
System Informatics (Системная информатика), No. 29 (2025) 189

УДК 004.451.2, 004.82, 004.021, 519.6, 004.42

Операционная семантика выражений

в языке Rust на языке ABML

Бодин Е.В. (Институт систем информатики СО РАН)

Ануреев И.С. (Институт систем информатики СО РАН)

В статье рассматривается формальное описание операционной семантики выраже-

ний языка программирования Rust с использованием предметно-ориентированного

языка моделирования ABML. Основное внимание уделяется динамическим аспектам

вычислений, включая управление памятью, владение, заимствование и проверку кон-

фликтов доступа на этапе выполнения.

Предлагаемый подход опирается на онтологическое представление синтаксических

и семантических сущностей Rust, что позволяет единообразно описывать выражения,

блоки и структуры данных как элементы единой вычислительной модели. В отличие

от традиционных формализаций, модель явно включает метаданные безопасности,

необходимые для воспроизведения механизмов ownership и borrow checking.

Особенностью работы является использование иерархической модели памяти, поз-

воляющей корректно описывать частичное заимствование структур и доступ к их

полям. Это обеспечивает более точную динамическую семантику по сравнению с плос-

кими моделями памяти и демонстрирует соответствие формальных правил реальному

поведению программ на Rust.

Полученная операционная семантика является исполняемой и может служить ос-

новой для анализа программ, прототипирования интерпретаторов и дальнейших ис-

следований в области формальной верификации языков с управляемой безопасностью

памяти.

Ключевые слова: операционные семантики, онтологии языков программирования,

модели языков программирования, атрибутные замыкания, ABML, Rust, управление

памятью, онтологическое моделирование

1. Введение

Современные языки программирования системного уровня все чаще ориентируются

на строгие гарантии безопасности памяти, которые должны обеспечиваться без значи-

тельного снижения производительности. Язык Rust представляет собой один из наиболее

успешных примеров такого подхода, сочетая низкоуровневый контроль над ресурсами с

190 Бодин Е.В., Ануреев И.С. Операционная семантика выражений в языке Rust на языке ABML

формально заданными правилами владения и заимствования. Эти правила традицион-

но проверяются на этапе компиляции, однако их точная семантическая интерпретация

требует аккуратного формального описания.

Формальная операционная семантика играет ключевую роль в понимании поведения

программ, анализе корректности и построении инструментов верификации. Для языков

с нетривиальной моделью памяти, таких как Rust, стандартные подходы, основанные на

простых состояниях вида «память—окружение», оказываются недостаточными. В част-

ности, они не позволяют напрямую выразить ограничения, связанные с одновременным

доступом к данным, жизненным циклом значений и частичным заимствованием состав-

ных объектов.

В данной работе предлагается использовать онтологический подход к заданию опера-

ционной семантики, реализованный с помощью языка ABML [21]. В рамках этого подхода

вычислительное состояние рассматривается как совокупность объектов и их атрибутов, а

динамика исполнения описывается через вычисление и обновление этих атрибутов. Такой

взгляд позволяет естественным образом интегрировать в модель дополнительные семан-

тические слои, в том числе метаданные, отвечающие за безопасность памяти.

ABML ранее применялся для формального описания семантики языковых конструк-

ций, включая операторы передачи управления в языке C [20]. Эти исследования показали,

что онтологическое моделирование обеспечивает модульность, расширяемость и исполня-

емость семантики. Настоящая статья развивает данный подход применительно к языку

Rust, фокусируясь не на управляющих конструкциях, а на выражениях и связанных с

ними механизмах работы с памятью.

В статье формализуются базовые синтаксические сущности Rust, включая выражения,

объявления переменных и блоки, а также вводится иерархическая модель локаций памя-

ти. Особое внимание уделяется операционной семантике заимствования, разыменования и

присваивания, а также алгоритму динамической проверки конфликтов, моделирующему

поведение borrow checker. Рассматриваемые примеры демонстрируют, как предложенная

модель воспроизводит как корректные сценарии доступа к данным, так и ситуации, при-

водящие к ошибкам выполнения.

Таким образом, целью работы является построение исполняемой операционной семан-

тики выражений Rust на основе ABML, которая не только отражает ключевые свойства

языка, но и может служить фундаментом для дальнейших исследований в области фор-

System Informatics (Системная информатика), No. 29 (2025) 191

мальных методов, анализа программ и разработки инструментов поддержки Rust.

Статья организована следующим образом. В разделе 2 вводится онтология выражений

и типов данных языка Rust, описываются базовые синтаксические сущности и их семан-

тические роли в вычислительной модели. В разделе 3 рассматриваются модели агентов

и окружения, используемые для представления состояния вычислений, включая иерар-

хическую модель памяти и метаданные безопасности. Раздел 4 посвящен формальному

заданию операционной семантики выражений Rust на языке ABML, включая объявления

переменных, вычисление базовых выражений, присваивание и доступ к полям структур.

Также в нем подробно рассматривается операционная семантика заимствования, разы-

менования и универсальное правило проверки заимствований, моделирующее поведение

borrow checker. В разделе 5 приводятся иллюстративные и комплексные примеры выпол-

нения программ, демонстрирующие работу иерархической проверки конфликтов и ча-

стичного заимствования структур. Далее следует раздел «Родственные работы», в кото-

ром проводится сопоставление предложенного подхода с существующими формализация-

ми семантики Rust и других языков программирования. В заключении подводятся итоги

работы и обсуждаются направления дальнейших исследований.

2. Онтология выражений и типов данных языка Rust

В данном разделе вводится онтология выражений, констант и типов данных. В онто-

логическом подходе к спецификации операционной семантики языков программирования

[20] онтология конструкций языка Rust описывается набором типов языка ABML, полное

описание которого можно найти в [21].

2.1. Имена

В этом подразделе описываются типы для разных видов имен, используемых в Rust-

программах:

1 (typedef "name" (uniont symbol string))

2 (typedef "variable" "name")

3 (typedef "field name" "name")

4 (typedef "struct name" "name")

Таким образом, все имена моделируются лисповскими строками.

192 Бодин Е.В., Ануреев И.С. Операционная семантика выражений в языке Rust на языке ABML

2.2. Константы и значения

В этом подразделе описываются типы для разных видов констант языка Rust, а также

значений, которые могут возвращать выражения на этом языке:

1 (typedef "constant" (uniont "i32 value" "bool value"))

2

3 (typedef "i32 value" int)

4 (typedef "bool value" (enumt "true" "false"))

5 (typedef "()" (enumt "()"))

6

7 (typedef "value" (uniont "constant" "()" "reference"))

8

9 (mot "reference" :at "location" "location"

10 :at "lifetime" "lifetime")

11

12 (typedef "location" (uniont "simple location" "struct location"

13 "field location"))

14 (mot "simple location")

15 (mot "struct location" :amap "field name" "location")

16 (mot "field location")

17

18 (mot "lifetime")

Экземпляры типов "i32 value" и "bool value" являются моделями значений типов

i32 и bool языка Rust. Язык Rust имеет и другие примитивные типы, но мы для про-

стоты в этой статье ограничиваемся только этими двумя. Остальные типы моделируются

аналогичным образом.

Тип "()" моделирует значение () в языке Rust типа unit.

Тип "location" моделирует локации (адреса, ячейки памяти) в языке Rust. Мы выде-

ляем 3 подтипа локаций – локации, связанные с переменными примитивных типов; лока-

ции, связанные с переменными типа структуры и локации, связанные с полями структуры.

В языке Rust имеются и другие составные типы помимо структур, например, кортежи, но

мы для простоты ограничиваемся только структурами, поскольку моделирование значе-

System Informatics (Системная информатика), No. 29 (2025) 193

ний других составных типов делается аналогичным образом.

Тип "lifetime" моделирует ссылки, которые связаны с локациями и имеют время

жизни.

Тип "lifetime" определяет значения, которые описывают время жизни для ссылок.

2.3. Типы данных

В этом подразделе собраны типы языка ABML, моделирующие типы языка Rust. Для

простоты мы ограничиваемся небольшим набором типов, но это набор несложно расши-

рить:

1 (typedef "type" (uniont "i32" "bool" "unit" "struct name"

"struct type"

2 "&T1" "&mutT1"))

3

4 (typedef "i32" (enumt "i32"))

5 (typedef "bool" (enumt "bool"))

6 (typedef "unit" (enumt "unit"))

7 (cot "struct type" :amap "field name" "type")

8 (cot "&T" :at "type" "type")

9 (cot "&mutT" :at "type" "type")

Типы "i32" и "bool" моделируют типы i32 и bool языка Rust.

Тип "unit" моделирует тип unit языка Rust.

Тип "struct type" моделирует типы структур, задавая их поля и типы этих полей.

Типы "&T1" и "&mutT1" моделируют типы для обычных и мутабельных ссылок.

2.4. Выражения

Модели выражений языка Rust, рассматриваемые в этой статье, на языке ABML опре-

деляются следующим набором типов:

1 (typedef "expression" (uniont "variable" "constant" "1.2" "&1"

2 "&mut1" "*1" "1+2"))

3

4 (mot "1.2" :at 1 "expression" :at 2 "field name")

5 (mot "&1" :at 1 "expression")

194 Бодин Е.В., Ануреев И.С. Операционная семантика выражений в языке Rust на языке ABML

6 (mot "&mut1" :at 1 "expression")

7 (mot "*1" :at 1 "expression")

8 (mot "1+2" :at 1 "expression" :at 2 "expression")

9

10 (mot "1=2" :at 1 "identifier" :at 2 "expression"

11 :at "type" "type")

12 (mot "let1: =2" :at 1 "identifier" :at 2 "expression"

13 :at "type" "type")

14 (mot "let mut1: =2" :at 1 "identifier" :at 2 "expression"

15 :at "type" "type")

16 (mot "{1}" :at 1 (listt "expression"))

Они моделируют небольшой, но достаточный набор выражений для описания основных

концепций операционной семантики языка Rust. Заметим, что для моделей выражений

assign, let и let mut языка Rust, мы считаем, что тип атрибута 1 известен и хранится в

атрибуте "type".

3. Модели агентов и окружения

Состояние программы в ABML моделируется агентом, который оперирует знаниями о

памяти и окружении. Для языка Rust множество агентов определяется следующим типом:

1 (mot "agent"

2 :at "location" (cot :amap "variable" "location")

3 :at "mutability" (cot :amap "variable"

4 (enumt "mutable" "immutable"))

5 :at "location value" (cot :amap "location" "value")

6 :at "location type" (cot :amap "location" "type")

7 :at "borrows" (cot :amap "location" (listt "borrow"))

8 :at "lifetimes" (cot :amap "lifetime" (listt "location"))

9 :at "value" "value"

Атрибут "location" связывает переменные программы с локациями.

Атрибут "mutability" определяет, является ли эта связь мутабельной или нет.

Атрибуты "location value" и "location type" задают значения, хранящиеся в лока-

System Informatics (Системная информатика), No. 29 (2025) 195

циях и типы этих значений, соответственно.

Атрибут "borrows" определяет стеки заимствований для локаций.

Атрибут "lifetimes" описывает, как локации распределяются по времени жизни.

Атрибут "value" – это стандартный атрибут языка ABML, который хранит последнее

вычисленное значение.

Заимствования и время жизни определяются следующим образом:

1 (mo "borrow" :at "lifetime" "lifetime"

2 :at "kind" (enumt "free", "shared", "unique"))

3

4 (mo "lifetime")

4. Операционная семантика моделей выражений

В данном разделе задается исполняемая семантика конструкций Rust в виде атрибут-

ных замыканий [21]. В отличие от традиционных интерпретаторов, семантика на языке

ABML описывает не просто изменение значений, а трансформацию базы знаний агента,

включая обновление метаданных безопасности.

Семантика Rust разбивается на семантику мест (возвращает локацию), семантику r-

значений (возвращает значение) и семантику операторов (изменяет содержимое аген-

та), которые задаются атрибутными замыканиями для атрибутов "place", "rvalue" и

"statement", соответственно.

4.1. Семантика мест

Семантика мест определяется для выражений типов "variable", "1.2" и "*1".

Для моделей переменных семантика определяется следующим образом:

1 (aclosure ac :attribute "place" :type "variable" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location"))

4

5 (aclosure ac :attribute "place" :type "variable"

6 :stage "checking location" :instance i :agent a

7 :ap a (aseq "location" i) loc :match

8 :v (not (null loc)) T

196 Бодин Е.В., Ануреев И.С. Операционная семантика выражений в языке Rust на языке ABML

9 :do loc

10 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac))

11

12 (aclosure ac :attribute "place" :type "variable"

13 :stage "returning value" :value loc :do loc)

Таким образом, возвращается локация, связанная с переменной, в том случае, если та-

кая связь есть. В противном случае, выполнение программы останавливается и выдается

ошибка.

Семантика операции доступа к полю структуры задаются аналогичным образом:

1 (aclosure ac :attribute "place" :type "1.2" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking field location")

4 (update-push-aclosure ac :av "stage" "evaluating 1")

5

6 (aclosure ac :attribute "place" :type "1.2" :stage "evaluating 1"

7 :instance i :ap i 1 v1 :do

8 (clear-update-eval-aclosure ac :attribute "place"

9 :instance v1)))

10

11 (aclosure ac :attribute "place" :type "1.2"

12 :stage "checking field location" :value v1 :agent a :instance i

13 :ap i 2 v2 :ap v1 (aseq "fields" v2) loc :match

14 :v (not (null loc)) T

15 :do loc

16 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac))

17

18 (aclosure ac :attribute "place" :type "1.2"

19 :stage "returning value" :value loc :do loc)

Семантика операции * определяется следующими замыканиями:

System Informatics (Системная информатика), No. 29 (2025) 197

1 (aclosure ac :attribute "place" :type "*1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "evaluating 1"))

4

5 (aclosure ac :attribute "place" :type "*1" :stage "evaluating 1"

6 :instance i :ap i 1 v1 :do

7 (clear-update-eval-aclosure ac :attribute "rvalue"

8 :instance v1))

9

10 (aclosure ac :attribute "place" :type "*1"

11 :stage "returning value" :agent a :value ref

12 :ap ref "location" loc :ap a (aseq "location value" loc) v :do

13 v)

4.2. Семантика r-значений

Семантика r-значений определяется для выражений типов "value", "place", "&1",

"&mut1", "&*1", "&mut*1", "*1" и "1+2".

Тип "place" определяется как объединение следующих типов:

1 (typedef "place" (uniont "variable" "1.2"))

Семантика значений задается следующим образом:

1 (aclosure ac :attribute "rvalue" :type "value" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3

4 (aclosure ac :attribute "rvalue" :type "value"

5 :stage "returning value" :instance i :do i)

Следующие атрибутные замыкания задают семантику типа "place":

1 (aclosure ac :attribute "rvalue" :type "place" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location")

4 (update-push-aclosure ac :av "stage" "evaluating location"))

198 Бодин Е.В., Ануреев И.С. Операционная семантика выражений в языке Rust на языке ABML

5

6 (aclosure ac :attribute "rvalue" :type "place"

7 :stage "evaluating location" :do

8 (update-eval-aclosure ac :attribute "place"))

9

10 (aclosure ac :attribute "rvalue" :type "place"

11 :stage "checking location" :agent a :value loc

12 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match

13 :av (or (equal kd "free") (equal kd "shared")

14 (equal kd "unique"))

15 :do loc

16 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac))

17

18 (aclosure ac :attribute "rvalue" :type "place"

19 :stage "returning value" :agent a :value loc

20 :ap a (aseq "location value" loc) v :do v)

Для операции &p семантика определяется следующим образом:

1 (aclosure ac :attribute "rvalue" :type "&1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location")

4 (update-push-aclosure ac :av "stage" "evaluating location")

5

6 (aclosure ac :attribute "rvalue" :type "&1"

7 :stage "evaluating location" :instance i :ap i 1 v :do

8 (clear-update-eval-aclosure ac :attribute "place"

9 :instance v)))

10

11 (aclosure ac :attribute "rvalue" :type "&1"

12 :stage "checking location" :agent a :value loc

13 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match

System Informatics (Системная информатика), No. 29 (2025) 199

14 :av (or (equal kd "free") (equal kd "shared"))

15 :do loc

16 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac)))

17

18 (aclosure ac :attribute "rvalue" :type "&1"

19 :stage "returning value" :agent a :value loc

20 :v (mo "lifetime") lt :ap a (aseq "borrows" loc) bor :do

21 (aset a

22 :av (aseq "borrows" loc)

23 (cons (mo "borrow" :av "lifetime" lt :av "kind" "shared")

24 (aseq a "borrows" loc))

25 :av (aseq "lifetimes" lt) (list loc))

26 (co "reference" :av "location" loc :av "lifetime" lt))

Условием выполнимости этой операции является тот факт, что локация для места p не

должна быть эксклюзивной. Заметим, что мы не утверждаем, что она должна быть сво-

бодной или разделяемой, поскольку хотим иметь расширяемую модель.

Семантика для операции &mut p определяется аналогичным образом:

1 (aclosure ac :attribute "rvalue" :type "&mut1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location")

4 (update-push-aclosure ac :av "stage" "evaluating location")

5

6 (aclosure ac :attribute "rvalue" :type "&mut1"

7 :stage "evaluating location" :instance i :ap i 1 v :do

8 (clear-update-eval-aclosure ac :attribute "place"

9 :instance v)))

10

11 (aclosure ac :attribute "rvalue" :type "&mut1"

12 :stage "checking location" :agent a :value loc :instance i

13 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match

200 Бодин Е.В., Ануреев И.С. Операционная семантика выражений в языке Rust на языке ABML

14 :av (and (or (equal kd "free") (equal kd "unique"))

15 (clear-update-eval-aclosure ac :attribute "mutable"

16 :instance (aget i 1))

17 :do loc

18 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac)))

19

20 (aclosure ac :attribute "rvalue" :type "&mut1"

21 :stage "returning value" :agent a :value loc

22 :v (mo "lifetime") lt :ap a (aseq "borrows" loc) bor :do

23 (aset a

24 :av (aseq "borrows" loc)

25 (cons (mo "borrow" :av "lifetime" lt :av "kind" "unique")

26 (aseq a "borrows" loc))

27 :av (aseq "lifetimes" lt) (list loc))

28 (co "reference" :av "location" loc :av "lifetime" lt))

Только условия выполнимости другие: локация для места p должна быть эксклюзивной,

а само место мутабельным. Мутабельность места определяется набором атибутных замы-

каний для атрибута "mutable".

Для операции &*p семантика определяется следующим образом:

1 (aclosure ac :attribute "rvalue" :type "&*1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location")

4 (update-push-aclosure ac :av "stage" "evaluating location")

5

6 (aclosure ac :attribute "rvalue" :type "&*1"

7 :stage "evaluating location" :instance i :ap i 1 v :do

8 (clear-update-eval-aclosure ac :attribute "place"

9 :instance v)))

10

11 (aclosure ac :attribute "rvalue" :type "&*1"

System Informatics (Системная информатика), No. 29 (2025) 201

12 :stage "checking location" :agent a :value loc :instance i

13 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match

14 :av (is-instance (aget i 1) "&mutT1")

15 :do loc

16 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac)))

17

18 (aclosure ac :attribute "rvalue" :type "&*1"

19 :stage "returning value" :agent a :value loc

20 :v (mo "lifetime") lt :ap a (aseq "borrows" loc) bor :do

21 (aset a

22 :av (aseq "borrows" loc)

23 (cons (mo "borrow" :av "lifetime" lt :av "kind" "shared")

24 (aseq a "borrows" loc))

25 :av (aseq "lifetimes" lt) (list loc))

26 (co "reference" :av "location" loc :av "lifetime" lt))

Для операции &mut*p семантика определяется аналогичным образом:

1 (aclosure ac :attribute "rvalue" :type "&mut*1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location")

4 (update-push-aclosure ac :av "stage" "evaluating location")

5

6 (aclosure ac :attribute "rvalue" :type "&mut*1"

7 :stage "evaluating location" :instance i :ap i 1 v :do

8 (clear-update-eval-aclosure ac :attribute "place"

9 :instance v)))

10

11 (aclosure ac :attribute "rvalue" :type "&mut*1"

12 :stage "checking location" :agent a :value loc :instance i

13 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match

14 :av (and (equal kd "unique")

202 Бодин Е.В., Ануреев И.С. Операционная семантика выражений в языке Rust на языке ABML

15 (is-instance (aget i 1) "&mutT1"))

16 :do loc

17 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac)))

18

19 (aclosure ac :attribute "rvalue" :type "&mut*1"

20 :stage "returning value" :agent a :value loc

21 :v (mo "lifetime") lt :ap a (aseq "borrows" loc) bor :do

22 (aset a

23 :av (aseq "borrows" loc)

24 (cons (mo "borrow" :av "lifetime" lt :av "kind" "unique")

25 (aseq a "borrows" loc))

26 :av (aseq "lifetimes" lt) (list loc))

27 (co "reference" :av "location" loc :av "lifetime" lt))

Семантика операции * определяется следующими замыканиями:

1 (aclosure ac :attribute "rvalue" :type "*1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "evaluating 1"))

4

5 (aclosure ac :attribute "rvalue" :type "*1" :stage "evaluating 1"

6 :instance i :ap i 1 v1 :do

7 (clear-update-eval-aclosure ac :attribute "rvalue"

8 :instance v1))

9

10 (aclosure ac :attribute "rvalue" :type "*1"

11 :stage "returning value" :agent a :value ref

12 :ap ref "location" loc :ap a (aseq "location value" loc) v :do

13 v)

Операция + определяется следующим образом:

1 (aclosure ac :attribute "rvalue" :type "1+2" :do

2 (update-push-aclosure ac :av "stage" "returning value")

System Informatics (Системная информатика), No. 29 (2025) 203

3 (update-push-aclosure ac :av "stage" "evaluating 2")

4 (update-push-aclosure ac :av "stage" "evaluating 1")

5

6 (aclosure ac :attribute "rvalue" :type "1+2"

7 :stage "evaluating 1" :instance i :ap i 1 v1 :do

8 (clear-update-eval-aclosure ac :attribute "rvalue"

9 :instance v1)))

10

11 (aclosure ac :attribute "rvalue" :type "1+2"

12 :stage "evaluating 2" :value v1 :instance i :ap i 2 v2 :do

13 (clear-update-eval-aclosure ac :attribute "rvalue"

14 :instance v2 :av "v1" v1)))

15

16 (aclosure ac :attribute "rvalue" :type "1+2"

17 :stage "returning value" :ap "v1" v1 :value v2 :do (+ v1 v2))

Подобным образом определяются и другие бинарные операции.

4.3. Семантика операторов

Семантика операторов определяется для выражений типов "1=2", "let1=2",

"letmut1=2" и "{1}". При определении семантики для этих выражений характерными

являются стадии "updating agent" и "checking location". Первая определяет, как мо-

дифицируется агент, а вторая – условия выполнимости операции.

Операция "1=2" определяется следующим образом:

1 (aclosure ac :attribute "statement" :type "1=2" :do

2 (update-push-aclosure ac :av "stage" "updating agent")

3 (update-push-aclosure ac :av "stage" "evaluating 2")

4 (update-push-aclosure ac :av "stage" "checking location")

5 (update-push-aclosure ac :av "stage" "evaluating 1")

6

7 (aclosure ac :attribute "statement" :type "1=2"

8 :stage "evaluating 1" :instance i :ap i 1 v1 :do

204 Бодин Е.В., Ануреев И.С. Операционная семантика выражений в языке Rust на языке ABML

9 (clear-update-eval-aclosure ac :attribute "place"

10 :instance v1)))

11

12 (aclosure ac :attribute "statement" :type "1=2"

13 :stage "checking location" :value loc :agent a

14 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match

15 :av (or (equal kd "free") (equal kd "unique"))

16 :do loc

17 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac))

18

19 (aclosure ac :attribute "statement" :type "1=2"

20 :stage "evaluating 2" :value v1 :instance i :ap i 2 v2 :do

21 (clear-update-eval-aclosure ac :attribute "rvalue"

22 :instance v2 :av "v1" v1)))

23

24 (aclosure ac :attribute "statement" :type "1=2"

25 :stage "updating agent" :ap "v1" v1 :value v2 :do

26 (aset a "location value" v1 v2))

Условие выполнимости операции требует, чтобы локация, являющаяся результатом вы-

числения значения атрибута 1, была или свободной, или эксклюзивной, а место 1 мута-

бельным.

Семантика операции "let1=2" имеет вид:

1 (aclosure ac :attribute "statement" :type "let1=2" :do

2 (update-push-aclosure ac :av "stage" "updating agent")

3 (update-push-aclosure ac :av "stage" "evaluating 2"))

4

5 (aclosure ac :attribute "statement" :type "let1=2"

6 :stage "evaluating 2" :value v1 :instance i :ap i 2 v2 :do

7 (clear-update-eval-aclosure ac :attribute "rvalue"

8 :instance v2))

System Informatics (Системная информатика), No. 29 (2025) 205

9

10 (aclosure ac :attribute "statement" :type "let1=2"

11 :stage "updating agent" :instance i :ap i 1 x :value v2

12 :v (mo "simple location") loc :do

13 (aset a :av (aseq "location" x) loc

14 :av (aseq "mutability" x) "immutable"

15 :av (aseq "location value" loc) v2

16 :av (aseq "borrows" loc)

17 (list (mo "borrow" :av "kind" "free"))))

Для простоты, мы рассмотрели только случай, когда переменная, являющаяся значени-

ем атрибута 1 имеет примитивный тип. Случай структуры определяется аналогичным

образом.

Операция "letmut1=2" определяется аналогичным образом:

1 (aclosure ac :attribute "statement" :type "letmut1 =2" :do

2 (update-push-aclosure ac :av "stage" "updating agent")

3 (update-push-aclosure ac :av "stage" "evaluating 2"))

4

5 (aclosure ac :attribute "statement" :type "letmut1 =2"

6 :stage "evaluating 2" :value v1 :instance i :ap i 2 v2 :do

7 (clear-update-eval-aclosure ac :attribute "rvalue"

8 :instance v2))

9

10 (aclosure ac :attribute "statement" :type "letmut1 =2"

11 :stage "updating agent" :instance i :ap i 1 x :value v2

12 :v (mo "simple location") loc :do

13 (aset a :av (aseq "location" x) loc

14 :av (aseq "mutability" x) "mutable"

15 :av (aseq "location value" loc) v2

16 :av (aseq "borrows" loc)

17 (list (mo "borrow" :av "kind" "free"))))

Отличается только модификация агента.

206 Бодин Е.В., Ануреев И.С. Операционная семантика выражений в языке Rust на языке ABML

Особенностью семантики блока является его возможность определять локальные вре-

мена жизни и исключать их при выходе из блока:

1 (aclosure ac :attribute "statement" :type "{1}" :agent a

2 :ap a "lifetimes" lfs :do

3 (update-push-aclosure ac :av "stage" "restoring lifetime"

4 :av "lifetime list" (attributes lfs))

5 (update-push-aclosure ac :av "stage" "evaluating 1"))

6

7 (aclosure ac :attribute "statement" :type "{1}"

8 :stage "evaluating 1" :instance i :ap i 1 stl :do

9 (update-eval-aclosure ac :stage "body iteration"

10 :av "current" 0 :av "statements" stl

11 :av "bound" (length stl)))

12

13 (aclosure ac :attribute "statement" :type "{1}"

14 :stage "body iteration" :ap "current" k :ap "statements" stl

15 :ap "bound" n :match

16 :v (< k n) T

17 :do

18 (update-eval-aclosure ac :av "current" (+ k 1))

19 (clear-update-eval-aclosure ac :instance (nth k stl)))

20

21 (aclosure ac :attribute "statement" :type "{1}"

22 :stage "restoring lifetime" :agent a :ap "lifetime list" lfl

23 :match :v (mo) lfs

24 (dolist (lf lfl) (aset lfs lf (aget a "lifetimes" lf)))

25 (aset a "lifetimes" lfs)

5. Верификация правил безопасности на примерах

В данном разделе рассматривается работа интерпретатора ABML на классических сце-

нариях языка Rust. Особое внимание уделяется тому, как динамическая семантика агента

воспроизводит статические проверки компилятора, обеспечивая безопасность работы с па-

System Informatics (Системная информатика), No. 29 (2025) 207

мятью.

5.1. Конфликты заимствования

Основная концепция безопасности Rust заключается в запрете одновременного суще-

ствования разделяемого доступа (чтения) и возможности модификации данных. Это предот-

вращает неопределенное поведение и гонки данных. Рассмотрим пример, нарушающий эти

правила:

1 let mut x = 5;

2 let y = &x; // Shared borrow (разделяемое заимствование)

3 *x = 10; // ОШИБКА: x уже заимствован переменной y

Выполним интерпретацию этих операций в модели на ABML.

Первая инструкция устанавливает следующие связи в атрибутах агента:

1 loc1 := (mo "simple location")

2

3 (aget a "location" x) = loc1

4 (aget a "mutability" x) = "mutable"

5 (aget a "location value" loc1) = 5

6 (aget a "borrows" loc1) = (list (mo "borrow" :av "kind" "free"))

где loc1 – новая локация.

Вторая инструкция модифицирует агента следующим образом:

1 loc1 := (mo "simple location")

2 loc2 := (mo "simple location")

3 lt1 := (mo "lifetime")

4

5 (aget a "location" x) = loc1

6 (aget a "location" y) = loc2

7 (aget a "mutability" x) = "mutable"

8 (aget a "mutability" y) = "immutable"

9 (aget a "location value" loc1) = 5

10 (aget a "location value" loc2) =

11 (co "reference" :av "location" loc1 :av "lifetime" lt1)

208 Бодин Е.В., Ануреев И.С. Операционная семантика выражений в языке Rust на языке ABML

12 (aget a "borrows" loc1) =

13 (list (mo "borrow" :av "lifetime" lt1 :av "kind" "shared")

14 (mo "borrow" :av "kind" "free"))

15 (aget a "borrows" loc2) = (list (mo "borrow" :av "kind" "free"))

16 (aget a "lifetimes" lt1) = (list loc1)

где loc2 – новая локация, и lt1 – новое время жизни.

Третья инструкция начинает с вычисления *x. В этом случае x вычисляется как rvalue

и возвращает число 5, а вычисление *x требует ссылки. Поэтому вычисление операционной

семантики завершается с ошибкой.

5.2. Частичное заимствование структур

Одним из ключевых преимуществ онтологического подхода является возможность точ-

ного моделирования частичного доступа к компонентам сложных данных. В отличие от

систем с «плоской» памятью, блокирующих объект целиком, иерархическая модель ABML

позволяет агенту анализировать доступ на уровне отдельных полей.

1 let mut point = Point { x: 1, y: 2 };

2 let r = &point.x; // Заимствуем только поле .x

3 point.y = 10; // OK: поле .y доступно для записи

В данном примере поле x заимствовано для чтения, что запрещает его изменение. Од-

нако поле y остается свободным и может быть изменено.

Выполним интерпретацию этих операций в модели на ABML.

Первая инструкция устанавливает следующие связи в атрибутах агента:

1 locx := (mo "field location")

2 locy := (mo "field location")

3 locpoint := (mo "struct location" :av "x" locx :av "y" locy)

4

5 (aget a "location" point) = locpoint

6 (aget a "mutability" point) = "mutable"

7 (aget a "location value" locx) = 1

8 (aget a "location value" locy) = 2

9 (aget a "location value" loc_point) =

System Informatics (Системная информатика), No. 29 (2025) 209

10 (mo "struct location" :av "x" locx :av "y" locy)

11 (aget a "borrows" locx) = (list (mo "borrow" :av "kind" "free"))

12 (aget a "borrows" locy) = (list (mo "borrow" :av "kind" "free"))

13 (aget a "borrows" locpoint) = (list (mo "borrow" :av "kind"

"free"))

Вторая инструкция модифицирует агента следующим образом:

1 locx := (mo "field location")

2 locy := (mo "field location")

3 loc_point := (mo "struct location" :av "x" locx :av "y" locy)

4 locr := (mo "field location")

5 lt1 := (mo "lifetime")

6

7 (aget a "location" point) = locpoint

8 (aget a "location" r) = locr

9 (aget a "mutability" point) = "mutable"

10 (aget a "mutability" r) = "immutable"

11 (aget a "location value" locx) = 1

12 (aget a "location value" locy) = 2

13 (aget a "location value" loc_point) =

14 (mo "struct location" :av "x" locx :av "y" locy)

15 (aget a "location value" locr) =

16 (co "reference" :av "location" locx :av "lifetime" lt1)

17 (aget a "borrows" locx) =

18 (list (mo "borrow" :av "lifetime" lt1 :av "kind" "shared")

19 (mo "borrow" :av "kind" "free"))

20 (aget a "borrows" locy) = (list (mo "borrow" :av "kind" "free"))

21 (aget a "borrows" locpoint) = (list (mo "borrow" :av "kind"

"free"))

22 (aget a "lifetimes" lt1) = (list locx)

Третья инструкция также выполняется, так как заимствование наложено только на

locx, а не на locpoint целиком:

210 Бодин Е.В., Ануреев И.С. Операционная семантика выражений в языке Rust на языке ABML

1 locx := (mo "field location")

2 locy := (mo "field location")

3 loc_point := (mo "struct location" :av "x" locx :av "y" locy)

4 locr := (mo "field location")

5 lt1 := (mo "lifetime")

6

7 (aget a "location" point) = locpoint

8 (aget a "location" r) = locr

9 (aget a "mutability" point) = "mutable"

10 (aget a "mutability" r) = "immutable"

11 (aget a "location value" locx) = 1

12 (aget a "location value" locy) = 10

13 (aget a "location value" loc_point) =

14 (mo "struct location" :av "x" locx :av "y" locy)

15 (aget a "location value" locr) =

16 (co "reference" :av "location" locx :av "lifetime" lt1)

17 (aget a "borrows" locx) =

18 (list (mo "borrow" :av "lifetime" lt1 :av "kind" "shared")

19 (mo "borrow" :av "kind" "free"))

20 (aget a "borrows" locy) = (list (mo "borrow" :av "kind" "free"))

21 (aget a "borrows" locpoint) = (list (mo "borrow" :av "kind"

"free"))

22 (aget a "lifetimes" lt1) = (list locx)

Этот пример наглядно демонстрирует точность онтологического моделирования: агент

«понимает», что заимствование части объекта не эквивалентно блокировке всего объекта,

что полностью соответствует семантике разделенного заимствования (split borrowing) в

Rust.

6. Родственные работы

Исследования в области формальной семантики языков программирования, и в особен-

ности языка Rust, в последние годы привлекают значительное внимание научного сооб-

System Informatics (Системная информатика), No. 29 (2025) 211

щества. Это связано с нетривиальной моделью памяти Rust, основанной на концепциях

владения, заимствования и строгих гарантиях отсутствия гонок данных. В результате

появилось множество работ, направленных на формализацию как статических, так и ди-

намических аспектов языка.

Одной из первых работ, целенаправленно описывающих динамическое поведение Rust,

является исполняемая операционная семантика RustSEM [3]. В данной работе авторы

предлагают формальную модель исполнения программ Rust, в которой явно представле-

ны механизмы владения и заимствования. Семантика задается в виде системы переходов

состояний и ориентирована на воспроизведение поведения реальных программ, включая

ситуации, приводящие к ошибкам доступа к памяти. Подход RustSEM демонстрирует воз-

можность динамической проверки корректности работы с заимствованиями, однако мо-

дель в значительной степени опирается на плоское представление памяти.

Схожую цель преследует работа KRust [11], в которой формальная семантика Rust

реализована в рамках K-фреймворка. Использование K позволяет автоматически полу-

чать исполняемый интерпретатор и инструменты анализа на основе формального описа-

ния семантики. Авторы показывают, что предложенная модель корректно воспроизводит

основные элементы языка, включая перенос владения (move), заимствования и мутабель-

ность. Семантика KRust была сопоставлена с тестами официального компилятора Rust,

что подтверждает ее практическую применимость.

Отдельное направление исследований связано с формализацией заимствований через

символические модели. В работах по проверке корректности заимствований посредством

символьной семантики [6, 7] предлагается формализм LLBC (Low-Level Borrow Calculus),

который служит промежуточным уровнем между высокоуровневым Rust и низкоуров-

невыми моделями памяти. Авторы доказывают корректность символьной семантики по

отношению к операционной, что позволяет использовать модель для формальной вери-

фикации свойств программ, связанных с безопасностью памяти.

Дальнейшим развитием этого направления является инструмент Aeneas [8], ориенти-

рованный на верификацию программ Rust путем перевода в функциональные представ-

ления. В данной работе операционная семантика Rust редуцируется к чистой семантике,

в которой управление памятью и адресами заменяется абстрактными понятиями владе-

ния и займов. Такой подход облегчает доказательство функциональной корректности, но

абстрагируется от многих деталей реального исполнения.

212 Бодин Е.В., Ануреев И.С. Операционная семантика выражений в языке Rust на языке ABML

Фундаментальной работой в области формального обоснования Rust является проект

RustBelt [15]. В нем авторы вводят формальный язык λRust и задают его операцион-

ную семантику, что позволяет строго доказать безопасность ключевых механизмов Rust,

включая отсутствие использования после освобождения (use-after-free) и гонок данных. В

отличие от исполняемых семантик, RustBelt ориентирован прежде всего на доказательство

теоретических свойств языка, а не на моделирование конкретных сценариев выполнения

программ. В RustBelt предлагается логическая семантика для подмножества Rust и до-

казываются ключевые свойства безопасности памяти [10, 12, 15]. Хотя исходная версия

RustBelt была опубликована ранее, последующие работы существенно расширили этот

подход, включая поддержку relaxed memory и unsafe-кода [1, 12, 13].

Развитие RustBelt привело к созданию RustHornBelt и RefinedRust, которые объединя-

ют логические и типовые методы верификации и обеспечивают высокую степень автомати-

зации доказательств [9, 14, 16]. Эти работы демонстрируют, как операционная семантика

Rust может быть связана с логическими моделями и доказательными системами.

Параллельно развиваются практико-ориентированные средства верификации, такие

как Verus и Flux, использующие расширенные типовые системы и SMT-решатели для

доказательства свойств программ [5, 18, 19]. Эти инструменты опираются на формальные

семантические модели Rust, хотя и не всегда задают их явно в операционной форме.

Отдельный класс исследований посвящен aliasing-моделям и динамической семантике

заимствований, включая Stacked Borrows и его расширения, которые уточняют допусти-

мые сценарии доступа к памяти во время выполнения [4, 17]. Эти модели оказывают

существенное влияние на современные формализации Rust и интерпретацию unsafe-кода.

Существуют также работы, фокусирующиеся на концептуальном и когнитивном анали-

зе модели владения Rust. Так, в [2] предлагается концептуальная модель ownership-типов,

которая формализует интуитивные представления о владении и заимствовании и сопо-

ставляет их с реальными правилами языка. Хотя данная работа не задает операционную

семантику напрямую, она вносит существенный вклад в понимание связи между статиче-

скими и динамическими аспектами Rust.

На этом фоне предложенная в настоящей статье операционная семантика выраже-

ний Rust на языке ABML занимает промежуточное положение между теоретическими

и практико-ориентированными подходами. В отличие от большинства существующих мо-

делей, она использует онтологическое представление вычислительного состояния и иерар-

System Informatics (Системная информатика), No. 29 (2025) 213

хическую модель памяти, что позволяет естественно выразить частичное заимствование

и динамическую проверку конфликтов доступа. Таким образом, работа дополняет суще-

ствующие исследования, предлагая альтернативный, онтологически обогащенный способ

формализации семантики Rust.

7. Заключение

В статье была представлена операционная семантика выражений языка Rust, форма-

лизованная с использованием онтологического и атрибутно-ориентированного подхода,

реализованного в языке ABML. Предложенная модель ориентирована на точное воспро-

изведение динамического поведения программ с учетом ключевых гарантий безопасности

памяти, характерных для Rust.

Одним из основных результатов работы является введение иерархической модели па-

мяти, в которой локации могут представлять как целые структуры, так и их отдельные

поля. Такая организация памяти позволяет корректно моделировать частичное заимство-

вание и отражает реальные правила доступа к данным, применяемые в языке Rust. В

сочетании с метаданными живучести, мутабельности и активных заимствований эта мо-

дель обеспечивает строгую динамическую проверку конфликтов.

Разработанная операционная семантика описана в виде исполняемых правил, что от-

личает ее от чисто декларативных формализаций. Это делает возможным использование

модели не только для теоретического анализа, но и для экспериментального исполнения

программ, трассировки вычислений и исследования граничных случаев поведения меха-

низмов ownership и borrow checking.

Сравнение с предыдущими работами, использующими ABML для описания семантики

других языков и конструкций, показывает универсальность выбранного подхода. Онтоло-

гическое представление синтаксических и семантических сущностей позволяет постепенно

расширять модель, добавляя новые конструкции языка Rust без радикального пересмотра

уже существующих определений.

В перспективе предложенная семантика может быть расширена для поддержки более

сложных элементов языка, таких как функции, замыкания, обобщенные типы и парал-

лельные вычисления. Кроме того, она может служить основой для построения формаль-

ных инструментов анализа и верификации программ на Rust, а также для сопоставления

динамической семантики с результатами статического анализа компилятора.

214 Бодин Е.В., Ануреев И.С. Операционная семантика выражений в языке Rust на языке ABML

В целом, работа демонстрирует, что онтологический и атрибутно-ориентированный под-

ход в сочетании с ABML является эффективным средством формализации языков про-

граммирования с развитой моделью безопасности памяти и открывает новые возможности

для исследований в области формальных семантик.

Список литературы

1. Batty M. J. The C11 and C++ 11 concurrency model : Ph.D. thesis ; University of

Cambridge, UK. — 2015.

2. Crichton W., Gray G., Krishnamurthi S. A grounded conceptual model for ownership types

in rust // Proceedings of the ACM on Programming Languages. — 2023. — Vol. 7, no.

OOPSLA2. — P. 1224–1252.

3. An Executable Operational Semantics for Rust with the Formalization of Ownership

and Borrowing / Kan S., Chen Z., Sanan D., Lin S.-W., and Liu Y. // arXiv preprint

arXiv:1804.07608. — 2018.

4. Exploring C semantics and pointer provenance / Memarian K., Gomes V. B., Davis B.,

Kell S., Richardson A., Watson R. N., and Sewell P. // Proceedings of the ACM on

Programming Languages. — 2019. — Vol. 3, no. POPL. — P. 1–32.

5. Flux: Liquid types for rust / Lehmann N., Geller A. T., Vazou N., and Jhala R. //

Proceedings of the ACM on Programming Languages. — 2023. — Vol. 7, no. PLDI. —

P. 1533–1557.

6. Ho S., Fromherz A., Protzenko J. Sound Borrow-Checking for Rust via Symbolic

Semantics // Proceedings of the ACM on Programming Languages. — 2024. — Vol. 8, no.

ICFP. — P. 426–454.

7. Ho S., Fromherz A., Protzenko J. Sound Borrow-Checking for Rust via Symbolic Semantics

(Long Version) // arXiv preprint arXiv:2404.02680. — 2024.

8. Ho S., Protzenko J. Aeneas: Rust verification by functional translation // Proceedings of

the ACM on Programming Languages. — 2022. — Vol. 6, no. ICFP. — P. 711–741.

9. Iris from the ground up / Jung R., Krebbers R., Jourdan J.-H., Bizjak A., Birkedal L., and

Dreyer D. // Submitted to JFP. — 2017.

10. Jung R. Understanding and evolving the Rust programming language : Phd dissertation ;

Saarländische Universitäts-und Landesbibliothek. — 2020.

System Informatics (Системная информатика), No. 29 (2025) 215

11. Krust: A formal executable semantics of rust / Wang F., Song F., Zhang M., Zhu X., and

Zhang J. // 2018 International Symposium on Theoretical Aspects of Software Engineering

(TASE) / IEEE. — 2018. — P. 44–51.

12. MoSeL: A general, extensible modal framework for interactive proofs in separation

logic / Krebbers R., Jourdan J.-H., Jung R., Tassarotti J., Kaiser J.-O., Timany A.,

Charguéraud A., and Dreyer D. // Proceedings of the ACM on Programming Languages. —

2018. — Vol. 2, no. ICFP. — P. 1–30.

13. A promising semantics for relaxed-memory concurrency / Kang J., Hur C.-K., Lahav O.,

Vafeiadis V., and Dreyer D. // ACM SIGPLAN Notices. — 2017. — Vol. 52, no. 1. — P. 175–

189.

14. Refinedrust: A type system for high-assurance verification of Rust programs / Gäher L.,

Sammler M., Jung R., Krebbers R., and Dreyer D. // Proceedings of the ACM on

Programming Languages. — 2024. — Vol. 8, no. PLDI. — P. 1115–1139.

15. RustBelt: Securing the foundations of the Rust programming language / Jung R.,

Jourdan J.-H., Krebbers R., and Dreyer D. // Proceedings of the ACM on Programming

Languages. — 2017. — Vol. 2, no. POPL. — P. 1–34.

16. RustHornBelt: a semantic foundation for functional verification of Rust programs with

unsafe code / Matsushita Y., Denis X., Jourdan J.-H., and Dreyer D. // Proceedings of

the 43rd ACM SIGPLAN International Conference on Programming Language Design and

Implementation. — 2022. — P. 841–856.

17. Stacked borrows: an aliasing model for Rust / Jung R., Dang H.-H., Kang J., and

Dreyer D. // Proceedings of the ACM on Programming Languages. — 2019. — Vol. 4, no.

POPL. — P. 1–32.

18. Verus: Verifying rust programs using linear ghost types / Lattuada A., Hance T., Cho C.,

Brun M., Subasinghe I., Zhou Y., Howell J., Parno B., and Hawblitzel C. // Proceedings of

the ACM on Programming Languages. — 2023. — Vol. 7, no. OOPSLA1. — P. 286–315.

19. Verus: verifying Rust programs using linear ghost types (extended version) / Lattuada A.,

Hance T., Cho C., Brun M., Subasinghe I., Zhou Y., Howell J., Parno B., and

Hawblitzel C. // arXiv preprint arXiv:2303.05491. — 2023.

20. Ануреев И.С. Операционная семантика операторов передачи управления в языке C на

языке ABML // Системная информатика. — 2025. — no. 29. — P. 159–188.

21. Ануреев И.С. Язык спецификации дискретных динамических систем, ориентирован-

216 Бодин Е.В., Ануреев И.С. Операционная семантика выражений в языке Rust на языке ABML

ных на знания, структурированные в онтологиях // Системная информатика. —

2025. — no. 29. — P. 137–158.

	Введение
	Онтология выражений и типов данных языка Rust
	Имена
	Константы и значения
	Типы данных
	Выражения

	Модели агентов и окружения
	Операционная семантика моделей выражений
	Семантика мест
	Семантика r-значений
	Семантика операторов

	Верификация правил безопасности на примерах
	Конфликты заимствования
	Частичное заимствование структур

	Родственные работы
	Заключение

