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В статье рассматривается формальное описание операционной семантики выраже-

ний языка программирования Rust с использованием предметно-ориентированного

языка моделирования ABML. Основное внимание уделяется динамическим аспектам

вычислений, включая управление памятью, владение, заимствование и проверку кон-

фликтов доступа на этапе выполнения.

Предлагаемый подход опирается на онтологическое представление синтаксических

и семантических сущностей Rust, что позволяет единообразно описывать выражения,

блоки и структуры данных как элементы единой вычислительной модели. В отличие

от традиционных формализаций, модель явно включает метаданные безопасности,

необходимые для воспроизведения механизмов ownership и borrow checking.

Особенностью работы является использование иерархической модели памяти, поз-

воляющей корректно описывать частичное заимствование структур и доступ к их

полям. Это обеспечивает более точную динамическую семантику по сравнению с плос-

кими моделями памяти и демонстрирует соответствие формальных правил реальному

поведению программ на Rust.

Полученная операционная семантика является исполняемой и может служить ос-

новой для анализа программ, прототипирования интерпретаторов и дальнейших ис-

следований в области формальной верификации языков с управляемой безопасностью

памяти.
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1. Введение

Современные языки программирования системного уровня все чаще ориентируются

на строгие гарантии безопасности памяти, которые должны обеспечиваться без значи-

тельного снижения производительности. Язык Rust представляет собой один из наиболее

успешных примеров такого подхода, сочетая низкоуровневый контроль над ресурсами с
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формально заданными правилами владения и заимствования. Эти правила традицион-

но проверяются на этапе компиляции, однако их точная семантическая интерпретация

требует аккуратного формального описания.

Формальная операционная семантика играет ключевую роль в понимании поведения

программ, анализе корректности и построении инструментов верификации. Для языков

с нетривиальной моделью памяти, таких как Rust, стандартные подходы, основанные на

простых состояниях вида «память—окружение», оказываются недостаточными. В част-

ности, они не позволяют напрямую выразить ограничения, связанные с одновременным

доступом к данным, жизненным циклом значений и частичным заимствованием состав-

ных объектов.

В данной работе предлагается использовать онтологический подход к заданию опера-

ционной семантики, реализованный с помощью языка ABML [21]. В рамках этого подхода

вычислительное состояние рассматривается как совокупность объектов и их атрибутов, а

динамика исполнения описывается через вычисление и обновление этих атрибутов. Такой

взгляд позволяет естественным образом интегрировать в модель дополнительные семан-

тические слои, в том числе метаданные, отвечающие за безопасность памяти.

ABML ранее применялся для формального описания семантики языковых конструк-

ций, включая операторы передачи управления в языке C [20]. Эти исследования показали,

что онтологическое моделирование обеспечивает модульность, расширяемость и исполня-

емость семантики. Настоящая статья развивает данный подход применительно к языку

Rust, фокусируясь не на управляющих конструкциях, а на выражениях и связанных с

ними механизмах работы с памятью.

В статье формализуются базовые синтаксические сущности Rust, включая выражения,

объявления переменных и блоки, а также вводится иерархическая модель локаций памя-

ти. Особое внимание уделяется операционной семантике заимствования, разыменования и

присваивания, а также алгоритму динамической проверки конфликтов, моделирующему

поведение borrow checker. Рассматриваемые примеры демонстрируют, как предложенная

модель воспроизводит как корректные сценарии доступа к данным, так и ситуации, при-

водящие к ошибкам выполнения.

Таким образом, целью работы является построение исполняемой операционной семан-

тики выражений Rust на основе ABML, которая не только отражает ключевые свойства

языка, но и может служить фундаментом для дальнейших исследований в области фор-
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мальных методов, анализа программ и разработки инструментов поддержки Rust.

Статья организована следующим образом. В разделе 2 вводится онтология выражений

и типов данных языка Rust, описываются базовые синтаксические сущности и их семан-

тические роли в вычислительной модели. В разделе 3 рассматриваются модели агентов

и окружения, используемые для представления состояния вычислений, включая иерар-

хическую модель памяти и метаданные безопасности. Раздел 4 посвящен формальному

заданию операционной семантики выражений Rust на языке ABML, включая объявления

переменных, вычисление базовых выражений, присваивание и доступ к полям структур.

Также в нем подробно рассматривается операционная семантика заимствования, разы-

менования и универсальное правило проверки заимствований, моделирующее поведение

borrow checker. В разделе 5 приводятся иллюстративные и комплексные примеры выпол-

нения программ, демонстрирующие работу иерархической проверки конфликтов и ча-

стичного заимствования структур. Далее следует раздел «Родственные работы», в кото-

ром проводится сопоставление предложенного подхода с существующими формализация-

ми семантики Rust и других языков программирования. В заключении подводятся итоги

работы и обсуждаются направления дальнейших исследований.

2. Онтология выражений и типов данных языка Rust

В данном разделе вводится онтология выражений, констант и типов данных. В онто-

логическом подходе к спецификации операционной семантики языков программирования

[20] онтология конструкций языка Rust описывается набором типов языка ABML, полное

описание которого можно найти в [21].

2.1. Имена

В этом подразделе описываются типы для разных видов имен, используемых в Rust-

программах:

1 (typedef "name" (uniont symbol string))

2 (typedef "variable" "name")

3 (typedef "field name" "name")

4 (typedef "struct name" "name")

Таким образом, все имена моделируются лисповскими строками.
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2.2. Константы и значения

В этом подразделе описываются типы для разных видов констант языка Rust, а также

значений, которые могут возвращать выражения на этом языке:

1 (typedef "constant" (uniont "i32 value" "bool value"))

2

3 (typedef "i32 value" int)

4 (typedef "bool value" (enumt "true" "false"))

5 (typedef "()" (enumt "()"))

6

7 (typedef "value" (uniont "constant" "()" "reference"))

8

9 (mot "reference" :at "location" "location"

10 :at "lifetime" "lifetime")

11

12 (typedef "location" (uniont "simple location" "struct location"

13 "field location"))

14 (mot "simple location")

15 (mot "struct location" :amap "field name" "location")

16 (mot "field location")

17

18 (mot "lifetime")

Экземпляры типов "i32 value" и "bool value" являются моделями значений типов

i32 и bool языка Rust. Язык Rust имеет и другие примитивные типы, но мы для про-

стоты в этой статье ограничиваемся только этими двумя. Остальные типы моделируются

аналогичным образом.

Тип "()" моделирует значение () в языке Rust типа unit.

Тип "location" моделирует локации (адреса, ячейки памяти) в языке Rust. Мы выде-

ляем 3 подтипа локаций – локации, связанные с переменными примитивных типов; лока-

ции, связанные с переменными типа структуры и локации, связанные с полями структуры.

В языке Rust имеются и другие составные типы помимо структур, например, кортежи, но

мы для простоты ограничиваемся только структурами, поскольку моделирование значе-
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ний других составных типов делается аналогичным образом.

Тип "lifetime" моделирует ссылки, которые связаны с локациями и имеют время

жизни.

Тип "lifetime" определяет значения, которые описывают время жизни для ссылок.

2.3. Типы данных

В этом подразделе собраны типы языка ABML, моделирующие типы языка Rust. Для

простоты мы ограничиваемся небольшим набором типов, но это набор несложно расши-

рить:

1 (typedef "type" (uniont "i32" "bool" "unit" "struct name"

"struct type"

2 "&T1" "&mutT1"))

3

4 (typedef "i32" (enumt "i32"))

5 (typedef "bool" (enumt "bool"))

6 (typedef "unit" (enumt "unit"))

7 (cot "struct type" :amap "field name" "type")

8 (cot "&T" :at "type" "type")

9 (cot "&mutT" :at "type" "type")

Типы "i32" и "bool" моделируют типы i32 и bool языка Rust.

Тип "unit" моделирует тип unit языка Rust.

Тип "struct type" моделирует типы структур, задавая их поля и типы этих полей.

Типы "&T1" и "&mutT1" моделируют типы для обычных и мутабельных ссылок.

2.4. Выражения

Модели выражений языка Rust, рассматриваемые в этой статье, на языке ABML опре-

деляются следующим набором типов:

1 (typedef "expression" (uniont "variable" "constant" "1.2" "&1"

2 "&mut1" "*1" "1+2"))

3

4 (mot "1.2" :at 1 "expression" :at 2 "field name")

5 (mot "&1" :at 1 "expression")
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6 (mot "&mut1" :at 1 "expression")

7 (mot "*1" :at 1 "expression")

8 (mot "1+2" :at 1 "expression" :at 2 "expression")

9

10 (mot "1=2" :at 1 "identifier" :at 2 "expression"

11 :at "type" "type")

12 (mot "let1: =2" :at 1 "identifier" :at 2 "expression"

13 :at "type" "type")

14 (mot "let mut1: =2" :at 1 "identifier" :at 2 "expression"

15 :at "type" "type")

16 (mot "{1}" :at 1 (listt "expression"))

Они моделируют небольшой, но достаточный набор выражений для описания основных

концепций операционной семантики языка Rust. Заметим, что для моделей выражений

assign, let и let mut языка Rust, мы считаем, что тип атрибута 1 известен и хранится в

атрибуте "type".

3. Модели агентов и окружения

Состояние программы в ABML моделируется агентом, который оперирует знаниями о

памяти и окружении. Для языка Rust множество агентов определяется следующим типом:

1 (mot "agent"

2 :at "location" (cot :amap "variable" "location")

3 :at "mutability" (cot :amap "variable"

4 (enumt "mutable" "immutable"))

5 :at "location value" (cot :amap "location" "value")

6 :at "location type" (cot :amap "location" "type")

7 :at "borrows" (cot :amap "location" (listt "borrow"))

8 :at "lifetimes" (cot :amap "lifetime" (listt "location"))

9 :at "value" "value"

Атрибут "location" связывает переменные программы с локациями.

Атрибут "mutability" определяет, является ли эта связь мутабельной или нет.

Атрибуты "location value" и "location type" задают значения, хранящиеся в лока-
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циях и типы этих значений, соответственно.

Атрибут "borrows" определяет стеки заимствований для локаций.

Атрибут "lifetimes" описывает, как локации распределяются по времени жизни.

Атрибут "value" – это стандартный атрибут языка ABML, который хранит последнее

вычисленное значение.

Заимствования и время жизни определяются следующим образом:

1 (mo "borrow" :at "lifetime" "lifetime"

2 :at "kind" (enumt "free", "shared", "unique"))

3

4 (mo "lifetime")

4. Операционная семантика моделей выражений

В данном разделе задается исполняемая семантика конструкций Rust в виде атрибут-

ных замыканий [21]. В отличие от традиционных интерпретаторов, семантика на языке

ABML описывает не просто изменение значений, а трансформацию базы знаний агента,

включая обновление метаданных безопасности.

Семантика Rust разбивается на семантику мест (возвращает локацию), семантику r-

значений (возвращает значение) и семантику операторов (изменяет содержимое аген-

та), которые задаются атрибутными замыканиями для атрибутов "place", "rvalue" и

"statement", соответственно.

4.1. Семантика мест

Семантика мест определяется для выражений типов "variable", "1.2" и "*1".

Для моделей переменных семантика определяется следующим образом:

1 (aclosure ac :attribute "place" :type "variable" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location"))

4

5 (aclosure ac :attribute "place" :type "variable"

6 :stage "checking location" :instance i :agent a

7 :ap a (aseq "location" i) loc :match

8 :v (not (null loc)) T
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9 :do loc

10 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac))

11

12 (aclosure ac :attribute "place" :type "variable"

13 :stage "returning value" :value loc :do loc)

Таким образом, возвращается локация, связанная с переменной, в том случае, если та-

кая связь есть. В противном случае, выполнение программы останавливается и выдается

ошибка.

Семантика операции доступа к полю структуры задаются аналогичным образом:

1 (aclosure ac :attribute "place" :type "1.2" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking field location")

4 (update-push-aclosure ac :av "stage" "evaluating 1")

5

6 (aclosure ac :attribute "place" :type "1.2" :stage "evaluating 1"

7 :instance i :ap i 1 v1 :do

8 (clear-update-eval-aclosure ac :attribute "place"

9 :instance v1)))

10

11 (aclosure ac :attribute "place" :type "1.2"

12 :stage "checking field location" :value v1 :agent a :instance i

13 :ap i 2 v2 :ap v1 (aseq "fields" v2) loc :match

14 :v (not (null loc)) T

15 :do loc

16 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac))

17

18 (aclosure ac :attribute "place" :type "1.2"

19 :stage "returning value" :value loc :do loc)

Семантика операции * определяется следующими замыканиями:
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1 (aclosure ac :attribute "place" :type "*1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "evaluating 1"))

4

5 (aclosure ac :attribute "place" :type "*1" :stage "evaluating 1"

6 :instance i :ap i 1 v1 :do

7 (clear-update-eval-aclosure ac :attribute "rvalue"

8 :instance v1))

9

10 (aclosure ac :attribute "place" :type "*1"

11 :stage "returning value" :agent a :value ref

12 :ap ref "location" loc :ap a (aseq "location value" loc) v :do

13 v)

4.2. Семантика r-значений

Семантика r-значений определяется для выражений типов "value", "place", "&1",

"&mut1", "&*1", "&mut*1", "*1" и "1+2".

Тип "place" определяется как объединение следующих типов:

1 (typedef "place" (uniont "variable" "1.2"))

Семантика значений задается следующим образом:

1 (aclosure ac :attribute "rvalue" :type "value" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3

4 (aclosure ac :attribute "rvalue" :type "value"

5 :stage "returning value" :instance i :do i)

Следующие атрибутные замыкания задают семантику типа "place":

1 (aclosure ac :attribute "rvalue" :type "place" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location")

4 (update-push-aclosure ac :av "stage" "evaluating location"))
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5

6 (aclosure ac :attribute "rvalue" :type "place"

7 :stage "evaluating location" :do

8 (update-eval-aclosure ac :attribute "place"))

9

10 (aclosure ac :attribute "rvalue" :type "place"

11 :stage "checking location" :agent a :value loc

12 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match

13 :av (or (equal kd "free") (equal kd "shared")

14 (equal kd "unique"))

15 :do loc

16 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac))

17

18 (aclosure ac :attribute "rvalue" :type "place"

19 :stage "returning value" :agent a :value loc

20 :ap a (aseq "location value" loc) v :do v)

Для операции &p семантика определяется следующим образом:

1 (aclosure ac :attribute "rvalue" :type "&1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location")

4 (update-push-aclosure ac :av "stage" "evaluating location")

5

6 (aclosure ac :attribute "rvalue" :type "&1"

7 :stage "evaluating location" :instance i :ap i 1 v :do

8 (clear-update-eval-aclosure ac :attribute "place"

9 :instance v)))

10

11 (aclosure ac :attribute "rvalue" :type "&1"

12 :stage "checking location" :agent a :value loc

13 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match
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14 :av (or (equal kd "free") (equal kd "shared"))

15 :do loc

16 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac)))

17

18 (aclosure ac :attribute "rvalue" :type "&1"

19 :stage "returning value" :agent a :value loc

20 :v (mo "lifetime") lt :ap a (aseq "borrows" loc) bor :do

21 (aset a

22 :av (aseq "borrows" loc)

23 (cons (mo "borrow" :av "lifetime" lt :av "kind" "shared")

24 (aseq a "borrows" loc))

25 :av (aseq "lifetimes" lt) (list loc))

26 (co "reference" :av "location" loc :av "lifetime" lt))

Условием выполнимости этой операции является тот факт, что локация для места p не

должна быть эксклюзивной. Заметим, что мы не утверждаем, что она должна быть сво-

бодной или разделяемой, поскольку хотим иметь расширяемую модель.

Семантика для операции &mut p определяется аналогичным образом:

1 (aclosure ac :attribute "rvalue" :type "&mut1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location")

4 (update-push-aclosure ac :av "stage" "evaluating location")

5

6 (aclosure ac :attribute "rvalue" :type "&mut1"

7 :stage "evaluating location" :instance i :ap i 1 v :do

8 (clear-update-eval-aclosure ac :attribute "place"

9 :instance v)))

10

11 (aclosure ac :attribute "rvalue" :type "&mut1"

12 :stage "checking location" :agent a :value loc :instance i

13 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match
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14 :av (and (or (equal kd "free") (equal kd "unique"))

15 (clear-update-eval-aclosure ac :attribute "mutable"

16 :instance (aget i 1))

17 :do loc

18 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac)))

19

20 (aclosure ac :attribute "rvalue" :type "&mut1"

21 :stage "returning value" :agent a :value loc

22 :v (mo "lifetime") lt :ap a (aseq "borrows" loc) bor :do

23 (aset a

24 :av (aseq "borrows" loc)

25 (cons (mo "borrow" :av "lifetime" lt :av "kind" "unique")

26 (aseq a "borrows" loc))

27 :av (aseq "lifetimes" lt) (list loc))

28 (co "reference" :av "location" loc :av "lifetime" lt))

Только условия выполнимости другие: локация для места p должна быть эксклюзивной,

а само место мутабельным. Мутабельность места определяется набором атибутных замы-

каний для атрибута "mutable".

Для операции &*p семантика определяется следующим образом:

1 (aclosure ac :attribute "rvalue" :type "&*1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location")

4 (update-push-aclosure ac :av "stage" "evaluating location")

5

6 (aclosure ac :attribute "rvalue" :type "&*1"

7 :stage "evaluating location" :instance i :ap i 1 v :do

8 (clear-update-eval-aclosure ac :attribute "place"

9 :instance v)))

10

11 (aclosure ac :attribute "rvalue" :type "&*1"
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12 :stage "checking location" :agent a :value loc :instance i

13 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match

14 :av (is-instance (aget i 1) "&mutT1")

15 :do loc

16 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac)))

17

18 (aclosure ac :attribute "rvalue" :type "&*1"

19 :stage "returning value" :agent a :value loc

20 :v (mo "lifetime") lt :ap a (aseq "borrows" loc) bor :do

21 (aset a

22 :av (aseq "borrows" loc)

23 (cons (mo "borrow" :av "lifetime" lt :av "kind" "shared")

24 (aseq a "borrows" loc))

25 :av (aseq "lifetimes" lt) (list loc))

26 (co "reference" :av "location" loc :av "lifetime" lt))

Для операции &mut*p семантика определяется аналогичным образом:

1 (aclosure ac :attribute "rvalue" :type "&mut*1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "checking location")

4 (update-push-aclosure ac :av "stage" "evaluating location")

5

6 (aclosure ac :attribute "rvalue" :type "&mut*1"

7 :stage "evaluating location" :instance i :ap i 1 v :do

8 (clear-update-eval-aclosure ac :attribute "place"

9 :instance v)))

10

11 (aclosure ac :attribute "rvalue" :type "&mut*1"

12 :stage "checking location" :agent a :value loc :instance i

13 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match

14 :av (and (equal kd "unique")
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15 (is-instance (aget i 1) "&mutT1"))

16 :do loc

17 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac)))

18

19 (aclosure ac :attribute "rvalue" :type "&mut*1"

20 :stage "returning value" :agent a :value loc

21 :v (mo "lifetime") lt :ap a (aseq "borrows" loc) bor :do

22 (aset a

23 :av (aseq "borrows" loc)

24 (cons (mo "borrow" :av "lifetime" lt :av "kind" "unique")

25 (aseq a "borrows" loc))

26 :av (aseq "lifetimes" lt) (list loc))

27 (co "reference" :av "location" loc :av "lifetime" lt))

Семантика операции * определяется следующими замыканиями:

1 (aclosure ac :attribute "rvalue" :type "*1" :do

2 (update-push-aclosure ac :av "stage" "returning value")

3 (update-push-aclosure ac :av "stage" "evaluating 1"))

4

5 (aclosure ac :attribute "rvalue" :type "*1" :stage "evaluating 1"

6 :instance i :ap i 1 v1 :do

7 (clear-update-eval-aclosure ac :attribute "rvalue"

8 :instance v1))

9

10 (aclosure ac :attribute "rvalue" :type "*1"

11 :stage "returning value" :agent a :value ref

12 :ap ref "location" loc :ap a (aseq "location value" loc) v :do

13 v)

Операция + определяется следующим образом:

1 (aclosure ac :attribute "rvalue" :type "1+2" :do

2 (update-push-aclosure ac :av "stage" "returning value")
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3 (update-push-aclosure ac :av "stage" "evaluating 2")

4 (update-push-aclosure ac :av "stage" "evaluating 1")

5

6 (aclosure ac :attribute "rvalue" :type "1+2"

7 :stage "evaluating 1" :instance i :ap i 1 v1 :do

8 (clear-update-eval-aclosure ac :attribute "rvalue"

9 :instance v1)))

10

11 (aclosure ac :attribute "rvalue" :type "1+2"

12 :stage "evaluating 2" :value v1 :instance i :ap i 2 v2 :do

13 (clear-update-eval-aclosure ac :attribute "rvalue"

14 :instance v2 :av "v1" v1)))

15

16 (aclosure ac :attribute "rvalue" :type "1+2"

17 :stage "returning value" :ap "v1" v1 :value v2 :do (+ v1 v2))

Подобным образом определяются и другие бинарные операции.

4.3. Семантика операторов

Семантика операторов определяется для выражений типов "1=2", "let1=2",

"letmut1=2" и "{1}". При определении семантики для этих выражений характерными

являются стадии "updating agent" и "checking location". Первая определяет, как мо-

дифицируется агент, а вторая – условия выполнимости операции.

Операция "1=2" определяется следующим образом:

1 (aclosure ac :attribute "statement" :type "1=2" :do

2 (update-push-aclosure ac :av "stage" "updating agent")

3 (update-push-aclosure ac :av "stage" "evaluating 2")

4 (update-push-aclosure ac :av "stage" "checking location")

5 (update-push-aclosure ac :av "stage" "evaluating 1")

6

7 (aclosure ac :attribute "statement" :type "1=2"

8 :stage "evaluating 1" :instance i :ap i 1 v1 :do
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9 (clear-update-eval-aclosure ac :attribute "place"

10 :instance v1)))

11

12 (aclosure ac :attribute "statement" :type "1=2"

13 :stage "checking location" :value loc :agent a

14 :ap a (aseq "borrows" loc) st :ap (car st) "kind" kd :match

15 :av (or (equal kd "free") (equal kd "unique"))

16 :do loc

17 :exit (co "stop next aclosure" :av "type" "error" :av

"aclosure" ac))

18

19 (aclosure ac :attribute "statement" :type "1=2"

20 :stage "evaluating 2" :value v1 :instance i :ap i 2 v2 :do

21 (clear-update-eval-aclosure ac :attribute "rvalue"

22 :instance v2 :av "v1" v1)))

23

24 (aclosure ac :attribute "statement" :type "1=2"

25 :stage "updating agent" :ap "v1" v1 :value v2 :do

26 (aset a "location value" v1 v2))

Условие выполнимости операции требует, чтобы локация, являющаяся результатом вы-

числения значения атрибута 1, была или свободной, или эксклюзивной, а место 1 мута-

бельным.

Семантика операции "let1=2" имеет вид:

1 (aclosure ac :attribute "statement" :type "let1=2" :do

2 (update-push-aclosure ac :av "stage" "updating agent")

3 (update-push-aclosure ac :av "stage" "evaluating 2"))

4

5 (aclosure ac :attribute "statement" :type "let1=2"

6 :stage "evaluating 2" :value v1 :instance i :ap i 2 v2 :do

7 (clear-update-eval-aclosure ac :attribute "rvalue"

8 :instance v2))
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9

10 (aclosure ac :attribute "statement" :type "let1=2"

11 :stage "updating agent" :instance i :ap i 1 x :value v2

12 :v (mo "simple location") loc :do

13 (aset a :av (aseq "location" x) loc

14 :av (aseq "mutability" x) "immutable"

15 :av (aseq "location value" loc) v2

16 :av (aseq "borrows" loc)

17 (list (mo "borrow" :av "kind" "free"))))

Для простоты, мы рассмотрели только случай, когда переменная, являющаяся значени-

ем атрибута 1 имеет примитивный тип. Случай структуры определяется аналогичным

образом.

Операция "letmut1=2" определяется аналогичным образом:

1 (aclosure ac :attribute "statement" :type "letmut1 =2" :do

2 (update-push-aclosure ac :av "stage" "updating agent")

3 (update-push-aclosure ac :av "stage" "evaluating 2"))

4

5 (aclosure ac :attribute "statement" :type "letmut1 =2"

6 :stage "evaluating 2" :value v1 :instance i :ap i 2 v2 :do

7 (clear-update-eval-aclosure ac :attribute "rvalue"

8 :instance v2))

9

10 (aclosure ac :attribute "statement" :type "letmut1 =2"

11 :stage "updating agent" :instance i :ap i 1 x :value v2

12 :v (mo "simple location") loc :do

13 (aset a :av (aseq "location" x) loc

14 :av (aseq "mutability" x) "mutable"

15 :av (aseq "location value" loc) v2

16 :av (aseq "borrows" loc)

17 (list (mo "borrow" :av "kind" "free"))))

Отличается только модификация агента.
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Особенностью семантики блока является его возможность определять локальные вре-

мена жизни и исключать их при выходе из блока:

1 (aclosure ac :attribute "statement" :type "{1}" :agent a

2 :ap a "lifetimes" lfs :do

3 (update-push-aclosure ac :av "stage" "restoring lifetime"

4 :av "lifetime list" (attributes lfs))

5 (update-push-aclosure ac :av "stage" "evaluating 1"))

6

7 (aclosure ac :attribute "statement" :type "{1}"

8 :stage "evaluating 1" :instance i :ap i 1 stl :do

9 (update-eval-aclosure ac :stage "body iteration"

10 :av "current" 0 :av "statements" stl

11 :av "bound" (length stl)))

12

13 (aclosure ac :attribute "statement" :type "{1}"

14 :stage "body iteration" :ap "current" k :ap "statements" stl

15 :ap "bound" n :match

16 :v (< k n) T

17 :do

18 (update-eval-aclosure ac :av "current" (+ k 1))

19 (clear-update-eval-aclosure ac :instance (nth k stl)))

20

21 (aclosure ac :attribute "statement" :type "{1}"

22 :stage "restoring lifetime" :agent a :ap "lifetime list" lfl

23 :match :v (mo) lfs

24 (dolist (lf lfl) (aset lfs lf (aget a "lifetimes" lf)))

25 (aset a "lifetimes" lfs)

5. Верификация правил безопасности на примерах

В данном разделе рассматривается работа интерпретатора ABML на классических сце-

нариях языка Rust. Особое внимание уделяется тому, как динамическая семантика агента

воспроизводит статические проверки компилятора, обеспечивая безопасность работы с па-
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мятью.

5.1. Конфликты заимствования

Основная концепция безопасности Rust заключается в запрете одновременного суще-

ствования разделяемого доступа (чтения) и возможности модификации данных. Это предот-

вращает неопределенное поведение и гонки данных. Рассмотрим пример, нарушающий эти

правила:

1 let mut x = 5;

2 let y = &x; // Shared borrow (разделяемое заимствование)

3 *x = 10; // ОШИБКА: x уже заимствован переменной y

Выполним интерпретацию этих операций в модели на ABML.

Первая инструкция устанавливает следующие связи в атрибутах агента:

1 loc1 := (mo "simple location")

2

3 (aget a "location" x) = loc1

4 (aget a "mutability" x) = "mutable"

5 (aget a "location value" loc1) = 5

6 (aget a "borrows" loc1) = (list (mo "borrow" :av "kind" "free"))

где loc1 – новая локация.

Вторая инструкция модифицирует агента следующим образом:

1 loc1 := (mo "simple location")

2 loc2 := (mo "simple location")

3 lt1 := (mo "lifetime")

4

5 (aget a "location" x) = loc1

6 (aget a "location" y) = loc2

7 (aget a "mutability" x) = "mutable"

8 (aget a "mutability" y) = "immutable"

9 (aget a "location value" loc1) = 5

10 (aget a "location value" loc2) =

11 (co "reference" :av "location" loc1 :av "lifetime" lt1)
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12 (aget a "borrows" loc1) =

13 (list (mo "borrow" :av "lifetime" lt1 :av "kind" "shared")

14 (mo "borrow" :av "kind" "free"))

15 (aget a "borrows" loc2) = (list (mo "borrow" :av "kind" "free"))

16 (aget a "lifetimes" lt1) = (list loc1)

где loc2 – новая локация, и lt1 – новое время жизни.

Третья инструкция начинает с вычисления *x. В этом случае x вычисляется как rvalue

и возвращает число 5, а вычисление *x требует ссылки. Поэтому вычисление операционной

семантики завершается с ошибкой.

5.2. Частичное заимствование структур

Одним из ключевых преимуществ онтологического подхода является возможность точ-

ного моделирования частичного доступа к компонентам сложных данных. В отличие от

систем с «плоской» памятью, блокирующих объект целиком, иерархическая модель ABML

позволяет агенту анализировать доступ на уровне отдельных полей.

1 let mut point = Point { x: 1, y: 2 };

2 let r = &point.x; // Заимствуем только поле .x

3 point.y = 10; // OK: поле .y доступно для записи

В данном примере поле x заимствовано для чтения, что запрещает его изменение. Од-

нако поле y остается свободным и может быть изменено.

Выполним интерпретацию этих операций в модели на ABML.

Первая инструкция устанавливает следующие связи в атрибутах агента:

1 locx := (mo "field location")

2 locy := (mo "field location")

3 locpoint := (mo "struct location" :av "x" locx :av "y" locy)

4

5 (aget a "location" point) = locpoint

6 (aget a "mutability" point) = "mutable"

7 (aget a "location value" locx) = 1

8 (aget a "location value" locy) = 2

9 (aget a "location value" loc_point) =
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10 (mo "struct location" :av "x" locx :av "y" locy)

11 (aget a "borrows" locx) = (list (mo "borrow" :av "kind" "free"))

12 (aget a "borrows" locy) = (list (mo "borrow" :av "kind" "free"))

13 (aget a "borrows" locpoint) = (list (mo "borrow" :av "kind"

"free"))

Вторая инструкция модифицирует агента следующим образом:

1 locx := (mo "field location")

2 locy := (mo "field location")

3 loc_point := (mo "struct location" :av "x" locx :av "y" locy)

4 locr := (mo "field location")

5 lt1 := (mo "lifetime")

6

7 (aget a "location" point) = locpoint

8 (aget a "location" r) = locr

9 (aget a "mutability" point) = "mutable"

10 (aget a "mutability" r) = "immutable"

11 (aget a "location value" locx) = 1

12 (aget a "location value" locy) = 2

13 (aget a "location value" loc_point) =

14 (mo "struct location" :av "x" locx :av "y" locy)

15 (aget a "location value" locr) =

16 (co "reference" :av "location" locx :av "lifetime" lt1)

17 (aget a "borrows" locx) =

18 (list (mo "borrow" :av "lifetime" lt1 :av "kind" "shared")

19 (mo "borrow" :av "kind" "free"))

20 (aget a "borrows" locy) = (list (mo "borrow" :av "kind" "free"))

21 (aget a "borrows" locpoint) = (list (mo "borrow" :av "kind"

"free"))

22 (aget a "lifetimes" lt1) = (list locx)

Третья инструкция также выполняется, так как заимствование наложено только на

locx, а не на locpoint целиком:
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1 locx := (mo "field location")

2 locy := (mo "field location")

3 loc_point := (mo "struct location" :av "x" locx :av "y" locy)

4 locr := (mo "field location")

5 lt1 := (mo "lifetime")

6

7 (aget a "location" point) = locpoint

8 (aget a "location" r) = locr

9 (aget a "mutability" point) = "mutable"

10 (aget a "mutability" r) = "immutable"

11 (aget a "location value" locx) = 1

12 (aget a "location value" locy) = 10

13 (aget a "location value" loc_point) =

14 (mo "struct location" :av "x" locx :av "y" locy)

15 (aget a "location value" locr) =

16 (co "reference" :av "location" locx :av "lifetime" lt1)

17 (aget a "borrows" locx) =

18 (list (mo "borrow" :av "lifetime" lt1 :av "kind" "shared")

19 (mo "borrow" :av "kind" "free"))

20 (aget a "borrows" locy) = (list (mo "borrow" :av "kind" "free"))

21 (aget a "borrows" locpoint) = (list (mo "borrow" :av "kind"

"free"))

22 (aget a "lifetimes" lt1) = (list locx)

Этот пример наглядно демонстрирует точность онтологического моделирования: агент

«понимает», что заимствование части объекта не эквивалентно блокировке всего объекта,

что полностью соответствует семантике разделенного заимствования (split borrowing) в

Rust.

6. Родственные работы

Исследования в области формальной семантики языков программирования, и в особен-

ности языка Rust, в последние годы привлекают значительное внимание научного сооб-
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щества. Это связано с нетривиальной моделью памяти Rust, основанной на концепциях

владения, заимствования и строгих гарантиях отсутствия гонок данных. В результате

появилось множество работ, направленных на формализацию как статических, так и ди-

намических аспектов языка.

Одной из первых работ, целенаправленно описывающих динамическое поведение Rust,

является исполняемая операционная семантика RustSEM [3]. В данной работе авторы

предлагают формальную модель исполнения программ Rust, в которой явно представле-

ны механизмы владения и заимствования. Семантика задается в виде системы переходов

состояний и ориентирована на воспроизведение поведения реальных программ, включая

ситуации, приводящие к ошибкам доступа к памяти. Подход RustSEM демонстрирует воз-

можность динамической проверки корректности работы с заимствованиями, однако мо-

дель в значительной степени опирается на плоское представление памяти.

Схожую цель преследует работа KRust [11], в которой формальная семантика Rust

реализована в рамках K-фреймворка. Использование K позволяет автоматически полу-

чать исполняемый интерпретатор и инструменты анализа на основе формального описа-

ния семантики. Авторы показывают, что предложенная модель корректно воспроизводит

основные элементы языка, включая перенос владения (move), заимствования и мутабель-

ность. Семантика KRust была сопоставлена с тестами официального компилятора Rust,

что подтверждает ее практическую применимость.

Отдельное направление исследований связано с формализацией заимствований через

символические модели. В работах по проверке корректности заимствований посредством

символьной семантики [6, 7] предлагается формализм LLBC (Low-Level Borrow Calculus),

который служит промежуточным уровнем между высокоуровневым Rust и низкоуров-

невыми моделями памяти. Авторы доказывают корректность символьной семантики по

отношению к операционной, что позволяет использовать модель для формальной вери-

фикации свойств программ, связанных с безопасностью памяти.

Дальнейшим развитием этого направления является инструмент Aeneas [8], ориенти-

рованный на верификацию программ Rust путем перевода в функциональные представ-

ления. В данной работе операционная семантика Rust редуцируется к чистой семантике,

в которой управление памятью и адресами заменяется абстрактными понятиями владе-

ния и займов. Такой подход облегчает доказательство функциональной корректности, но

абстрагируется от многих деталей реального исполнения.
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Фундаментальной работой в области формального обоснования Rust является проект

RustBelt [15]. В нем авторы вводят формальный язык λRust и задают его операцион-

ную семантику, что позволяет строго доказать безопасность ключевых механизмов Rust,

включая отсутствие использования после освобождения (use-after-free) и гонок данных. В

отличие от исполняемых семантик, RustBelt ориентирован прежде всего на доказательство

теоретических свойств языка, а не на моделирование конкретных сценариев выполнения

программ. В RustBelt предлагается логическая семантика для подмножества Rust и до-

казываются ключевые свойства безопасности памяти [10, 12, 15]. Хотя исходная версия

RustBelt была опубликована ранее, последующие работы существенно расширили этот

подход, включая поддержку relaxed memory и unsafe-кода [1, 12, 13].

Развитие RustBelt привело к созданию RustHornBelt и RefinedRust, которые объединя-

ют логические и типовые методы верификации и обеспечивают высокую степень автомати-

зации доказательств [9, 14, 16]. Эти работы демонстрируют, как операционная семантика

Rust может быть связана с логическими моделями и доказательными системами.

Параллельно развиваются практико-ориентированные средства верификации, такие

как Verus и Flux, использующие расширенные типовые системы и SMT-решатели для

доказательства свойств программ [5, 18, 19]. Эти инструменты опираются на формальные

семантические модели Rust, хотя и не всегда задают их явно в операционной форме.

Отдельный класс исследований посвящен aliasing-моделям и динамической семантике

заимствований, включая Stacked Borrows и его расширения, которые уточняют допусти-

мые сценарии доступа к памяти во время выполнения [4, 17]. Эти модели оказывают

существенное влияние на современные формализации Rust и интерпретацию unsafe-кода.

Существуют также работы, фокусирующиеся на концептуальном и когнитивном анали-

зе модели владения Rust. Так, в [2] предлагается концептуальная модель ownership-типов,

которая формализует интуитивные представления о владении и заимствовании и сопо-

ставляет их с реальными правилами языка. Хотя данная работа не задает операционную

семантику напрямую, она вносит существенный вклад в понимание связи между статиче-

скими и динамическими аспектами Rust.

На этом фоне предложенная в настоящей статье операционная семантика выраже-

ний Rust на языке ABML занимает промежуточное положение между теоретическими

и практико-ориентированными подходами. В отличие от большинства существующих мо-

делей, она использует онтологическое представление вычислительного состояния и иерар-
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хическую модель памяти, что позволяет естественно выразить частичное заимствование

и динамическую проверку конфликтов доступа. Таким образом, работа дополняет суще-

ствующие исследования, предлагая альтернативный, онтологически обогащенный способ

формализации семантики Rust.

7. Заключение

В статье была представлена операционная семантика выражений языка Rust, форма-

лизованная с использованием онтологического и атрибутно-ориентированного подхода,

реализованного в языке ABML. Предложенная модель ориентирована на точное воспро-

изведение динамического поведения программ с учетом ключевых гарантий безопасности

памяти, характерных для Rust.

Одним из основных результатов работы является введение иерархической модели па-

мяти, в которой локации могут представлять как целые структуры, так и их отдельные

поля. Такая организация памяти позволяет корректно моделировать частичное заимство-

вание и отражает реальные правила доступа к данным, применяемые в языке Rust. В

сочетании с метаданными живучести, мутабельности и активных заимствований эта мо-

дель обеспечивает строгую динамическую проверку конфликтов.

Разработанная операционная семантика описана в виде исполняемых правил, что от-

личает ее от чисто декларативных формализаций. Это делает возможным использование

модели не только для теоретического анализа, но и для экспериментального исполнения

программ, трассировки вычислений и исследования граничных случаев поведения меха-

низмов ownership и borrow checking.

Сравнение с предыдущими работами, использующими ABML для описания семантики

других языков и конструкций, показывает универсальность выбранного подхода. Онтоло-

гическое представление синтаксических и семантических сущностей позволяет постепенно

расширять модель, добавляя новые конструкции языка Rust без радикального пересмотра

уже существующих определений.

В перспективе предложенная семантика может быть расширена для поддержки более

сложных элементов языка, таких как функции, замыкания, обобщенные типы и парал-

лельные вычисления. Кроме того, она может служить основой для построения формаль-

ных инструментов анализа и верификации программ на Rust, а также для сопоставления

динамической семантики с результатами статического анализа компилятора.
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В целом, работа демонстрирует, что онтологический и атрибутно-ориентированный под-

ход в сочетании с ABML является эффективным средством формализации языков про-

граммирования с развитой моделью безопасности памяти и открывает новые возможности

для исследований в области формальных семантик.

Список литературы

1. Batty M. J. The C11 and C++ 11 concurrency model : Ph.D. thesis ; University of

Cambridge, UK. — 2015.

2. Crichton W., Gray G., Krishnamurthi S. A grounded conceptual model for ownership types

in rust // Proceedings of the ACM on Programming Languages. — 2023. — Vol. 7, no.

OOPSLA2. — P. 1224–1252.

3. An Executable Operational Semantics for Rust with the Formalization of Ownership

and Borrowing / Kan S., Chen Z., Sanan D., Lin S.-W., and Liu Y. // arXiv preprint

arXiv:1804.07608. — 2018.

4. Exploring C semantics and pointer provenance / Memarian K., Gomes V. B., Davis B.,

Kell S., Richardson A., Watson R. N., and Sewell P. // Proceedings of the ACM on

Programming Languages. — 2019. — Vol. 3, no. POPL. — P. 1–32.

5. Flux: Liquid types for rust / Lehmann N., Geller A. T., Vazou N., and Jhala R. //

Proceedings of the ACM on Programming Languages. — 2023. — Vol. 7, no. PLDI. —

P. 1533–1557.

6. Ho S., Fromherz A., Protzenko J. Sound Borrow-Checking for Rust via Symbolic

Semantics // Proceedings of the ACM on Programming Languages. — 2024. — Vol. 8, no.

ICFP. — P. 426–454.

7. Ho S., Fromherz A., Protzenko J. Sound Borrow-Checking for Rust via Symbolic Semantics

(Long Version) // arXiv preprint arXiv:2404.02680. — 2024.

8. Ho S., Protzenko J. Aeneas: Rust verification by functional translation // Proceedings of

the ACM on Programming Languages. — 2022. — Vol. 6, no. ICFP. — P. 711–741.

9. Iris from the ground up / Jung R., Krebbers R., Jourdan J.-H., Bizjak A., Birkedal L., and

Dreyer D. // Submitted to JFP. — 2017.

10. Jung R. Understanding and evolving the Rust programming language : Phd dissertation ;
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