interv$ называются ранним (Eft) и поздним (Lft) временами срабатывания перехода $t \in T$.

Состояние $BC\Pi \mathcal{TN}$ — это пара S=(M,I), где M — разметка $C\Pi \mathcal{N}$ и $I:En(M) \longrightarrow \mathbb{T}$ — динамическая временная функция. Начальное состояние $BC\Pi \mathcal{TN}$ — это пара $S_0=(M_0,I_0)$, где M_0 — начальная разметка $C\Pi \mathcal{N}$ и $I_0(t)=0$ для всех $t\in En(M_0)$.

 $^{^1}$ Для удобства последующего определения временных сетей Петри требование $M \cap U^{\bullet} = \emptyset$, необходимое для обеспечения безопасности сети, будет введено в определении свойства свободы от контактов.

Шаг U, готовый сработать при разметке M, готов сработать в состоянии S=(M,I) в относительный момент времени $\theta \in \mathbb{T}$, если $(Eft(t) \leq I(t) + \theta)$ для всех $t \in U$ и $(I(t') + \theta \leq Lft(t'))$ для всех $t' \in En(M)$. Срабатывание шага U приводит к новому состоянию S' = (M', I') (обозначается $S \xrightarrow{(U,\theta)} S'$), при этом $M \xrightarrow{U} M'$ и $\forall t' \in T$ \diamond

$$I'(t') + \theta \leq LJt(t'))$$
 для всех $t' \in En(M)$. Сраоатыванае шага U приводит состоянию $S' = (M', I')$ (обозначается $S \xrightarrow{(U,\theta)} S'$), при этом $M \xrightarrow{U} M'$ и $\forall t' \in T \circ I'(t') = \begin{cases} I(t') + \theta, & \text{если } t' \in En(M \setminus {}^{\bullet}U), \\ 0, & \text{если } t' \in En(M') \setminus En(M \setminus {}^{\bullet}U), \\ \text{не определено, в остальных случаях.} \end{cases}$

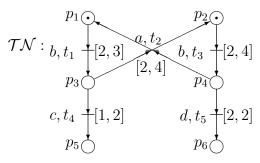
Будем писать $S \stackrel{(A,\theta)}{\longrightarrow} S'$ для $A = L(U) = \Sigma_{t \in U} L(t) \in Act^{\mathbb{N}}$, т.е. A является мультимножеством над $\{a \in Act \mid a = L(t) \text{ и } t \in U\}$. Также будем использовать запись $S_0 \stackrel{\sigma}{\longrightarrow} S'$, если $\sigma = (U_1,\theta_1)\dots(U_k,\theta_k)$ и $S_0 \stackrel{(U_1,\theta_1)}{\longrightarrow} S^1 \dots S^{k-1} \stackrel{(U_k,\theta_k)}{\longrightarrow} S^k = S' \ (k \geq 0)$. Тогда σ называется последовательностью срабатываний в \mathcal{TN} из S_0 (в S'), а S' — достижимым состоянием \mathcal{TN} из S_0 . Множество всех последовательностей срабатываний в \mathcal{TN} из S_0 обозначим $\mathcal{FS}_s(\mathcal{TN})$ и множество достижимых состояний \mathcal{TN} из $S_0 - RS(\mathcal{TN})$. Для $\sigma = (U_1,\theta_1)\dots(U_k,\theta_k)$ $L(\sigma) = (A_1,\theta_1)\dots(A_k,\theta_k)$, если $A_i = L(U_i)$ для всех $1 \leq i \leq k$.

Если $|U_i|=1$ для всех $1 \leq i \leq k$, т.е. $\sigma=(t_1,\theta_1)\dots(t_k,\theta_k)$, то σ будем называть интерливинговой последовательностью срабатываний. Подмножество таких последовательностей в $\mathcal{FS}_s(\mathcal{TN})$ будем обозначать $\mathcal{FS}_i(\mathcal{TN})$. Для интерливинговых последовательностей срабатываний $L(\sigma)=(a_1,\theta_1)\dots(a_k,\theta_k)$, если $a_i=L(t_i)$ для всех $1\leq i\leq k$.

ВСП \mathcal{TN} называется T-ограниченной, если ${}^{\bullet}t \neq \emptyset \neq t^{\bullet}$ для всех переходов $t \in T$; csobodhoù om контактов, если для любого состояния $S \in RS(\mathcal{TN})$ и любого шага U, готового сработать в состоянии S в относительный момент времени θ верно: $(M \setminus {}^{\bullet}U) \cap U^{\bullet} = \emptyset$; nporpeccupyoueù no времени, если для любой последовательности переходов $\{t_1, t_2, \ldots, t_n\} \subseteq T$ такой, что $t_i^{\bullet} \cap {}^{\bullet}t_{i+1} \neq \emptyset$ $(1 \leq i < n)$ и $t_n^{\bullet} \cap {}^{\bullet}t_1 \neq \emptyset$, выполняется неравенство $\sum_{1 \leq i \leq n} Eft(t_i) > 0$. В дальнейшем будем рассматривать только T-ограниченные, свободные от контактов и прогрессирующие по времени ВСП.

Пример 1. Пример помеченной над $Act = \{a, b, c, d\}$ ВСП \mathcal{TN} показан на рис. 1, где места представлены окружностями, переходы — барьерами; рядом с элементами ВСП размещены их имена; между элементами, включенными в отношение инцидентности, изображены стрелки; каждое место, входящее в начальную разметку, отмечено наличием в нем фишки (жирной точки); значения помечающей и статической временной функций указаны рядом с переходами. Нетрудно проверить, что шаг $U = \{t_1, t_3\}$ готов сработать при начальной разметке $M_0 = \{p_1, p_2\}$, а также готов сработать в начальном состоянии

 $S_0 = (M_0, I_0)$, где $I_0(t) = \begin{cases} 0$, если $t \in \{t_1, t_3\}$, в относительный момент времени не определено иначе, $\theta \in [2,3]$. При этом, $\sigma = (U,3) \ (t_2,2) \ (U,2) \ (\{t_5, t_4\}, 2)$ — последовательность срабатываний из S_0 в ВСП \mathcal{TN} , $L(\sigma) = ([b:2],3)(a,2)([b:2],3)([d:1,c:1],2)$. Кроме того, \mathcal{TN} является T-ограниченной, свободной от контактов и прогрессирующей по времени.



Puc. 1. Пример временной сети Петри.

3. Причинно-зависимые семантики временных сетей Петри

3.1. Временные сети

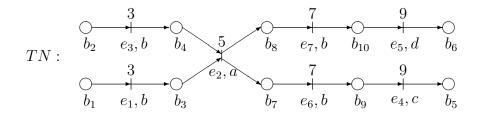


Рис. 2. Пример временной причинной сети.

Для анализа поведения ВСП используется семантика временных причинных сетейпроцессов. Прежде чем перейти к рассмотрению данной семантики напомним базовые определения и обозначения, связанные с временными сетями.

Определение 3. (Помеченной над Act) временной сетью называется конечная, ациклическая сеть $TN = (B, E, G, l, \tau)$, где B — множество условий, E — множество событий, $G \subseteq (B \times E) \cup (E \times B)$ — отношение инцидентости (причинной зависимости TN) такое, что $\{e \mid \exists b \in B \ (e,b) \in G\} = \{e \mid \exists b \in B \ (b,e) \in G\} = E, \ l : E \to Act$ — помечающая функция и $\tau : E \to \mathbb{T}$ — временная функция такая, что $(e,e') \in G^+ \Rightarrow \tau(e) \leq \tau(e')$, т.е. событие не может произойти раньше своих предшественников относительно причинной зависимости TN.

В дальнейшем будут полезны следующие обозначения для временной сети $TN = (B, E, G, l, \tau)$. Пусть $\prec = G^+, \leq = G^*$ и $\tau(TN) = \max\{\tau(e) \mid e \in E\}$. Определим множества: ${}^\bullet x = \{y \mid (y, x) \in G\}$ и $x^\bullet = \{y \mid (x, y) \in G\}$ для $x \in B \cup E; {}^\bullet X = \bigcup_{x \in X} {}^\bullet x$ и $X^\bullet = \bigcup_{x \in X} x^\bullet$ для $X \subseteq B \cup E; {}^\bullet TN = \{b \in B \mid {}^\bullet b = \emptyset\}$ и $TN^\bullet = \{b \in B \mid b^\bullet = \emptyset\}$.

TN=(B,E,G,l, au) называется (помеченной над Act) временной причинной сетью, если $|{}^{ullet}b|\leq 1$ и $|b^{ullet}|\leq 1$ для всех условий $b\in B.$

Введем дополнительные определения и обозначения для временной причинной сети $TN = (B, E, G, l, \tau)$:

- $\downarrow e = \{x \mid x \leq e\}$ множество предшественников события $e \in E$, $E(e') = \{e' \in E \mid \tau(e') < \tau(e)\}$ множество временных предшественников события $e \in E$;
- $E' \subseteq E$ левозамкнутое подмножество E, если $\downarrow e' \cap E \subseteq E'$ для каждого $e' \in E'$. Для такого подмножества будем использовать обозначение $Cut(E') = (E'^{\bullet} \cup {}^{\bullet}TN) \setminus E'$. $E' \subseteq E$ непротиворечивое по времени подмножество E, если $\tau(e') \le \tau(e)$ для всех $e' \in E'$ и $e \in E \setminus E'$:
- $e \smile e' \iff \neg((e \prec e') \lor (e' \prec e))$. Множество $\emptyset \neq V \subseteq E$ называется *шагом*, если $e \smile e'$ и $\tau(e) = \tau(e')$ для всех пар $e \neq e' \in V$. Обозначим $\downarrow V = \{ \downarrow e \subseteq E \mid e \in V \}$ множество предшественников V и $\tau(V) = \tau(e)$ для произвольного $e \in V$ время V. Тогда шаг V является предшественником шага $V'(V \prec V')$, если выполняется $(\downarrow V' \cap V \neq \emptyset) \land (V' \cap \downarrow V = \emptyset)$; $V \smile V' \iff (\downarrow V \cap V' = \emptyset) \land (V \cap \downarrow V' = \emptyset)$.
- последовательность шагов $\rho = V_1 \dots V_k \ (k \geq 0) s$ -линеаризация TN, если $\bigcup_{1 \leq i \leq k} V_i = E, \ \sum_{1 \leq i \leq k} \mid V_i \mid = \mid E \mid \text{ и для всех } V_i, V_j \ (1 \leq i, j \leq k, \ i \neq j) \text{ выполняются условия: } ((V_i \smile V_j) \lor (V_i \prec V_j) \lor (V_i \prec V_j)) \ \text{и } ((V_i \prec V_j \lor \tau(V_i) < \tau(V_j)) \Rightarrow i < j).$ Очевидно, $\tau(V_k) = \tau(TN)$.
- s-линеаризация TN $\rho = V_1 \dots V_k$ $(k \ge 0)$ будет i-линеаризацией TN, если для всех $1 < i < k \mid V_i \mid = 1$, т.е. $\rho = e_1 \dots e_k$.

Заметим, что $\eta(TN) = (E_{TN}, \preceq_{TN} \cap (E_{TN} \times E_{TN}), l_{TN}, \tau_{TN})$ является (помеченным над Act) временным частично-упорядоченным множесством (ВЧУМ)².

Обозначим через $\mathcal{TP}(Act)$ множество всех ВЧУМов, помеченных над Act, $\mathcal{TP}_e(Act) = \{\eta \in \mathcal{TP}(Act) \mid |X_{\eta}| = 1\}$ — подмножество ВЧУМов, состоящих из одного элемента.

 $^{^2}$ (Помеченый над Act) ВЧУМ — это набор $\eta=(X, \preceq, \lambda, \tau)$, состоящий из конечного множества элементов X; рефлексивного, антисимметричного и транзитивного отношения \preceq ; помечающей функции $\lambda: X \to Act$ и временной функции $\tau: X \to \mathbb{T}$ такой, что $e \preceq e' \Rightarrow \tau(e) \leq \tau(e')$. Пусть $\tau(\eta) = \max\{\tau(x) \mid x \in X\}$.

Для двух ВЧУМов $\eta = (E, \leq, l, \tau)$ и $\eta' = (E', \leq', l', \tau') \in \mathcal{TP}(Act)$ и $\star, \star \in \{i, s, p\}$ введем дополнительные обозначения: η' является \star -расширением η ($\eta \sqsubseteq_{\star} \eta'$), если E — левозамкнутое и непротиворечивое по времени подмножество $E', \leq = \leq' \cap (E \times E), l = l' \mid_{E}$; если $\star = i$, то должно выполняться дополнительное требование $\mid E' \setminus E \mid = 1$, и если $\star = s$, то для любой пары $e \neq e' \in E' \setminus E$ должно выполняться $e \smile e'$. Тогда для отношения $\sqsubseteq_{\star-\star} = (\sqsubseteq_{\star} \cup \sqsubseteq_{\star}^{-1}) \eta'$ является $\star - \star$ -расширением η . Обозначим через $\mathcal{TP}_{\star-\star}^{\sqsubseteq}(Act) = \{P_1P_2 \dots P_k, 0 \leq k \mid P_j \in \mathcal{TP}(Act)(1 \leq j \leq k), P_j \sqsubseteq_{\star-\star} P_{j+1}, 1 \leq j < k)\}$ множество последовательностей ВЧУМов, в которых соседние ВЧУМы являются $\star - \star$ -расширениями.

Временные причинные сети $TN = (B, E, G, l, \tau)$ и $TN' = (B', E', G', l', \tau')$ изоморфны (обозначается $TN \simeq TN'$), если существует биективное отображение $\beta: B \cup E \to B' \cup E'$ такое, что: (a) $\beta(B) = B'$ и $\beta(E) = E'$; (б) $x G y \iff \beta(x) G' \beta(y)$ для всех $x, y \in B \cup E$; (в) $l(e) = l'(\beta(e))$ и $\tau(e) = \tau'(\beta(e))$ для всех $e \in E$. Кроме того, будем говорить, что для $* \in \{i, s, p\}$ TN' является *-расширением TN (обозначается $TN \longrightarrow_* TN'$), если $\eta(TN')$ является *-расширением $\eta(TN)$, $B \subseteq B'$ и $G = G' \cap (B \times E \cup E \times B)$.

Пример 2. На рис. 2 показана временная причинная сеть $TN = (B, E, G, l, \tau)$, где условия представлены окружностями, а события — барьерами; рядом с элементами сети размещены их имена; между элементами, включенными в отношение инцидентности, изображены стрелки; значения функций l и τ указаны рядом с событиями. Определим временные причинные сети $TN' = (B', E', G', l', \tau')$, где $B' = \{b_1, b_2\}$, $E' = \emptyset$, $G' = \emptyset$, $l' = \emptyset$, $\tau' = \emptyset$ и $TN'' = (B'', E'', G'', l'', \tau'')$, где $B'' = \{b_1, b_2, b_3, b_4\}$, $E'' = \{e_1, e_3\}$, $G'' = G \cap (B'' \times E'' \cup E'' \times B'')\}$, $l'' = l \mid_{E''}$, $\tau'' = \tau \mid_{E''}$. Легко проверить, что TN'' является s-расширением TN'.

3.2. Временные причинные сети-процессы временных сетей Петри

В этом разделе рассмотрим понятие временных причинных сетей-процессов ВСП, предложенное в статье [6], и использованное при исследовании временных тестовых эквивалентностей в работах [1, 10].

Определение 4. Пусть $\mathcal{TN} = ((P, T, F, M_0, L), D) - BC\Pi$ и $TN = (B, E, G, l, \tau) - BP$ временная причинная сеть. Отображение $\varphi : B \cup E \to P \cup T$ называется гомоморфизмом из TN в \mathcal{TN} , если выполняются следующие условия:

- $\varphi(B) \subseteq P$, $\varphi(E) \subseteq T$;
- ограничение φ на e является биекцией между e и $\varphi(e)$ и ограничение φ на e является биекцией между e и $\varphi(e)$ для всех $e \in E$;
- ограничение φ на •TN является биекцией между •TN и M_0 ;
- $l(e) = L(\varphi(e))$ для всех $e \in E$.

Пара $\pi=(TN,\varphi)$ называется временным причинным сетью-процессом ВСП \mathcal{TN} , если TN — временная причинная сеть и φ — гомоморфизм из TN в \mathcal{TN} .

Пусть $\pi = (TN, \varphi)$ — временной причинный сеть-процесс ВСП \mathcal{TN} , $B' \subseteq B_{TN}$ и $t \in En(\varphi(B'))$. Тогда глобальный момент времени, когда фишки появляются во всех входных местах перехода t, определяется следующим образом: $\mathbf{TOE}_{\pi}(B', t) = \max\left(\{\tau_{TN}(\bullet b) \mid b \in B'_{[t]} \setminus \bullet TN\} \cup \{0\}\right)$, где $B'_{[t]} = \{b \in B' \mid \varphi_{TN}(b) \in \bullet t\}$.

Для того, чтобы значения временных функций временных причинных сетей-процессов ВСП соответствовали временным интервалам срабатывания сетевых переходов, вводится понятие корректных временных причинных сетей-процессов ВСП.

Определение 5. Временной причинный сеть-процесс $\pi = (TN, \varphi)$ ВСП \mathcal{TN} называется корректным, если для каждого $e \in E$ выполняются следующие условия:

- $\tau(e) \ge \mathbf{TOE}_{\pi}(^{\bullet}e, \varphi(e)) + Eft(\varphi(e)),$
- $\forall t \in En(\varphi(C_e)) \circ \tau(e) \leq \mathbf{TOE}_{\pi}(C_e, t) + Lft(t)$, где $C_e = Cut(Earlier(e))$.

Пусть $\mathcal{CP}(\mathcal{TN})$ — множество корректных временных причинных сетей-процессов ВСП \mathcal{TN} , а $\pi_0 = (TN_0 = (B_0, \emptyset, \emptyset, \emptyset), \varphi_0) \in \mathcal{CP}(\mathcal{TN})$ с $\varphi_0(B_0) = M_0$ — начальный временной причинный сеть-процесс ВСП \mathcal{TN} .

Через $\mathcal{TPos}(\mathcal{TN}) = \{TP \mid \exists \pi = (TN, \varphi) \in \mathcal{CP}(\mathcal{TN}) \colon TP \simeq^3 \eta(TN) \}$ обозначим множество ВЧУМов, изоморфных ВЧУМам, полученным из корректных временных причинных сетей-процессов ВСП \mathcal{TN} .

Пример 3. Определим отображение φ из временной причинной сети TN (см. рис. 2) в ВСП \mathcal{TN} (см. рис. 1) следующим образом: $\varphi(b_i) = p_i \ (1 \le i \le 6), \ \varphi(b_i) = p_{i-6} \ (7 \le i \le 10)$ и $\varphi(e_i) = t_i \ (1 \le i \le 5), \ \varphi(e_6) = t_1, \ \varphi(e_7) = t_3$. Легко видеть, что $\pi = (TN, \varphi)$ является корректным временным причинным сетью-процессом ВСП \mathcal{TN} .

Будем говорить, что $\pi = (TN, \varphi)$ и $\pi' = (TN', \varphi')$ из $\mathcal{CP}(\mathcal{TN})$ изоморфны (обозначается $\pi \simeq \pi'$), если существует изоморфизм $f: TN \simeq TN'$ такой, что $\varphi(x) = \varphi'(f(x))$ для всех

 $^{^3}$ Два ВЧУМ $\eta=(X, \leq, \lambda, \tau)$ и $\eta'=(X', \leq', \lambda', \tau')$ изоморфны (обозначается $\eta\simeq\eta'$), если существует биекция $\beta:X\to X'$ такая, что (a) $x\leq y\iff \beta(x)\leq'\beta(y)$ для всех $x,y\in X$; (б) $\lambda(x)=\lambda'(\beta(x))$ и $\tau(x)=\tau'(\beta(x))$ для всех $x\in X$.

 $x \in B \cup E$; π' является *-расширением π в \mathcal{TN} , (обозначается $\pi \longrightarrow_* \pi'$) (* $\in \{i, s, p\}$), если $TN \longrightarrow_* TN'$ и $\varphi = \varphi'|_{B \cup E}$.

В дальнейшем понадобятся дополнительные обозначения для расширений временных причинных сетей-процессов. Для π , $\pi' \in \mathcal{CP}(\mathcal{TN})$ будем писать:

- $\pi \xrightarrow{(a,\theta)}_i \pi'$, если π' является *i*-расширением π и $\{e\} = E' \setminus E, l_{\pi'}(e) = a, \tau_{\pi'}(e) = \theta;$
- $\pi \xrightarrow{(A,\theta)}_s \pi'$, если π' является s-расширением и $E' \setminus E$ является шагом в π' , $A = L(\varphi(E' \setminus E))$ и $\theta = \tau(E' \setminus E)$;
- $\pi \xrightarrow{P}_p \pi'$, если π' является p-расширением π и ВЧУМ $P \sim \eta(\pi') \setminus \eta(\pi)$.

Для $\pi = (TN, \varphi) \in \mathcal{CP}(\mathcal{TN})$ определим функцию FS_{π} , которая отображает s-линеаризацию $\rho = V_1 \dots V_k \ TN$ в последовательность вида: $FS_{\pi}(\rho) = (\varphi(V_1), \tau(V_1) - 0) \dots (\varphi(V_k), \tau(V_k) - \tau(V_{k-1})).$

Следующие утверждение и лемма являются обобщениями результатов из [1] (Утверждение 1 и Лемма 2), которые устанавливот взаимосвязи между последовательностями срабатываний и корректными временными причинными сетями-процессами ВСП,

Утверждение 1. Пусть $TN - BC\Pi$. Тогда

- (a) если $\pi = (TN, \varphi) \in \mathcal{CP}(\mathcal{TN})$ и $\rho s(i)$ -линеаризация TN, то существует единственная последовательность срабатываний $FS_{\pi}(\rho) \in \mathcal{FS}_{s(i)}(\mathcal{TN})$;
- (б) если $\sigma \in \mathcal{FS}_{s(i)}(\mathcal{TN})$, то существует единственный (с точностью до изоморфизма) временной причинный сеть-процесс $\pi_{\sigma} = (TN, \varphi) \in \mathcal{CP}(\mathcal{TN})$ и единственная s(i)-линеаризация ρ_{σ} TN такие, что $FS_{\pi_{\sigma}}(\rho_{\sigma}) = \sigma$.

Лемма 1. Пусть $\sigma \in \mathcal{FS}_{s(i)}(\mathcal{TN})$ и $\pi \in \mathcal{CP}(\mathcal{TN})$ такие, что $\sigma = FS_{\pi}(\rho)$, где $\rho - s(i)$ -линеаризация TN_{π} . Тогда

- (a) если $\sigma(U,\theta) \in \mathcal{FS}_{s(i)}(\mathcal{TN})$, то существует $\widetilde{\pi} \in \mathcal{CP}(\mathcal{TN})$ такой, что $\pi \to_{s(i)} \widetilde{\pi}$ в \mathcal{TN} и $\sigma(U,\theta) = FS_{\widetilde{\pi}}(\rho V)$, где $\rho V s(i)$ -линеаризация $TN_{\widetilde{\pi}}$;
- (б) если $\pi \to_{s(i)} \widetilde{\pi}$ в $T\mathcal{N}$, то существует $\sigma(U,\theta) \in \mathcal{FS}_{s(i)}(T\mathcal{N})$ такая, что $\sigma(U,\theta) = FS_{\widetilde{\pi}}(\rho V)$, где $\rho V s(i)$ -линеаризация $TN_{\widetilde{\pi}}$.

Пример 4. Для временного причинного сети-процесса $\pi = (TN, \varphi)$ ВСП \mathcal{TN} (см. пример 3) и *s*-линеаризации $\rho = \{e_1, e_3\}$ $\{e_2\}$ $\{e_7, e_6\}$ $\{e_5, e_4\}$ временной причинной сети TN получаем, что $FS_{\pi}(\rho) = (\{t_1, t_3\}, 3)$ $(t_2, 2)$ $(\{t_1, t_3\}, 2)$ $(\{t_5, t_4\}, 2)$ является последовательностью срабатываний ВСП \mathcal{TN} (см. пример 1).

4. Обратимые вычисления

При исследовании поведения вычислительных систем появилась необходимость отменять часть уже выполненных действий. При введении понятий тестовых эквивалентностей с учетом обратимых действий в дальнейшем будет использоваться подход причинной обратимости. Будем определять обратимые вычисления как вычисления в которых возможна отмена выполненного действия, если действие не является причиной для других действий процесса.

Введем обозначения для множества отменяемых действий $\overleftarrow{Act} = \{\overleftarrow{a} \mid a \in Act\}, \ \overleftarrow{Act} = \overleftarrow{Act} \cup Act$, при этом выполняется условие что $\overleftarrow{Act} \cap Act = \emptyset$, и биекцию $\llbracket \overleftarrow{\cdot} \rrbracket : Act \to \overleftarrow{Act}$, такую что $\llbracket \overleftarrow{\cdot} \rrbracket (a) = \overleftarrow{a}$.

Аналогичным образом вводятся обозначения для отменяемых ВЧУМов. $\overleftarrow{\mathcal{TP}}(Act) = \{\overleftarrow{P} \mid P \in \mathcal{TP}(Act)\}; \overleftarrow{\mathcal{TP}}_e(Act) = \{\overleftarrow{P} \mid P \in \mathcal{TP}_e(Act)\}, \overleftarrow{\mathcal{TP}}(Act) = \overleftarrow{\mathcal{TP}}(Act) \cup \mathcal{TP}(Act),$ и биекция $[\![\leftarrow]\!]$ расширяется на $\mathcal{TP}(Act)$.

Через \overleftarrow{a} и \overleftarrow{P} будем обозначать элементы множеств \overleftarrow{Act} и $\overleftarrow{\mathcal{TP}}(Act)$ соответственно.

Отметим, что отменяемые действия используются только в качестве обозначения действий для отмены, а не являются самостоятельными действиями. Отменяемое действие означает что для текущего процесса можно найти процесс, который может быть расширен до текущего, и расширение будет содержать событие, помеченное выбранным для отмены действием. Для простоты восприятия далее под \overleftarrow{a} и \overleftarrow{P} подразумеваются $\llbracket \overleftarrow{\cdot} \rrbracket (a)$ и $\llbracket \overleftarrow{\cdot} \rrbracket (P)$ для $a \in Act, P \in \mathcal{TP}(Act)$ соответственно.

Пусть $\pi = (TN, \varphi), \ \pi' = (TN', \varphi') \in \mathcal{CP}(\mathcal{TN}), \ a \in Act, \ A \in Act^{\mathbb{N}}, \ \theta \in \mathbb{T}, \ P \in \mathcal{TP}(Act).$ Введем обозначения для выполнения отмены действий и обратимых вычислений.

- Если $\pi' \xrightarrow{P}_p \pi \left(\pi' \xrightarrow{(a,\theta)}_i \pi, \pi' \xrightarrow{(A,\theta)}_s \pi\right)$, будем писать $\pi \xrightarrow{\overleftarrow{P}}_p \pi' \left(\pi \xrightarrow{\overleftarrow{(a,\theta)}}_i \pi', \pi \xrightarrow{\overleftarrow{(A,\theta)}}_s \pi'\right)$,
- Для $\star, * \in \{i, s, p\}$ будем писать $\pi \xrightarrow{\overrightarrow{P}}_{\star-*} \pi'$, если $\pi \xrightarrow{P}_{*} \pi'$ или $\pi' \xrightarrow{\overleftarrow{P}}_{\star} \pi$. Аналогичным образом определяются обозначения $\pi \xrightarrow{(\overrightarrow{\alpha}, \theta)}_{i-i} \pi'$ и $\pi \xrightarrow{(\overrightarrow{A}, \theta)}_{s-s} \pi'$.

Если нет необходимости в уточнении или смысл понятен из контекста, символы \overleftrightarrow{P} и/или $\star, *$ будут опускаться.

Если
$$\pi \xrightarrow{\overleftrightarrow{P}} \pi'$$
, обозначим $E' \not \setminus E = \left\{ \begin{array}{l} E' \setminus E, \text{ если } \pi \xrightarrow{P} \pi', \\ E \setminus E', \text{ если } \pi \xrightarrow{\overleftarrow{P}} \pi'. \end{array} \right.$

Кроме того, введем обозначения для вычислений во временных сетях-процессах с сохранением истории. Пусть $TP = P_1 P_2 \dots P_k \in \mathcal{TP}_{\star-*}^{\sqsubset}(Act)$ при $\star, * \in \{i, s, p\}$, тогда $\pi \overset{TP}{\hookrightarrow}_{\star-*} \pi'$, если существуют $\pi_j \in \mathcal{CP}(\mathcal{TN})$ $(1 \leq j \leq k)$ такие что $\pi_0 \overset{P_j}{\longrightarrow} \pi_j, \pi' = \pi_k$ и $\pi_{j-1} \overset{}{\longrightarrow}_{\star-*} \pi_j$.

В дальнейшем, при определении тестовых эквивалентностей с обратимостью понадобятся обозначения отменяемых действий в последовательностях срабатываний в ВСП \mathcal{TN} . Для обратимых вычислений в корректных временных сетях-процессах введем связанные с ними обозначения для последовательностях срабатываний.

Пусть $\star, \star \in \{i, s\}$. Если существуют $\pi_j \in \mathcal{CP}(\mathcal{TN}) (1 \leq j \leq k)$ такие, что $\pi_0 \overset{(A_1, \theta_1)}{\longrightarrow} \pi_1$ $\xrightarrow{(\stackrel{\smile}{A}_2, \theta_1)} \pi_2 \dots \pi_{k-1} \overset{(\stackrel{\smile}{A}_k, \theta_k)}{\longrightarrow} \pi_k$ обозначим $U_j = \varphi(E_j \not \setminus E_{j-1})$, где $E_l = E_{TN_{\pi_l}} \ (0 \leq l \leq k)$. Тогда последовательность $\overleftrightarrow{\sigma} = U_1 \overset{\smile}{U_2} \dots \overset{\smile}{U_k}$ с $L(\overleftarrow{\sigma}) = A_1(\theta_1) \overset{\smile}{A_2}(\theta_2) \dots \overset{\smile}{A_k}(\theta_k)$ будем называть обратимой $\star - *$ -последовательностью срабатываний \mathcal{TN} .

Обозначим через $\mathcal{FS}_{\star-*}(\mathcal{TN})$ множество обратимых \star – *-последовательностей срабатываний в ВСП \mathcal{TN} из S_0 . Определим *обратимые* языки ВСП \mathcal{TN} , \star , * $\in \{i,s\}$ следующим образом:

$$\mathcal{L}_{\star-*}(\mathcal{TN}) = \{L(\overrightarrow{\sigma}) \mid \overrightarrow{\sigma} \in \mathcal{FS}_{\star-*}(\mathcal{TN})\};$$

$$\mathcal{TP}om_{i-p}(\mathcal{TN}) = \{\overrightarrow{P}_{1} \overrightarrow{P}_{2} \dots \overrightarrow{P}_{k} 0 \leq k \mid P_{j} \in \mathcal{TP}(Act) \cup \overline{\mathcal{TP}}_{e}(Act)(1 \leq j < k), \exists \pi_{j}(1 \leq j \leq k) \in \mathcal{CP}(\mathcal{TN}) \mid \pi_{l} \xrightarrow{\overrightarrow{P}_{l}}_{i-p} \pi_{l+1}, 0 \leq l < k)\};$$

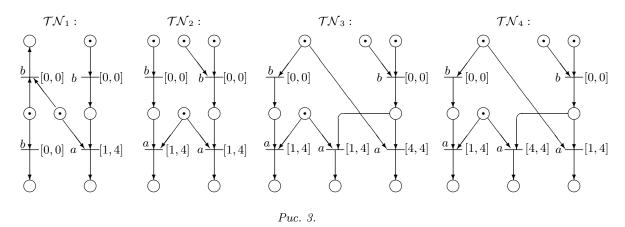
$$\mathcal{TP}os_{i-p}(\mathcal{TN}) = \{TP = P_{1}P_{2} \dots P_{k} \in \mathcal{TP}_{i-p}^{\square}(Act)(0 \leq k) \mid P_{j} \in \mathcal{TP}os(\mathcal{TN}), \exists \pi \in \mathcal{CP}(\mathcal{TN}) \mid \pi_{0} \xrightarrow{TP}_{i-p} \pi(1 \leq j \leq k)\}.$$

5. Тестовые эквивалентности

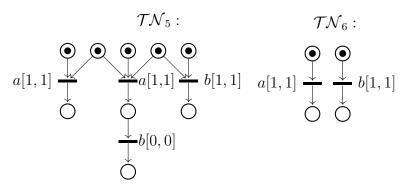
При интерливинговом и шаговом подходах к определению тестовой эквивалентности в качестве тестов рассматриваются последовательности w выполняемых действий или мультмножеств независимых действий (вычисления процесса) и множества W возможных дальнейших действий или шагов. Процесс проходит тест, если после выполнения каждой последовательности w дальше может выполниться хотя бы один из элементов из W. Два процесса тестово эквивалентны, если они проходят одно и то же множество тестов. Во временном варианте добавляется информация о временах выполнения действий. Для сравнения поведения процессов с обратимыми вычислениями в тестовые последовательности включаются отменяемые действия.

Определение 6. Пусть \mathcal{TN} и \mathcal{TN}' — ВСП, $\star, * \in \{i, s\}$. Для последовательности $w \in (Act^{\mathbb{N}} \times \mathbb{T})^*$ ($w \in (\overrightarrow{Act^{\mathbb{N}}} \times \mathbb{T})^*$) и множества $W \subseteq Act^{\mathbb{N}} \times \mathbb{T}$, ($W \subseteq \overrightarrow{Act^{\mathbb{N}}} \times \mathbb{T}$), \mathcal{TN} after w МUST $_{*(\star-*)}$ W, если для любой $\sigma \in \mathcal{FS}_*(\mathcal{TN})$ ($\overrightarrow{\sigma} \in \mathcal{FS}_{\star-*}(\mathcal{TN})$) такой, что $L(\sigma) = w$ ($L(\overrightarrow{\sigma}) = w$), существуют $(A, \theta) \in W$ и $\sigma(U, \theta) \in \mathcal{FS}_*(\mathcal{TN})$ ($(\overrightarrow{A}, \theta) \in W$ и $\overrightarrow{\sigma}(\overrightarrow{U}, \theta) \in \mathcal{FS}_{\star-*}(\mathcal{TN})$) такие, что $L(\sigma(U, \theta)) = w$ (A, θ) ($L(\overrightarrow{\sigma}(\overrightarrow{U}, \theta)) = w$ $(\overrightarrow{A}, \theta)$).

 \mathcal{TN} и \mathcal{TN}' называются $*-(\star-*)$ -тестово эквивалентными (обозначается $\mathcal{TN}\sim_*TN'$ ($\mathcal{TN}\sim_{\star-*}TN'$)), если для любой последовательности $w\in (Act^\mathbb{N}\times\mathbb{T})^*$ ($w\in (\overrightarrow{Act}^\mathbb{N}\times\mathbb{T})^*$) и любого множества $W\subseteq Act^\mathbb{N}\times\mathbb{T}$ ($W\subseteq \overrightarrow{Act}^\mathbb{N}\times\mathbb{T}$), \mathcal{TN} after w MUST $_{*(\star-*)}$ $W\iff \mathcal{TN}'$ after w MUST $_{*(\star-*)}$ W.



Пример 5. ВСП \mathcal{TN}_2 , \mathcal{TN}_3 и \mathcal{TN}_4 , изображенные на рис. 3, *i*-тестово эквивалентны, тогда как \mathcal{TN}_1 и \mathcal{TN}_2 не являются таковыми. Легко проверить, что \mathcal{TN}_2 after w = (b,0)(b,0) **MUST**_i $W = \{(a,3.9)\}$. Однако в $\mathcal{FS}_i(\mathcal{TN}_1)$ существует последовательность срабатываний, которая помечена w и после которой невозможно срабатывание перехода, помеченного a, в относительный момент времени 3.9. Таким образом, не выполняется \mathcal{TN}_1 after w **MUST**_i W.



 $Puc.\ 4.\ \Pi$ ример s-, но не i-i-тестово эквивалентных ВСП.

Пример 6. Рассмотрим ВСП \mathcal{TN}_5 и \mathcal{TN}_6 , изображенные на рис. 4. ВСП i- и s-тестово эквивалентны, но не i-i-тестово эквивалентны.

Нетрудно проверить, что \mathcal{TN}_6 after w = (a,1)(b,0) MUST $_{i-i}$ $W = \{(\overleftarrow{a},1)\}$. Но в $\mathcal{FS}_{i-i}(\mathcal{TN}_5)$ существует обратимая последовательность срабатываний, которая помечена w и в которой невозможна отмена действия (a,1). Таким образом, не выполняется \mathcal{TN}_5 after w MUST $_{i-i}$ W.

Исследования тестовых эквивалентностей в семантике частичного порядка были впервые проведены Асето и др. в статье [4] в контексте моделей структур событий. При таком подходе в качестве вычислений процесса рассматриваются частично-упорядоченные мультимножества выполняемых действий (ЧУММы), и вместо множеств дальнейших действий могут использоваться непосредственные расширения выполняемых

ЧУММов ([17]). Также, в качестве вычислений использовались и ЧУМы выполняемых действий, как в работе [17] при определении одной из версий причинной тестовой эквивалентности.

Далее определяются временные тестовые эквивалентности в семантике частичного порядка для ВСП с использованием ее корректных временных причинных сетей-процессов. Сначала рассмотрим тестовые эквивалентности со слабо-сохраняющей историю семантикой.

Определение 7. Пусть \mathcal{TN} и \mathcal{TN}' — ВСП. Для последовательности $w \in (Act \times \mathbb{T})^*$ ($w \in (Act \times \mathbb{T})^*$) и множества **TP** ВЧУМов \mathcal{TN} after w MUST $_{wh(i-wh)}$ **TP**, если для любого $\pi = (TN, \varphi) \in \mathcal{CP}(\mathcal{TN})$ такого что $\pi_0 \xrightarrow{w} \pi$ существуют $TP' \in \mathbf{TP}$ и $\pi' = (TN', \varphi') \in \mathcal{CP}(\mathcal{TN})$ такие, что $\pi \longrightarrow_{p(i-p)} \pi'$ и $\eta(TN') \sim TP'$.

 \mathcal{TN} и \mathcal{TN}' называются wh-(i-wh)-тестово эквивалентными (обозначается $\mathcal{TN} \sim_{i-wh} \mathcal{TN}'$), если для любой последовательности $w \in (Act \times \mathbb{T})^*$ ($w \in (Act \times \mathbb{T})^*$) и любого множества \mathbf{TP} ВЧУМов выполняется условие: \mathcal{TN} after w MUST $_{wh(i-wh)}$ \mathbf{TP}' $\iff \mathcal{TN}'$ after w MUST $_{wh(i-wh)}$ \mathbf{TP}' .

Далее для ВЧУМ $TP \in \mathcal{TP}(Act)$ будем обозначать $\mathbf{TP}_{TP}^p \subseteq \mathcal{TP}(Act)$ множество i-расширений TP, $\mathbf{TP}_{TP}^{i-p} \subseteq \mathcal{TP}(Act)$ множество i-p-расширений TP.

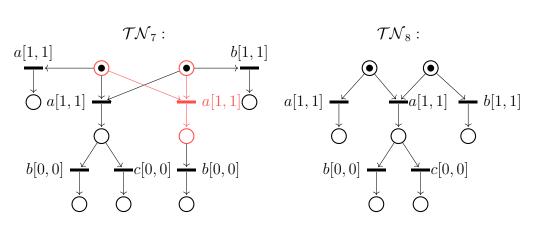
Определение 8. Пусть \mathcal{TN} и \mathcal{TN}' — ВСП. Для последовательности ВЧУМов $TP = P_1 \dots P_k \in \mathcal{TP}(Act)^*$ ($TP = \overrightarrow{P}_1 \dots \overrightarrow{P}_k \in (\mathcal{TP}(Act) \cup \overline{\mathcal{TP}_e}(Act))^*$) и множества $\mathbf{TP} \subseteq \mathcal{TP}(Act)$ ($\mathbf{TP} \subseteq \mathcal{TP}(Act) \cup \overline{\mathcal{TP}_e}(Act)$) \mathcal{TN} after TP MUST $_{pom(i-pom)}$ \mathbf{TP} , если для любого $\pi = (TN, \varphi) \in \mathcal{CP}(\mathcal{TN})$ такого что $\pi \xrightarrow{TP} \pi'$ ($\pi_0 \xrightarrow{TP}_{i-p} \pi'$) существуют $TP' \in \mathbf{TP}$ и $\pi' = (TN', \varphi') \in \mathcal{CP}(\mathcal{TN})$ такие, что $\pi \xrightarrow{TP'} \pi'$ ($\pi \xrightarrow{TP'}_{i-p} \pi'$).

 \mathcal{TN} и \mathcal{TN}' называются pom-(i-pom)-тестово эквивалентными (обозначается $\mathcal{TN} \sim_{pom(i-pom)} TN'$), если для любой последовательности ВЧУМов $TP=P_1\dots P_k \in \mathcal{TP}(Act)^*$ ($TP=\overleftrightarrow{P}_1\dots \overleftarrow{P}_k \in (\mathcal{TP}(Act)\cup \overleftarrow{TP}_e(Act))^*$) и множества $\mathbf{TP}\subseteq \mathcal{TP}(Act)$ ($\mathbf{TP}\subseteq \mathcal{TP}(Act)\cup \overleftarrow{TP}_e(Act)$) выполняется условие: \mathcal{TN} after TP MUST $_{pom(i-pom)}$ $\mathbf{TP}'\iff \mathcal{TN}'$ after TP MUST $_{pom(i-pom)}$ \mathbf{TP}' .

Пример 7. ВСП TN_7 и TN_8 , изображенные на рис. 5, *pom*-тестово эквивалентны. Проверим, что они не i-pom-тестово эквивалентны.

Определим ВЧУМы $TP_1 = (\{x_1, x_2\}, \preceq_1, \lambda_1, \tau_1)$, где $\preceq_1 = \{(x_i, x_i) \mid 1 \leq i \leq 2\} \cup \{(x_1, x_2)\}$, $\lambda_1(x_1) = a$, $\lambda(x_2) = b$, $\tau_1(x_1) = \tau'(x_2) = 1$; $TP_2 = (\{x_1\}, \preceq_2, \lambda_2, \tau_2)$, где $\preceq_2 = \{(x_1, x_1)\}$, $\lambda_2(x_1) = b$, $\tau_2(x_1) = 1$; и ВЧУМ $TP' = (\{x_3\}, \preceq_3, \lambda_3, \tau_3)$, где $\preceq_3 = \{(x_3, x_3)\}$, $\lambda_3(x_3) = c$, $\tau_3(x_3) = 1$. Для единственного временного причинного сети-процесса $\pi_8^1 = (TN_8^1, \varphi_8^1) \in \mathcal{CP}(T\mathcal{N}_8)$, в котором $E_{TN_8^1}$ состоит из двух событий с пометками a и b, находящихся в причинной зависимости, существует временной причинный сеть-процесс $\pi_8^2 = (TN_8^2, \varphi_8^2) \in \mathcal{CP}(T\mathcal{N}_8)$, в котором $E_{TN_8^2}$ состоит из события с пометкой a, такой что $\pi_8^2 \xrightarrow{TP_2} \pi_8^1$, т.е. $\pi_8^0 \xrightarrow{TP_1} \pi_9 \pi_8^1 \xrightarrow{TP_2} \pi_9 \pi_8^2$. И для π_8^2 существует временной причинный сеть-процесс $\pi_8^3 = (TN_8^3, \varphi_8^3) \in \mathcal{CP}(T\mathcal{N}_8)$, в котором $E_{TN_8^3}$ состоит из двух событий с пометками a и c, такой, что $\pi_8^2 \xrightarrow{TP'} \pi_8^3$. Однако, в случае ВСП $T\mathcal{N}_7$ не верно, что $T\mathcal{N}_7$ **after** $TP_1 \overrightarrow{TP_2}$ **MUST** $_{i-pom}$ $\{TP'\}$, а именно для временного сети-процесса, элементы которого отображаются в элементы ВСП $T\mathcal{N}_7$, выделенные на рисунке красным цветом.

Также легко убедиться, что ВСП \mathcal{TN}_2 и \mathcal{TN}_4 (рис. 3) являются i-wh-, но не pom-тестово эквивалентными.



Puc. 5. Пример i-i-, pom-, не wh-, не i-pom-тестово эквивалентных ВСП.

Определение 9. Пусть \mathcal{TN} и \mathcal{TN}' — ВСП. Для ВЧУМ TP и множества \mathbf{TP} ВЧУМов такого, что $\mathbf{TP} \subseteq \mathbf{TP}_{TP}^p$, \mathcal{TN} after TP MUST $_{pos}$ \mathbf{TP} , если для любого $\pi = (TN, \varphi) \in \mathcal{CP}(\mathcal{TN})$ и для любого изоморфизма $f: \eta(TN) \longrightarrow TP$ существуют $TP' \in \mathbf{TP}, \pi' = (TN', \varphi') \in \mathcal{CP}(\mathcal{TN})$ и изоморфизм $f': \eta(TN') \longrightarrow TP'$ такие, что $\pi \to_p \pi'$ и $f \subseteq f'$.

 \mathcal{TN} и \mathcal{TN}' называются pos-mecmoso эквивалентными (обозначается $\mathcal{TN} \sim_{pos} TN'$), если для любого ВЧУМ TP и любого множества \mathbf{TP} ВЧУМов такого, что $\mathbf{TP} \subseteq \mathbf{TP}_{TP}^p$, выполняется условие: \mathcal{TN} after TP MUST $_{pos}$ $\mathbf{TP}' \iff \mathcal{TN}'$ after TP MUST $_{pos}$ \mathbf{TP}' .

Введем обозначение для двух изоморфизмов: $f \ge f'$, если $f \subset f'$ или $f' \subset f$.

Определение 10. Пусть \mathcal{TN} и \mathcal{TN}' — ВСП. Для последовательности ВЧУМов $TP = P_1 \dots P_k \in \mathcal{TP}_{i-p}^{\sqsubset}(Act)$ и множества ВЧУМов \mathbf{TP} такого, что $\mathbf{TP} \subseteq \mathbf{TP}_{P_k}^{i-p}$, \mathcal{TN} after TP MUST_{i-pos} \mathbf{TP} , если для любого $\pi = (TN, \varphi) \in \mathcal{CP}(\mathcal{TN})$, такого что $\pi_0 \stackrel{TP}{\hookrightarrow}_{i-p} \pi'$, и для любого изоморфизма $f: \eta(TN) \longrightarrow P_k$ существуют $TP' \in \mathbf{TP}$, $\pi' = (TN', \varphi') \in \mathcal{CP}(\mathcal{TN})$ и изоморфизм $f': \eta(TN') \longrightarrow TP'$ такие, что $\pi \longrightarrow_{i-p} \pi'$ и $f \geqslant f'$.

 \mathcal{TN} и \mathcal{TN}' называются i-pos-тестово эквивалентными (обозначается $\mathcal{TN} \sim_{i-pos} TN'$), если для любой последовательности ВЧУМов $TP = P_1 \dots P_k \in \mathcal{TP}_{i-p}^{\sqsubset}(Act)$ и любого множества \mathbf{TP} ВЧУМов такого, что $\mathbf{TP} \subseteq \mathbf{TP}_{P_k}^{i-p}$, выполняется условие: \mathcal{TN} after TP MUST $_{i-pos}$ $\mathbf{TP} \iff \mathcal{TN}'$ after TP MUST $_{i-pos}$ \mathbf{TP} .

Пример 8. Рассмотрим ВСП \mathcal{TN}_2 , \mathcal{TN}_3 и \mathcal{TN}_4 , изображенные на рис. 3. Легко проверить, что \mathcal{TN}_2 и \mathcal{TN}_3 *pos*-тестово эквивалентны, тогда как \mathcal{TN}_3 и \mathcal{TN}_4 не являются таковыми. Убедимся в последнем. Определим ВЧУМ $TP = (\{x_1, x_2\}, \preceq, \lambda, \tau)$, где $\preceq = \{(x_i, x_i) \mid 1 \leq i \leq 2\}$, $\lambda(x_1) = \lambda(x_2) = b$, $\tau(x_1) = \tau'(x_2) = 0$; и ВЧУМ $TP' = (\{x_1, x_2, x_3\}, \preceq', \lambda', \tau')$, где $\preceq' = \{(x_i, x_i) \mid 1 \leq i \leq 3\} \cup \{(x_2, x_3)\}$, $\lambda'(x_1) = \lambda'(x_2) = b$, $\lambda'(x_3) = a$, $\tau'(x_1) = \tau'(x_2) = 0$ и $\tau'(x_3) = 3.9$. Для любого временного причинного сети-процесса $\pi_3 = (TN_3, \varphi_3) \in \mathcal{CP}(\mathcal{TN}_3)$, в котором E_{TN_3} состоит из двух параллельных событий с пометками b и временными значениями, равными 0, и для любого изоморфизма $f_3 \colon \eta(TN_3) \longrightarrow TP$ можно найти временной причинный сеть-процесс $\pi'_3 = (TN'_3, \varphi'_3) \in \mathcal{CP}(\mathcal{TN}_3)$, в котором $E_{TN'_3}$ состоит из двух параллельных событий с пометками b и временными значениями 0 и третьего события с пометкой a и временным значением 3.9, находящегося в отношении причинной зависимости с одним из b, и изоморфизм $f'_3 \colon \eta(TN'_3) \longrightarrow TP'$ такие, что $\pi_3 \to p$ π'_3 и $f_3 \subset f'_3$. Однако, это не так в случае ВСП \mathcal{TN}_4 . Таким образом, \mathcal{TN}_3 after TP **MUST** $_{pos}$ $\{TP'\}$, но не верно, что \mathcal{TN}_4 after TP **MUST** $_{pos}$ $\{TP'\}$.

6. Взаимосвязи тестовых эквивалентностей

Следующая лемма устанавливает взаимосвязь между совпадением обратимых языков ВЧУМов для ВСП с наличием между ними временных тестовых эквивалентностей с интерливинговой и шаговой обратимостью.

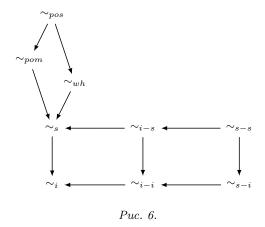
Лемма 2. Пусть
$$\mathcal{TN}_1$$
 и $\mathcal{TN}_2 - BC\Pi$, $\star, * \in \{i, s\}$. Тогда
$$\mathcal{TN}_1 \sim_{\star - *} \mathcal{TN}_2 \Rightarrow \mathcal{L}_{\star - *}(\mathcal{TN}_1) = \mathcal{L}_{\star - *}(\mathcal{TN}_2),$$

$$\mathcal{TN}_{1} \sim_{pom} \mathcal{TN}_{2} \Rightarrow \mathcal{TPos}(\mathcal{TN}_{1}) = \mathcal{TPos}(\mathcal{TN}_{2}),$$

$$\mathcal{TN}_{1} \sim_{i-pom} \mathcal{TN}_{2} \Rightarrow \mathcal{TPom}_{i-p}(\mathcal{TN}_{1}) = \mathcal{TPom}_{i-p}(\mathcal{TN}_{2}),$$

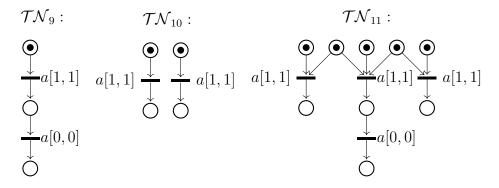
$$\mathcal{TN}_{1} \sim_{i-pos} \mathcal{TN}_{2} \Rightarrow \mathcal{TPos}_{i-p}(\mathcal{TN}_{1}) = \mathcal{TPos}_{i-p}(\mathcal{TN}_{2}).$$

Далее представлена иерархия введенных временных тестовых эквивалентностей в различных семантиках без обратимости и с обратимостью.



Теорема 1. Пусть $\star, * \in \{i, s, pos, pom, wh\}$ и $\dagger, \ddagger \in \{i, s, \circ\}$, где \circ означает "пусто". Если $\sim_{\dagger-*}$ и $\sim_{\dagger-*}$ представлены на рис. 6, то для ВСП \mathcal{TN}_1 апд \mathcal{TN}_2 выполняется: $\mathcal{TN}_1 \sim_{\dagger-*} \mathcal{TN}_2 \implies \mathcal{TN}_1 \sim_{\ddagger-*} \mathcal{TN}_2 \iff$ существует путь из $\sim_{\dagger-*}$ в $\sim_{\ddagger-*}$ на рис. 6. Доказательство. (\iff) Очевидным образом следует из определений временных тестовых эквивалентностей.

- (⇒) Для доказательства отсутствия на рис. 6 других прямых стрелок и стрелок в обратном направлении рассмотрим следующие контрпримеры.
- 1) ВСП TN_5 и TN_6 , рассмотренные ранее в примере 6 s-тестово эквивалентны, и легко проверить, что данные ВСП ни i-i-, ни pom-, ни pos-тестово эквивалентны.

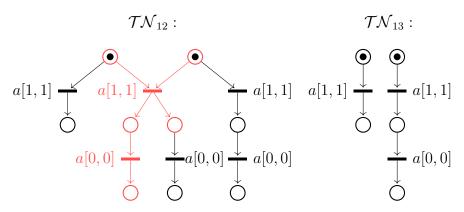


Puc. 7. Примеры i-i-тестово эквивалентных ВСП.

2) ВСП \mathcal{TN}_9 и \mathcal{TN}_{10} , изображенные на рис. 7, i-i-тестово эквивалентны, но ни s-, ни s-i-тестово эквивалентны. Нетрудно проверить, что \mathcal{TN}_{10} after w=(a,1)(a,0) MUST $_{s-i}$

 $W = \{([\stackrel{\longleftarrow}{a}:2],1)\}$. Однако в \mathcal{TN}_9 после последовательности срабатываний, помеченной w, невозможно срабатывание обратного шага, помеченного $([\stackrel{\longleftarrow}{a}:2],1)$. Таким образом, не выполняется \mathcal{TN}_9 after w MUST $_{s-i}$ W.

3) ВСП \mathcal{TN}_{10} и \mathcal{TN}_{11} , изображенные на рис. 7, i-s-тестово эквивалентны. Но данные ВСП не s-i-тестово эквивалентны, так как ВСП \mathcal{TN}_{11} не проходит тест, описанный выше в п. 2.



 $Puc.~8.~\Pi$ римерs-s-, не wh, не pom-тестово эквивалентных ВСП.

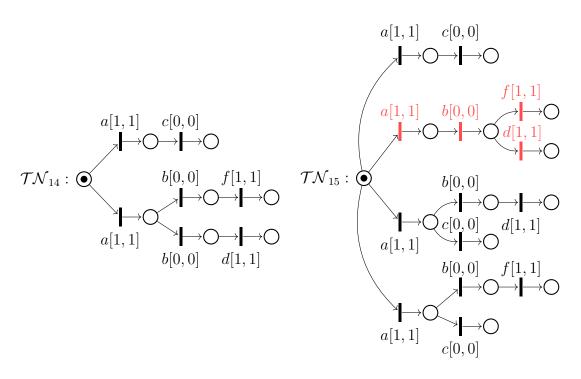
4) ВСП \mathcal{TN}_{12} и \mathcal{TN}_{13} , изображенные на рис. 8, s-s-тестово эквивалентны, но ни pom-, ни wh-тестово эквивалентны. Проверим последнее.

Определим последовательность $w=(a,1)(a,0)\in (Act\times\mathbb{T})^*$ и ВЧУМ $TP'=(\{x_1,x_2,x_3\}, \preceq', \lambda', \tau')$, где $\preceq'=\{(x_i,x_i)\mid 1\leq i\leq 3\}\cup\{(x_1,x_2)\}, \lambda'(x_1)=\lambda'(x_2)=\lambda'(x_3)=a,$ $\tau'(x_1)=\tau'(x_2)=\tau'(x_3)=1$. Для любого временного причинного сети-процесса $\pi_{13}=(TN_{13},\varphi_{13})\in\mathcal{CP}(T\mathcal{N}_{13})$, в котором $E_{TN_{13}}$ состоит из двух событий с пометками a и временными значениями, равными 1, т.е. $\pi_{13}^0\stackrel{w}{\to}\pi_{13}$, существует его i-расширение, единственный временной причинный сеть-процесс $\pi'_{13}=(TN'_{13},\varphi'_{13})\in\mathcal{CP}(T\mathcal{N}_{13})$, в котором $E_{TN'_{13}}$ состоит из трех событий: двух параллельных событий с пометками a и третьего события с пометкой a, находящегося в отношении причинной зависимости с одним из a, и временными значениями 1, т.е. $\pi_{13}\to_i\pi'_{13}$, $\eta(TN'_{13})\simeq TP'$ и $T\mathcal{N}_{13}$ after w MUST $_{wh}$ $\{TP'\}$. В случае ВСП $T\mathcal{N}_{12}$, например, для временного сети-процесса, элементы которого отображаются в элементы ВСП $T\mathcal{N}_{12}$, выделенные на рисунке красным цветом, не существует необходимого i-расширения.

5) ВСП TN_7 и TN_8 , изображенные на рис. 5 и рассмотренные ранее в примере 7, i-i- и pom-тестово эквивалентны, но ни pos-, ни wh-тестово эквивалентны. Убедимся в последнем.

Определим последовательность $w=(a,1)\in (Act\times \mathbb{T})^*$ и ВЧУМы $TP_1=(\{x_1,x_2\},\, \preceq_1,\,$

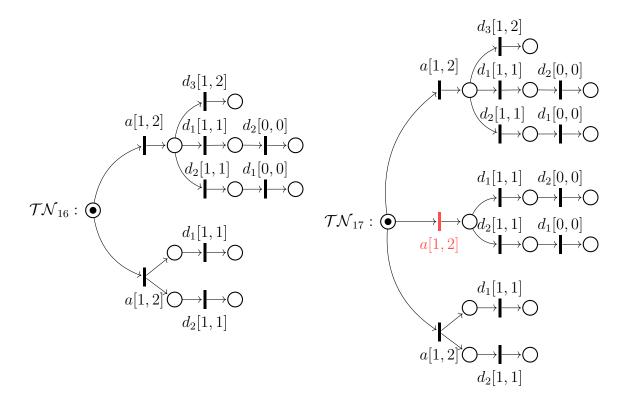
 λ_1, τ_1), где $\preceq_1 = \{(x_1, x_1), (x_2, x_2), (x_1, x_2)\}$, $\lambda_1(x_1) = a, \lambda(x_2) = c, \tau_1(x_1) = \tau_1(x_2) = 1; TP_2 = (\{x_1', x_2'\}, \, \preceq_2, \, \lambda_2, \, \tau_2)$, где $\preceq_2 = \{(x_1', x_1'), (x_2', x_2')\}$, $\lambda_2(x_1') = a, \, \lambda_2(x_2') = b, \, \tau_2(x_1') = \tau_2(x_2') = 1$. Легко видеть, что \mathcal{TN}_8 after w MUST $_{wh}$ $\{TP_1, TP_2\}$. Однако, это не так для ВСП \mathcal{TN}_7 , так как, например, для временного сети-процесса, элементы которого отображаются в элементы ВСП \mathcal{TN}_7 , выделенные на рисунке красным цветом, не существует i-расширения, которому бы соответствовало ВЧУМ, изоморфное TP_1 или TP_2 .



 $Puc. \ 9. \ \Pi$ ример pos-, не i-i-тестово эквивалентных ВСП.

- 6) ВСП \mathcal{TN}_{14} и \mathcal{TN}_{15} , изображенные на рис. 9, pos-тестово эквивалентны, но не i-i-тестово эквивалентны. \mathcal{TN}_{14} after $w=(a,1)(b,0)(d,1)(\overleftarrow{d},1)(f,1)$ MUST $_{i-i}$ $W=\{(e,1)\}$, так как в ВСП \mathcal{TN}_{14} не существует обратимой i-i-последовательности срабатываний, которая помечена w. Однако в ВСП \mathcal{TN}_{15} существует такая обратимая i-i-последовательность срабатываний, входящие в нее переходы выделены на рисунке красным цветом, и для неё невозможно расширение посредством срабатывания шага, помеченного (e,1). Таким образом, не выполняется \mathcal{TN}_{15} after w MUST $_{i-i}$ W.
- 7) ВСП \mathcal{TN}_{16} и \mathcal{TN}_{17} , изображенные на рис. 10, s-i-тестово эквивалентны, но не s-тестово эквивалентны.

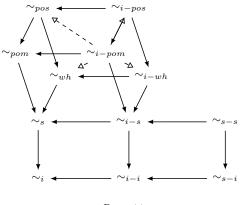
Нетрудно проверить, что \mathcal{TN}_{16} after w=(a,1) MUST_s $W=\{([d_1,\ d_2],\ 1);\ (d_3,1)\}$. Но в \mathcal{TN}_{17} после последовательности срабатываний, помеченной w и соответствующей средней части ВСП на рисунке (переход выделен красным цветом), невозможны срабатывания ни



 $Puc.\ 10.\ \Pi$ ример s-i-, не s-тестово эквивалентных ВСП

шага, помеченного ($[d_1, d_2], 1$), ни шага ($d_3, 1$). Таким образом, не выполняется \mathcal{TN}_{17} after w MUST $_s$ W.

Вопросы о взаимосвязях тестовых эквивалентностей с обратимостью в частично-упорядоченной семантике в основном пока остаются открытыми. Как следствие Теоремы 1 и примера 7 на рис. 11 представлена иерархия рассмотренных в статье временных тестовых эквивалентностей с обратимостью. Стрелки с белыми наконечниками обозначают оставшиеся открытыми вопросы о взаимосвязях.



Puc. 11.

7. Заключение

В данной статье была сделана попытка расширить тестовые эквивалентности введением тестов с возможностью отмены выполненных действий. В контексте непрерывно-временных сетей Петри были введены понятия тестовых эквивалентностей в интерливинговой, шаговой и частично-упорядоченной семантиках с обратимостью в интерливинговой и шаговой семантиках. Для введения отмены действий применялся метод причинной обратимости, который хорошо поддерживается использованной для представления вычислений ВСП частично-упорядоченной семантикой причинных сетей-процессов. Были исследованы взаимосвязи между изученными ранее ([1, 10]) и введенными тестовыми эквивалентностями. Установлено, что тестовая эквивалентность в частично-упорядоченной семантике слабее интерливинговой тестовой эквивалентности с обратимостью в интерливинговой семантике. Также в полученной иерархии показано, что, в отличие от бисимуляций с обратимостью ([29]), интерливинговая тестовая эквивалентность с шаговой обратимостью не сильнее шаговой тестовой эквивалентности с интерливинговой обратимостью. Заметим, что и для вариантов эквивалентностей с "расширенным будущим", тестовые эквивалентности для случаев с "единичным будущим" и "расширенным будущим" различаются, в отличие от бисимуляционной эквивалентности, для которых установлено совпадение ([10]). Также остался открытым вопрос о взаимоотношении некоторых тестовых эквивалентностей в частично-упорядоченной семантике. Поэтому в дальнейшем планируется продолжить изучение тестовых эквивалентностей с шаговой обратимостью, а также исследовать тестовые эквивалентности с обратимостью в частично-упорядоченной семантике.

Список литературы

- 1. Боженкова Е.Н., Вирбицкайте И.Б. Тестовые эквивалентности временных Сетей Петри // Программирование. 2020. №4. С. 3-13.
- Вирбицкайте И.Б., Боровлёв В.А., Попова-Цейгманн Л. Истинно-параллельная и недетерминированная семантика временных сетей Петри// Программирование. 2016. №4. С. 4–16.
- 3. Грибовская Н.С., Вирбицкайте И.Б. Семантика систем переходов структур событий с отменяемыми событиями при сохранении причинно-следственной зависимости// Системная информатика. 2024. №24. С.59–90.
- 4. Aceto L., De Nicola R., Fantechi A. Testing equivalences for event structures// Lect. Notes in Computer Sci. 1987. Vol. 280. P. 1–20.

- 5. Andreeva M., Bozhenkova E., Virbitskaite I. Analysis of timed concurrent models based on testing equivalence// Fundamenta Informaticae. 2000. Vol. 43. P. 1–20.
- Aura T., Lilius J. A causal semantics for time Petri nets// Theor. Computer Sci. 2000. Vol. 243, №1-2. P. 409-447.
- 7. Barylska, K., Koutny, M., Mikulski, L., Piatkowski, M. Reversible computation vs. reversibility in Petri nets// Sci. Comput. Program. 2018. Vol. 151. P.48-60.
- 8. Berard B., Cassez F., Haddad S., Lime D., Roux O.H. Comparison of the expressiveness of timed automata and time Petri nets// Lect. Notes in Computer Sci. 2005. Vol. 3829. P. 211–225.
- 9. Bihler E., Vogler W. Timed Petri Nets: Efficiency of Asynchronous Systems// Lect. Notes in Computer Sci. 2004. Vol. 3185. P. 25–58.
- 10. Bozhenkova E., Virbitskaite I. Extended Future in Testing Semantics for Time Petri Nets// Concurrency, Specification and Programming Revised Selected Papers from the 29th International Workshop on Concurrency, Specification and Programming (CS&P'21), Berlin, Germany, in series: Studies in Computational Intelligence. Springer. 2023. Vol. 1091. P. 65-89.
- 11. Cleaveland R., Hennessy M. Testing equivalence as a bisimulation equivalence// Lect. Notes in Computer Sci. 1989. Vol. 407. P. 11–23.
- 12. Cleaveland R., Zwarico A.E. A theory of testing for real-time// Proc. 6th IEEE Symp. on Logic in Comput. Sci. (*LICS'91*). Amsterdam, The Netherlands, 1991. P. 110–119.
- 13. Corradini F., Vogler W., Jenner L. Comparing the Worst-Case Efficiency of Asynchronous Systems with PAFAS// Acta Informatica. 2002. Vol. 38. №11–12. P. 735–792.
- Danos, V, Krivine, J.: Reversible communicating systems// In: Proceedings of CONCUR'04. Lect. Notes in Computer Sci. 2004. Vol. 3170. P. 292-307.
- De Nicola R., Hennessy M. Testing equivalence for processes// Theor. Comput. Sci. 1984. Vol. 34.
 P. 83–133.
- R. De Nicola, U. Montanari, and F. Vaandrager: Back and forth bisimulations// Proc. CONCUR '90, Theories of Concurrency: Unification and Extension. Lect. Notes in Comp. Sci. 1990. Vol. 458. P. 152–165.
- 17. Goltz U., Wehrheim H. Causal testing// Lect. Notes in Computer Sci. 1996. Vol. 1113. P. 394–406.
- 18. M. Hennessy, R.Milner: Algebraic laws for nondeterminism and concurrency// JACM. 1985. Vol. 32. №1. P. 137–161.
- 19. Hennessy M., Regan T. A process algebra for timed systems// Inform. and Comput. 1995. Vol. 117. P. 221–239.
- 20. Hoogers P.W., Kleijn H.C.M., Thiagarajan P.S. An event structure semantics for general Petri nets// Theor. Computer Sci. 1996. Vol. 153. №1–2. P. 129–170.
- 21. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B. Concurrent flexible reversibility// In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. Lect. Notes in Computer Sci. Heidelberg:Springer, 2013. Vol. 7792. P. 370–390. URL: https://doi.org/10.1007/978-3-642-37036-6 21.
- 22. Lanese, I., Palacios, A., Vidal, G. Causal-consistent replay debugging for message passing programs// In: Perez, J.A., Yoshida, N. (eds.) FORTE 2019. Lect. Notes in Computer Sci. Springer,

- Cham, 2019. Vol. 11535, P. 167–184. URL: https://doi.org/10.1007/978-3-030-21759-4 10.
- 23. Llana L., de Frutos D. Denotational semantics for timed testing// Lect. Notes in Computer Sci. 1997. Vol. 1233. P. 368–382.
- 24. Melgratti, H.C., Mezzina, C.A., Phillips, I., Pinna, G.M., Ulidowski, I. Reversible occurrence nets and causal reversible prime event structures// In I. Lanese and M. Rawski, eds., Reversible Computation - 12th International Conference, RC 2020. Lect. Notes in Computer Sci. Springer, 2020. Vol. 12227. P. 35-53.
- 25. Melgratti, H.C., Mezzina, C.A., Pinna, G.M. A Reversible Perspective on Petri Nets and Event Structures// Proc. ACM Transactions on Computational Logic, August 2024. Vol. 25, №4. P. 1–38. URL: https://doi.org/10.1145/3686154.
- 26. Murphy D. Time and duration in noninterleaving concurrency// Fundamenta Informaticae. 1993. Vol. 19. P. 403-416.
- M. Nielsen, C. Clausen. Bisimulation for Models in Concurrency// In: Proc. of 5th Int. Conf. on Concurrency Theory, CONCUR'94. Lect. Notes in Computer Sci. Springer-Verlag. 1994. Vol. 836. P. 385–400.
- 28. Nielsen, M., Rozenberg, G., Thiagarajan, P.S. Behavioural notions for elementary net systems // Distributed Computing. 1990. Vol. 4. №1. P. 45–57.
- 29. Phillips, I.C.C., Ulidowski, I. A hierarchy of reverse bisimulations on stable configuration structures// Math. Struct. Comput. Sci. 2012. Vol.22. P. 333-372.
- 30. Phillips, I.C.C., Ulidowski, I. Event identifier logic// Math. Struct. Comput. Sci. 24, 2014, P. 1-51.
- 31. Phillips, I.C.C., Ulidowski, I. Reversibility and asymmetric conflict in event structures // Logic and Algebraic Methods in Programming. 2015. Vol. 84, №6. P. 781-805.
- 32. Pomello, L., Rozenberg, G., Simone C. A Survey of Equivalence Notions for Net Based Systems// Lect. Notes in Computer Sci. 1992. Vol. 609. P. 410–472.
- 33. Valero, Vol., de Frutos, D., Cuartero, F. Timed processes of timed Petri nets// Lect. Notes in Computer Sci. 1995. Vol. 935. P. 490–509.
- 34. van Glabbeek R.J. The linear time branching time spectrum I: the semantics of concrete, sequential processes// In: Bergstra J.A., Ponse A., and Smolka S.A. (eds.), Handbook of Process Algebra Elsevier. 2001. P. 3–99.
- 35. van Glabbeek R.J., Goltz U., Schicke J.-W. On causal semantics of Petri nets // Lect. Notes in Computer Sci. 2011. Vol. 6901. P. 43-59.
- 36. Vassor, M., Stefani, J.-B. Checkpoint/Rollback vs causally-consistent reversibility// In: Kari, J., Ulidowski, I. (eds.) RC 2018. Lect. Notes in Computer Sci. Springer, Cham (2018). Vol. 11106. P. 286-303. URL:https://doi.org/10.1007/978-3-319-99498-7 20.
- 37. Virbitskaite I., Bushin D., Best E. True concurrent equivalences in time Petri nets// Fundamenta Informaticae. 2016. Vol. 149. №4. P. 401–418.