
System Informatics (Системная информатика), No. 29 (2025) 159

УДК 004.451.2, 004.82, 004.021, 519.6, 004.42

Операционная семантика операторов передачи

управления в языке C на языке ABML

Ануреев И.С. (Институт систем информатики СО РАН)

В работе рассматривается онтологический подход к заданию операционной се-

мантики операторов передачи управления языка программирования C. В качестве

формального средства используется предметно-ориентированный язык ABML, ранее

предложенный для спецификации дискретных динамических систем, ориентирован-

ных на знания, структурированные в онтологиях. Показано, что операционную семан-

тику фрагментов языков программирования, заданную в терминах систем переходов,

можно интерпретировать как динамическую систему и формализовать средствами

ABML.

В статье вводится онтология операторов передачи управления языка C, включаю-

щая операторы goto, break, continue и return, а также онтологии конструкций, реаги-

рующих на передачу управления, таких как помеченные операторы, блоки и оператор

switch. Для этих онтологических моделей задается операционная семантика в виде ат-

рибутных замыканий, вычисляемых относительно агентов и окружения.

Особое внимание уделяется адаптации языка ABML к задачам задания операцион-

ной семантики, включая уточнение понятия атрибутного замыкания, введение стадий

вычисления и явное моделирование контекста выполнения. Предложенный подход

обеспечивает модульность, расширяемость и наглядность спецификации семантики.

Полученные результаты демонстрируют применимость онтологического модели-

рования для формального описания семантики языков программирования и создают

основу для дальнейшего расширения подхода на другие конструкции языка C, а так-

же на анализ и верификацию программ.

Ключевые слова: операционные семантики, онтологии языков программирования,

модели языков программирования, атрибутные замыкания, ABML, операторы пере-

дачи управления

1. Введение

Формальное задание семантики языков программирования является одной из ключе-

вых задач теории программирования и формальных методов. Операционная семантика,

описывающая поведение программ через последовательность элементарных шагов выпол-

нения, традиционно задается с помощью систем переходов, абстрактных машин или пра-



160 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML

вил вывода. Такие описания, хотя и обладают высокой точностью, часто оказываются

слабо структурированными, трудно расширяемыми и плохо приспособленными для по-

вторного использования при анализе различных фрагментов языка.

В последние годы заметный интерес вызывает применение онтологического подхода к

моделированию программных систем. Онтологии позволяют явно фиксировать структуру

предметной области, типы сущностей и отношения между ними, что делает модели бо-

лее прозрачными и пригодными для автоматизированной обработки. В контексте языков

программирования это открывает возможность представлять синтаксические и семантиче-

ские конструкции языка в виде онтологических моделей, а правила их функционирования

– в виде формализованных механизмов изменения знаний.

В работе [63] был предложен язык ABML (Attribute-Based Modeling Language), пред-

назначенный для спецификации и прототипирования дискретных динамических систем,

ориентированных на знания, структурированные в онтологиях. Язык ABML объединяет

онтологическое моделирование с элементами функционального и процедурного програм-

мирования и предоставляет средства для задания объектов, атрибутов, типов, сопоставле-

ния с образцом и атрибутных замыканий. В предыдущей работе было показано, что ABML

может эффективно использоваться для моделирования динамики реальных технических

и информационных систем.

Настоящая статья развивает данный подход и рассматривает возможность примене-

ния ABML для задания операционной семантики языков программирования. Основная

идея заключается в том, что систему переходов, лежащую в основе операционной семан-

тики, можно рассматривать как дискретную динамическую систему, а значит, описывать

ее средствами ABML. Однако специфика языков программирования – наличие контек-

ста выполнения, стеков, областей видимости, передачи управления – требует адаптации

базовых механизмов языка.

В качестве предмета исследования выбран фрагмент языка C, связанный с операто-

рами передачи управления. Эти операторы играют важную роль в управлении потоком

выполнения программы и существенно усложняют формальное описание семантики из-за

нелокальных переходов, взаимодействия с блоками, циклами и оператором switch. В ста-

тье предлагается онтологическая модель операторов передачи управления и связанных

с ними конструкций, а также формальное задание их операционной семантики на языке

ABML.



System Informatics (Системная информатика), No. 29 (2025) 161

Целью работы является демонстрация того, что онтологический подход в сочетании

с языком ABML позволяет получить модульное, расширяемое и формально точное опи-

сание операционной семантики операторов передачи управления языка C. Полученные

результаты могут служить основой для дальнейшего расширения модели, а также для

исследований в области анализа, верификации и интерпретации программ.

Статья имеет следующую структуру. В разделе 2 рассматривается адаптация языка

ABML к задачам задания операционной семантики языков программирования и вводят-

ся необходимые уточнения базовых понятий. В разделе 3 описываются этапы построения

операционной семантики в терминах ABML. Раздел 4 посвящен онтологии операторов пе-

редачи управления языка C, а в разделе 5 вводится онтология конструкций, связанных с

передачей управления. В разделе 6 описываются модели агентов и окружения, использу-

емые для задания контекста выполнения. Разделы 7 и 8 содержат формальное описание

операционной семантики операторов передачи управления и связанных с ними конструк-

ций. В разделе 9 проведен анализ родственных работ. В заключении подводятся итоги

работы и обсуждаются направления дальнейших исследований.

2. Адаптация ABML для разработки операционных семантик

В работе [63] был предложен предметно-ориентированный язык ABML, предназначен-

ный для спецификации и прототипирования дискретных динамических систем, ориенти-

рованных на знания, структурированные в онтологиях. Основная идея применения этого

языка для спецификации операционной семантики языков программирования заключа-

ется в следующем. Если задавать операционную семантику языков программирования с

помощью систем переходов, то такие системы переходов можно рассматривать как дис-

кретные динамические системы и, таким образом, можно применить язык ABML для

спецификации таких систем.

Однако эти системы имеют свои особенности, и чтобы учитывать их, требуется неко-

торые модификации языка ABML. Опишем ниже эти модификации.

Понятие атрибутного замыкания переопределяется следующим образом. Константный

объект ac называется атрибутным замыканием относительно атрибута a и типа t, если

выполняются следующие условия:

• (aget ac "attribute") = a;

• (aget ac "instance") = i, где i является экземпляром типа t;



162 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML

• "agent" – экземпляр типа изменяемых объектов "agent". Агенты выполняют двоя-

кую роль. С одной стороны, агенты хранят в своих атрибутах знания, необходимые

для выполнения конструкций языка программирования (например, значения пере-

менных, типы переменных, распределение памяти и т. п.). С другой стороны, агентов

можно рассматривать как отдельных исполнителей, специфика которых определяет-

ся хранимым в них знанием (например, для определения потоков, процессов и т. п.).

Обязательным атрибутом агентов является атрибут "value", хранящий последнее

вычисленное в этом агенте значение;

• "env" – экземпляр типа изменяемых объектов "env". Окружение во-первых, хранит

информацию, общую для всех агентов, а во-вторых, позволяет агентам обменивать-

ся этой информацией через атрибуты окружения. В окружении также реализуется

обобщение концепции стека, широко используемой в языках программирования для

откладывания вычислений (например, элементом стека может быть функция с аргу-

ментами из ее текущего вызова). Реализация основана на двух обязательных атри-

бутах окружения. Атрибут "agents" типа (listt "agent") хранит список всех дей-

ствующих агентов. Атрибут "aclosures" типа (cot :amap "agent" (listt cot))

моделирует стек для каждого агента, хранящий отложенные атрибутные замыкания

для этого агента. Декларации типов для окружения и агентов задаются пользовате-

лем отдельно для каждого языка программирования.

Остальные атрибуты объекта ac образуют контекст вычисления атрибута a. Также в

контекст вычисления добавляется обязательный атрибут "stage", значения которого ха-

рактеризуют отдельные стадии вычисления атрибутного замыкания. Конкретный набор

этих стадий зависят от типа экземпляра, для которого вычисляется атрибут в замыкании

ac. Например, для условного оператора можно выделить 3 стадии: вычисление условия,

выбор ветви и вычисление выбранной ветви. Использование данного атрибута способству-

ет модульности операционной семантики, а также в совокупности с механизмом стеков,

описанным ниже, упрощает обработку исключительных ситуаций (появляющихся как ре-

зультат выполнения операторов передачи управления, операторов порождения исключе-

ний и т. п.), которые могут встретиться на каждой стадии.

Таким образом, к обязательным атрибутам атрибутных замыканий "attribute" и

"instance" добавляются еще два атрибута "agent" и "env". В частности, эти атрибуты

также будут сохраняться при выполнении функции (clear-aclosure ac), которая удаля-



System Informatics (Системная информатика), No. 29 (2025) 163

ет атрибуты из контекста вычисления.

В язык ABML добавляются следующие функции работы со стеками окружения:

• push-aclosure – добавляет атрибутное замыкание ac в стек соответствующего аген-

та, связанного с ac. Она имеет следующую семантику:

1 (defun push-aclosure (ac)

2 (match :ap ac "agent" a :ap ac "env" e

3 :ap e "agents" al

4 :ap e (aseq "aclosures" a) cl

5 :do (aset e "aclosures" a (cons ac cl))

6 :v (not (member a al)) T

7 :do (aset e "agents" (cons a al))))

• (pop-aclosure ac) – удаляет атрибутное замыкание ac из стека соответствующего

агента, возвращая его в качестве значения этой функции. Она имеет следующую

семантику:

1 (defun pop-aclosure (ac)

2 (match :ap ac "env" e :ap e "agents" al

3 :v (not (null al)) T :exit nil

4 :p (car al) a :ap e (aseq "aclosures" a) cl

5 :v (not (null cl)) T :exit nil

6 :do (aset e "aclosures" a (cdr cl)) (car cl)))

• (peek-aclosure ac) – читает атрибутное замыкание ac из стека соответствующего

агента, возвращая его в качестве значения этой функции. Она имеет следующую

семантику:

1 (defun peek-aclosure (ac)

2 (match :ap ac "env" e :ap e "agents" al

3 :v (not (null al)) T :exit nil

4 :p (car al) a :ap e (aseq "aclosures" a) cl

5 :v (not (null cl)) T :exit nil

6 :do (car cl)))

Имеются также сокращения



164 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML

1 (update-push-aclosure ac ...)

2 clear-update-push-aclosure ac ...)

для часто используемых операций

1 (push-aclosure (aset ac ...))

2 (update-push-aclosure (clear-aclosure ac))

В префикс декларации атрибутного замыкания добавляется элемент :value p, который

связывает с переменной p значение атрибута "value" агента (aget ac "agent"), связан-

ного с атрибутным замыканием ac. Таким образом, декларация атрибутного замыкания

принимает один из следующих видов:

1 (aclosure ac :attribute a :type t :instance i :value p s1 s2 s3

2 :do e1 ... er)

3 (aclosure ac :attribute a :type t :instance i :value p s1 s2 s3

4 :match c1 ... cr)

5 (aclosure ac :attribute a :type t :instance i :value p s1 s2 s3

6 :nmatch c1 ... cr)

где s1, s2 и s3 имеют вид

1 :a1 p1 ... :an pn

2 :ap w1 b1 q1 ... :ap wm bm qm

3 :p u1 t1 ... :p uk tk

соответственно.

Результат вычисления атрибутного замыкания ac для атрибута a и типа t определяется

λ-функцией (lambda (ac) b), где тело b имеет вид

1 (match :ap ac "instance" i :ap ac (aseq "agent" "value") p

2 :ap ac a1 p1 ... :ap ac an pn :ap w1 b1 q1 ... :ap wm bm qm

3 :p u1 t1 ... :p uk tk :do e1 ... er (next-aclosure ac))

4

5 (match :ap ac "instance" i :ap ac (aseq "agent" "value") p

6 :ap ac a1 p1 ... :ap ac an pn :ap w1 b1 q1 ... :ap wm bm qm

7 :p u1 t1 ... :p uk tk c1 ... cr (next-aclosure ac))



System Informatics (Системная информатика), No. 29 (2025) 165

8

9 (match :ap ac "instance" i :ap ac (aseq "agent" "value") p

10 :ap ac a1 p1 ... :ap ac an pn :ap w1 b1 q1 ... :ap wm bm qm

11 :p u1 t1 ... :p uk tk (nmatch c1 ... cr) (next-aclosure ac))

соответственно. Здесь выражения e1, ..., er, c1, ..., cr могут зависеть от параметров

i, ac, p, p1, ..., pn, q1, ..., qm, t1, ..., tk.

По-прежнему элементы префикса декларации атрибутного замыкания могут как пере-

ставляться, так и опускаться.

Функция (next-aclosure ac) определяет какое атрибутное замыкание требуется взять

из стеков окружения и выполнить после того, как завершится выполнение замыкания ac.

Эта функция определяется пользователем в зависимости от специфики языка програм-

мирования, для которого строится операционная семантика. В этой статье мы используем

следующее определение:

1 (defun next-aclosure (ac)

2 (match :ap ac "value" v

3 :v (not (is-instance v "stop next aclosure")) T :exit v

4 :ap ac "agent" a :ap ac "env" e :ap e (aseq "aclosures" a) st

5 :v (null st) T :exit (eval-aclosure (car st))

6 :ap e "agents" al

7 :v (not (null al)) T :exit nil

8 :p (car al) a1 :ap e (aseq "aclosures" a1) st1

9 :v (null st1) T :exit (aset e "aclosures" a (cdr cl))

10 (eval-aclosure (car st1))

11 :do (aset e "agents" a (cdr al)) next-aclosure (ac)))

Оно выбирает первый элемент стека агента, связанного с замыканием ac, а если стек пуст,

то первый элемент первого агента из списка агентов в окружении, для которого стек не

пуст. Если стеки для всех агентов пусты, то эта функция ничего не делает.

Для моделирования ситуации, когда next-aclosure ничего не делает, и, таким обра-

зом, ABML-программа завершает свою работу, используется значение типа "stop next

aclosure" из атрибута "value" агента, связанного с замыканием ac. Этот тип определя-

ется следующим образом:



166 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML

1 (cot "stop next aclosure" :at "type" string :at "aclosure" (cot))

Атрибут "type" хранит тип остановки программы (например, "error"), а атрибут "aclosure"

хранит замыкание, на котором произошла остановка.

3. Этапы построения операционной семантики на языке ABML

Подход к построению операционной семантики фрагмента языка программирования на

языке ABML состоит из следующих шагов:

1. Построить онтологию фрагмента языка программирования как набор типов объек-

тов языка ABML, соответствующих синтаксическим и семантическим конструкциям

этого фрагмента.

2. Определить типы для агентов и окружения.

3. Задать операционную семантику фрагмента как набор атрибутных замыканий отно-

сительно атрибута "opsem" и всех типов, определенных на шаге 1, которые соответ-

ствуют исполняемым конструкциям фрагмента. В этом случае, вычисление атрибута

"opsem" для онтологической модели исполнимой конструкции через атрибутное за-

мыкание соответствует вычислению операционной семантики этой конструкции от-

носительно агента, окружения и других параметров, задаваемых этим атрибутным

замыканием.

4. Онтология операторов передачи управления

Онтология операторов передачи управления задается следующим набором типов:

1 (typedef "jump statement" (uniont

2 "goto1" "continue" "break" "return1" "return1"))

3 (mot "goto1" :at 1 "identifier")

4 (mot "continue")

5 (mot "break")

6 (mot "return")

7 (mot "return1" :at 1 "expression")

Индексы 1, 2, 3 и т. д. в именах типов показывают позиции аргументов. Типы "continue",

"break" и "return", соответствующие операторам continue, break и return без аргумен-

тов, не имеют атрибутов. Атрибутом 1 типа "goto" является метка оператора goto, а



System Informatics (Системная информатика), No. 29 (2025) 167

атрибутом 1 типа "return1" является выражение, связанное с оператором return. Тип

"jump statement" моделирует все виды операторов передачи управления и определяется

как их объединение.

5. Онтология операторов, связанных с операторами передачи

управления

Определим также операторы и выражения, которые реагируют на передачу управле-

ния, разбив их на группы.

Первую группу операторов составляют помеченные операторы. Для упрощения опе-

рационной семантики мы рассматриваем в качестве помеченных операторов различные

виды меток без следующих за ними операторов. Эта группа операторов моделируется

следующими типами:

1 (typedef "labeled statement" (uniont

2 "label1" "case1" "default"))

3 (mot "label1" :at 1 "label name")

4 (mot "case1" :at 1 "constant expression")

5 (mot "default")

Типы "label1" и "case1", соответствующие обычных меткам и case-меткам, имеют один

атрибут 1 со значениями типов "label name" и "constant expression", представляющих

метки и константные выражения, соответственно. Тип "default" моделирует default-

метки.

Вторую группу составляют операторы блока. Их модели определяются следующим об-

разом:

1 (mot "{1}"

2 :at 1 (listt (uniont "declaration" "statement"))

3 :at "variables" (listt "variable")

4 :at "label position" (cot :amap "label name" nat))

Атрибут "variables" хранит список переменных, объявляемых на верхнем уровне в спис-

ке операторов блока. Это знание нужно для того, чтобы при переходе к телу этого операто-

ра для переменных с теми же именами, как переменные из этого списка, сохранять ячейки

памяти, связанные с ними, поскольку эти переменные будут прятаться при объявлениях



168 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML

соответствующих переменных внутри тела, а при выходе из тела цикла восстанавливать

старые связи между переменными и ячейками.

Атрибут "variable location" в этом типе хранит отображение меток, встречающихся

в списке операторов блока, в их позиции в этом списке.

Третью группу образуют онтологические модели операторов switch, представленные

типом "switch(1)2":

1 (mot "switch (1)2" :at 1 "expression" :at 2 (listt "statement")

2 :at "variables" (listt "variable"))

Атрибуты 1 и 2 имеют типы "expression" и (listt "statement") и задают управляющее

выражение и тело этих операторов.

Четвертую группу образуют операторы итерации, включающих операторы while, опе-

раторы do-while и два вида операторов for без и с декларацией переменных. Эта группа

моделируется следующими типами:

1 (typedef "iteration statement" (uniont "while (1)2"

2 "do1while (2)" "for (1;2;3)4" "for(var1 ;2;3)4"))

3

4 (mot "while (1)2" :at 1 "expression" :at 2 "statement")

5

6 (mot "do1while (2)" :at 1 "statement" :at 2 "expression")

7

8 (mot "for (1;2;3)4" :at 1 "expression" :at 2 "expression"

9 :at 3 "expression" :at 4 "statement")

10

11 (mot "for(var1 ;2;3)4" :at 1 "declaration" :at 2 "expression"

12 :at 3 "expression" :at 4 "statement"

13 :at "variables" (listt "variable"))

Атрибут "variables" в типе "for(var1;2;3)4" имеет тот же смысл, что и в типе "switch".

Он хранит список переменных, объявляемых в атрибуте 1. Смысл остальных аргументов

данных типов легко определяется их положением в имени типа.

Пятую группу составляют вызовы функций. Они моделируются следующим типом:

1 (mot "1(2)" :at 1 "expression" :at 2 (listt "expression"))



System Informatics (Системная информатика), No. 29 (2025) 169

Экземпляры этого типа связаны только с онтологическими моделями операторов return.

6. Модели агентов и окружения

Поскольку у нас последовательное вычисление и вычислитель только один, тип для

окружения не имеет атрибутов:

1 (mot "env")

Агент для языка Си хранит достаточно много информации, но для нашего подмноже-

ства языка Си достаточно двух атрибутов:

1 (mot "agent"

2 :at "location" (cot :amap "variable" "location")

3 :at "value" "c value")

Предопределенный атрибут "value" имеет тип "c value", который строится как объеди-

нение всех типов значений языка Си.

Атрибут "location" сопоставляет переменным программы связанные с ними ячейки

памяти и имеет тип (cot :amap "variable""location").

Тип "location" ячеек памяти определяется следующим образом:

1 (mot "location" :at "value" "c value")

Он имеет атрибут "value", который хранит значение, приписанное ячейке памяти.

7. Операционная семантика моделей операторов передачи

управления

Оператор break. Операционная семантика оператора break (более точно его онтоло-

гической модели) задается следующим атрибутным замыканием:

1 (aclosure ac :attribute "opsem" :type "break"

2 :p (pop-aclosure ac) ac1 :nmatch

3 :v (null ac1) T :exit (error ac "break")

4 :do (match

5 :ap ac1 "stage" st :do (nmatch

6 :v (equal st "exiting 1(2)")



170 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML

7 :exit (error ac "break")

8 :v (equal st "exiting while (1)2")

9 :v (equal st "exiting do1while (2)")

10 :v (equal st "exiting for (1;2;3)4")

11 :exit

12 :v (equal st "exiting for(var1 ;2;3)4")

13 :v (equal st "exiting switch (1)2")

14 :exit (eval-aclosure ac1)

15 :v (equal st "exiting {1}")

16 :exit (push-aclosure ac) (eval-aclosure ac1)

17 :do (eval-aclosure ac))))

Тело этого атрибутного замыкания моделирует передачу управления, осуществляемую

оператором break, через другие операторы.

Строка 2 сохраняет в параметре ac1 верхний элемент стека, связанного с текущим

агентом (aget ac "agent"), удаляя этот элемент из стека в текущем окружении (aget

ac "env").

В строке 3 выполняется проверка, а не пуст ли этот стек (пустота стека соответствует

значению nil параметра ac1). Если стек пуст, то выдается ошибка, так как это означает,

что не встретился оператор, который должен был поймать переход по оператору break.

В строке 5 в параметре st сохраняется значение текущей стадии вычисления атрибут-

ного замыкания ac1.

В строке 6 проверяется, является ли эта стадия стадией выхода "exiting 1(2)" из

вычисления вызова функции. Если является, то выдается ошибка, так как такая ситуация

тоже невозможна. Заметим, что единственное знание о других операторах и выражениях,

которым владеет оператор передачи управления (в данном случае оператор break) – это

знание имен стадий этих операторов, которые реагируют на передачу управления.

В строках 8-10 проверяется, является ли эта стадия стадией выхода

"exiting while(1)2", "exiting do1while(2)" и "exiting for(1;2;3)4" из операторов

while, do-while и for без декларации переменных, соответственно. Если является, то

передача управления завершается в строке 11. А поскольку эти стадии являются призна-

ками завершения соответствующих операторов, то, в соответствии с семантикой функции



System Informatics (Системная информатика), No. 29 (2025) 171

next-aclosure управление передается следующему замыканию из стека замыканий (в

частности, если после этих циклов имеется еще оператор, то управление передается ему).

В строках 12-13 проверяется, является ли эта стадия стадией выхода

"exiting for(var1;2;3)4" и "exiting switch(1)2" из операторов for с декларацией пе-

ременных и switch, соответственно. Если является, то передача управления завершается

в строке 14. Но, в отличие от предыдущих случаев, перед выходом из этих операторов вы-

полняются действия, связанные с восстановлением старых ячеек памяти для переменных,

а именно вычисляется атрибутное замыкание ac1.

В строке 15 проверяется, является ли эта стадия стадией выхода из блока. Если яв-

ляется, то передача управления продолжается после блока, что обеспечивается выраже-

нием (push-aclosure ac), но перед этим также выполняются действия, связанные с вос-

становлением старых ячеек памяти для переменных, а именно вычисляется выражение

(eval-aclosure ac1). Заметим, что чтобы обеспечить такой порядок вычисления этих

выражений, первое выражение откладывает вычисление ac, помещая его в стек. Поэтому

сначала вычислится ac1, а потом восстановиться из стека и вычислиться ac.

Строка 17 соответствует любой другой стадии и любому другому оператору. В этом

случае передача управления продолжается.

Оператор continue. Операционная семантика оператора continue задается во многом

аналогичным образом:

1 (aclosure ac :attribute "opsem" :type "continue"

2 :p (peek-aclosure ac) ac1 :nmatch

3 :v (null ac1) T :exit (error ac "continue")

4 :do (match

5 :ap ac1 "stage" st :do (nmatch

6 :v (equal st "exiting 1(2)")

7 :exit (error ac "continue")

8 :v (equal st "exiting while (1)2")

9 :exit (update-eval-aclosure ac1 :stage "executing 1")

10 :v (equal st "exiting do1while (2)")

11 :exit (update-eval-aclosure ac1 :stage "executing 2")

12 :v (equal st "exiting for (1;2;3)4")



172 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML

13 :v (equal st "exiting for(var1 ;2;3)4")

14 :exit (update-eval-aclosure ac1 :stage "executing 3")

15 :v (equal st "exiting switch (1)2")

16 :v (equal st "exiting {1}")

17 :exit (pop-aclosure ac) (push-aclosure ac)

18 (eval-aclosure ac1)

19 :do (pop-aclosure ac) (eval-aclosure ac))))

Но при этом имеется несколько отличий для этого оператора.

Во-первых, для стадии "exiting for(var1;2;3)4" не нужно восстанавливать старые

ячейки памяти для переменных, так как мы не выходим из оператора for.

Во-вторых, стадия "exiting switch(1)2" обрабатывается также, как и завершающая

стадия для блока, поскольку передача управления продолжается.

В-третьих, для стадий, связанных с завершением операторов итерации управление пе-

редается на соответствующие стадии этих операторов, с которых их выполнение продол-

жается.

Оператор goto. Операционная семантика оператора goto задается следующим обра-

зом:

1 (aclosure ac :attribute "opsem" :type "goto1"

2 :p (pop-aclosure ac) ac1 :nmatch

3 :v (null ac1) T :exit (error ac "goto1")

4 :do (match :ap ac1 "stage" st :do (nmatch

5 :v (equal st "exiting 1(2)")

6 :exit (error ac "goto")

7 :v (equal st "exiting for(var1 ;2;3)4") T

8 :v (equal st "exiting switch (1)2") T

9 :exit (push-aclosure ac) (eval-aclosure ac1)

10 :v (equal st "exiting {1}") T

11 :exit (match :ap i 1 lab :ap ac1 "instance" i1

12 :ap i1 "label position" lp

13 :v (member lab (attributes lp)) T

14 :do (match :ap i1 2 sts :ap (aget lp lab) k



System Informatics (Системная информатика), No. 29 (2025) 173

15 :do (push-aclosure ac1)

16 (clear-update-eval-aclosure ac1

17 :stage "iteration" :av "current" (+ k 1)

18 :av "bound" (length sts)

19 :av "statements" sts))

20 :exit (push-aclosure ac) (eval-aclosure ac1))

21 :do (eval-aclosure ac))))

Для стадий "exiting for(var1;2;3)4" и "exiting switch(1)2" (строки 7 и 8) передача

управления сопровождается восстановлением старых значений переменных.

Для стадии завершения блока (строка 10) в строке 11 в параметрах lab и i1 сохраня-

ются метка оператора goto и блок, до конца которого произошла передача управления,

а в строке 12 в параметре lp сохраняется отображение меток, которые встречаются в

операторе блока на верхнем уровне, в их позиции в списке операторов блока.

В строке 13 выполняется проверка, принадлежит ли метка lab меткам, которые встре-

чаются в операторе блока на верхнем уровне.

Если проверка выполняется (строка 14), то параметрам sts и k присваиваются список

операторов блока и позиция метки lab в этом списке. Затем запускается выполнение бло-

ка с оператора в k + 1 позиции. Это делается на стадии "iteration" вычисления блока.

Контекст вычисления атрибута "opsem" на этой стадии дополнительно включает атри-

буты "current", "bound" и "statements", хранящие позицию вычисляемого в текущий

момент оператора из списка операторов блока, число операторов в списке и сам список,

соответственно.

Если проверка не выполняется (строка 20), то восстанавливаются старые ячейки па-

мяти для переменных, определенных в блоке, блок завершается и передача управления

продолжается.

Оператор return без аргумента. Операционная семантика этого оператора проще,

чем предыдущих:

1 (aclosure ac :attribute "opsem" :type "return" :match

2 :p (pop-aclosure ac) ac1 :v (not (null ac1)) ac1

3 :do (match :ap ac1 "stage" st :do (nmatch

4 :v (equal st "exiting for(var1 ;2;3)4") T



174 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML

5 :v (equal st "exiting switch (1)2") T

6 :v (equal st "exiting {1}") T

7 :exit (push-aclosure ac) (eval-aclosure ac1)

8 :av (equal st "exiting 1(2)") T

9 :exit (eval-aclosure ac1)

10 :do (eval-aclosure ac)))

11 :exit (error ac "return"))

Для случаев, представленных в строках 4-6 также происходит восстановление старых

ячеек памяти для переменных в строке 7 с продолжением передачи управления.

Единственный случай, когда передача управления завершается – это выход из вызова

функции (строка 8).

Оператор return с аргументом. Операционная семантика для оператора return, воз-

вращающего значение, разбивается на несколько стадий.

Для начальной стадии (она всегда имеет имя nil) имеем следующее определение:

1 (aclosure ac :attribute "opsem" :type "return1" :instance i :do

2 (update-push-aclosure ac "stage" "storing return value")

3 (clear-update-eval-aclosure ac "instance" (aget i 1)))

В строке 2 в стек окружения откладывается стадия "storing return value", которая

потом перехватит возвращаемое функцией значение и передаст его за пределы вызова

функции.

В строке 3 запускается вычисление выражения, связанного с оператором return через

атрибут 1. Заметим, что если при вычислении выражение произойдет исключительная

ситуация (например, будет послан сигнал в Си), то отложенная стадия "storing return

value" не будет вычисляться, так как будет удалена из стека механизмом просачивания

исключительной ситуации подобно тому, как просачиваются операторы передачи управ-

ления.

Стадия "storing return value" определяется следующим образом:

1 (aclosure ac :attribute "opsem" :type "return1"

2 :stage "storing return value" :value v :do

3 (update-eval-aclosure ac :stage "propagation"



System Informatics (Системная информатика), No. 29 (2025) 175

4 :av "return value" v))

В строке 2 в параметре v сохраняется вычисленное значение выражения, связанного с опе-

ратором return. В строках 3-4 запускается стадия "propagation", которая просачивает

это значение до выхода из вызова функции.

Стадия "propagation" определяется в основном аналогично единственной стадии опе-

ратора return без аргумента:

1 (aclosure ac :attribute "opsem" :type "return1"

2 :stage "propagation" :match

3 :p (pop-aclosure ac) ac1 :v (not (null ac1)) ac1

4 :do (match :ap ac1 "stage" st :do (nmatch

5 :v (equal st "exiting for(var1 ;2;3)4") T

6 :v (equal st "exiting switch (1)2") T

7 :v (equal st "exiting {1}") T

8 :exit (push-aclosure ac) (eval-aclosure ac1)

9 :av (equal st "exiting 1(2)") T

10 :exit

11 (update-push-aclosure ac :stage "returning value")

12 (eval-aclosure ac1)

13 :do (eval-aclosure ac)))

14 :exit (error ac "return1"))

Единственное отличие заключается в том, что после выхода из вызова функции (стро-

ка 12) выполняется еще одна стадия "returning value" оператора goto, которая делает

значение выражения последним вычисленным значением, помещая его в атрибут value

текущего агента.

Операционная семантика этой последней стадии выполнения оператора goto опреде-

ляется следующим образом:

1 (aclosure ac :attribute "opsem" :type "return1"

2 :stage "returning value" :do (aget ac "return value"))

Эта стадия просто возвращает значение атрибута "return value" из контекста вычисле-

ния атрибута opsem в качестве значения этого атрибута.



176 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML

8. Операционная семантика моделей операторов, связанных с

операторами передачи управления

Выполнение оператора switch разбивается на 8 стадий, каждая из которых моделиру-

ет отдельный аспект его выполнения: сохранение контекста, вычисление управляющего

выражения, сопоставление меток (несколько стадий) и восстановление окружения. Ниже

приведено формальное описание этих стадий на языке ABML.

На нулевой стадии осуществляется переход к стадии "entering switch(1)2" (строка

2), которая перед выполнением оператора switch сохраняет ячейки памяти, связанные с

переменными, объявляемыми в этом операторе на верхнем уровне:

1 (aclosure ac :attribute "opsem" :type "switch (1)2" :do

2 (update-eval-aclosure ac :stage "entering switch (1)2"))

Cтадия "entering switch(1)2" моделируется следующим образом:

1 (aclosure ac :attribute "opsem" :type "switch (1)2"

2 :stage "entering switch (1)2" :instance i :agent a

3 :ap i "variables" vars :ap (mo) varlocs :do

4 (update-push-aclosure ac :stage "executing 1")

5 (dolist (var vars varlocs)

6 (aset varlocs var (aget a "location" var))))

В строке 3 выполняется присваивание параметру vars списка переменных, объявленных

на верхнем уровне, и инициализация параметра varlocs пустым изменяемым объектом.

В строке 4 откладывается в стек выполнение стадии "executing 1", которое вычисляет

управляющее выражение оператора switch, хранящееся в атрибуте 1.

После выполнения строк 5-6 параметр varlocs хранит отображение переменных из

списка vars в ячейки памяти, связанные с ними до начала выполнения оператора switch.

Значение этого параметра возвращается в качестве значения атрибутного замыкания.

Стадия "executing 1" определяется следующим образом:

1 (aclosure ac :attribute "opsem" :type "switch (1)2"

2 :stage "executing 1" :instance i :value v :do

3 (update-push-aclosure ac

4 :stage "exiting switch (1)2"



System Informatics (Системная информатика), No. 29 (2025) 177

5 :av "variable context" v)

6 (update-push-aclosure ac :stage "executing 2")

7 (update-eval-aclosure ac :instance (aget i 1)))

В строке 2 в параметре v сохраняется значение переменной varlocs, вычисленной на

предыдущей стадии.

После выполнения строк 3-5 в стек окружения сохраняется стадия

"exiting switch(1)2", которая восстанавливает старые ячейки памяти, связанные с пе-

ременными, при завершении выполнения оператора switch.

В строке 6 в стек сохраняется стадия "exiting switch(1)2", отвечающая за выполне-

ния тела оператора switch.

В строке 7 вычисляется управляющее выражение оператора switch.

Операционная семантика стадии "executing 2" определяется следующим образом:

1 (aclosure ac :attribute "opsem" :type "switch (1)2"

2 :stage "executing 2" :instance i :agent a :value v

3 :ap i 2 sts :do

4 (update-eval-aclosure ac :stage "nomatch"

5 :av "current" 0 :av "bound" (length sts)

6 :av "statements" sts :av "pattern" v))

В строке 2 в параметре v сохраняется значение управляющего выражения, вычисленного

на предыдущей стадии.

В строке 2 в параметре sts сохраняется список операторов, составляющих тело опера-

тора switch.

Строки 4-6 запускают выполнение стадии "nomatch", которая осуществляет последова-

тельный просмотр операторов списка в случае, если еще не найдено сопоставление с case-

меткой. Эта стадия использует параметры "current", "bound", "statements" и "pattern",

хранящие позицию текущего оператора, число операторов в списке, список операторов и

вычисленное значение управляющего выражения.

Стадия "nomatch" определяется следующим образом:

1 (aclosure ac :attribute "opsem" :type "switch (1)2"

2 :stage "nomatch" :ap ac "current" j :ap ac "bound" k

3 :ap ac "statements" sts :ap "pattern" p :match



178 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML

4 :v (< j k) T :p (nth j sts) st :do

5 (nmatch

6 :v (is-instance st "case1") T

7 :exit (match :v (= (aget st 1) p) T

8 :do (update-eval-aclosure ac :stage "match"

9 :av "current" (+ j 1))

10 :exit (update-eval-aclosure ac

11 :av "current" (+ j 1)))

12 :v (is-instance st "default") T

13 :exit (update-eval-aclosure ac :stage "match"

14 :av "current" (+ j 1))

15 :do (update-eval-aclosure ac :av "current" (+ j 1))))

В строке 4 выполняется проверка перебраны ли все операторы из списка. Если да, то

стадия завершается. Также в этой строке параметру st присваивается текущий оператор

в качестве значения.

В строке 6 рассмотрен случай, когда текущий оператор является case-оператором. В

этом случае в строке 7 выполняется проверка, совпадает ли метка case-оператора со зна-

чением управляющего выражения. Если совпадает, то в строках 8-11 выполняется переход

к стадии "match", которая продолжает проход по операторам списка, зная, что сопостав-

ление уже произошло.

В строке 12 рассмотрен случай, когда текущий оператор является default-оператором.

В этом случае также выполняется переход к стадии "match".

В строке 15 рассмотрен случай, когда текущий оператор не является ни case-оператором,

ни default-оператором.

Стадия "nomatch" задается следующим атрибутным замыканием:

1 (aclosure ac :attribute "opsem" :type "switch (1)2"

2 :stage "match" :ap ac "current" j :ap ac "bound" k

3 :ap ac "statements" sts :match

4 :v (< j k) :do

5 (update-push-aclosure ac :av "current" (+ j 1))

6 (clear-update-eval-aclosure ac :instance (nth j sts)))



System Informatics (Системная информатика), No. 29 (2025) 179

В строке 6 выполняется текущий оператор, а в строке 5 осуществляется переход к следу-

ющему оператору.

И последняя стадия "exiting switch(1)2" определяется следующим образом:

1 (aclosure ac :attribute "opsem" :type "switch (1)2"

2 :stage "exiting switch (1)2" :agent a

3 :ap "variable context" varlocs :do

4 (dolist (var (attributes varlocs))

5 (aset a "location" var (aget varlocs var))))

В строке 3 в параметре varlocs сохраняется старое отображение переменных в связанные

с ними ячейки памяти.

При выполнении строк 4-5 эти старые связи переменных и ячеек памяти становятся

актуальными и сохраняются в текущем агенте.

Заметим, что при определении операционной семантики оператора switch рассматри-

валось только нормальное последовательное выполнение этого оператора. Это справедли-

во и для других операторов. Этого достаточно, поскольку распространение (propagation)

и обработка исключительных ситуаций обеспечивается операторами, связанными с по-

рождением таких ситуаций (операторами передачи управления, операторами порождения

исключений и т. п.).

9. Родственные работы

Исследования в области формальной семантики языков программирования имеют дли-

тельную историю и охватывают широкий спектр подходов – от классических структурной

операционной семантики и операционной семантики малого шага до денотационных, ак-

сиоматических и гибридных формализаций [26, 45]. В последние годы наблюдается устой-

чивый интерес к развитию формальных моделей семантики промышленных языков про-

граммирования, прежде всего языка C и C-подобных языков, что обусловлено их широким

применением в системном программировании и критически важных программных компо-

нентах [18, 21, 36].

Операционная семантика языка C и его подмножеств. Язык C традиционно рас-

сматривается как один из наиболее сложных объектов для формальной семантики из-за

низкоуровневой модели памяти и неопределённого поведения. Формальные семантики C и



180 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML

его подмножеств (например, Clight в CompCert) стали предметом активного исследования,

как в классических работах по механизации семантики [12], так и в современных обзорах

и улучшениях семантических моделей [47, 60]. Верифицированный компилятор CompCert

является краеугольным камнем исследований корректности компиляции C-программ на

промышленном уровне [18, 34] и продолжает развиваться [32, 54]. Дополнительные про-

екты, такие как Checked C, предлагают более безопасные расширения C с формальными

семантическими моделями [1, 14, 15, 22, 35]. Семантики C в виде операционных семейств

используются для доказательства корректности оптимизаций и анализа поведения в слу-

чае неопределенного поведения [48, 55].

Формальные семантики C-подобных языков. Помимо C, значительное число ис-

следований посвящено семантике C-подобных языков. Например, для Rust разработаны

исчерпывающие операционные семантики, включая формальные модели владения и за-

имствования [5, 27, 59]. LLVM IR как объединенное промежуточное представление также

изучается с точки зрения формальных семантик [10, 23, 33, 37, 61, 61], что важно для

семантики оптимизаций и трансформаций.

Онтологические и ориентированные на знания подходы к семантике. Исполь-

зование онтологий и моделей знания становится всё более распространённым в семанти-

ческих исследованиях. Онтологии формализуют концепты, отношения и правила в пред-

метной области, что улучшает семантическую интерпретацию сложных систем [19, 24].

Хотя большинство работ по онтологиям фокусируются на семантике естественных язы-

ков или интеграции данных, методы онтологического моделирования также применялись

для описания программных систем и представления семантики языков программирования

[2, 41, 42].

Современные подходы к формальным семантикам взаимодействуют с логикой и по-

строением онтологий [25, 52], обеспечивая основу для семантической интеграции и дока-

зательств верификации.

Некоторые подходы используют методы онтологий совместно с логическими выводами

и переносом знаний для динамических систем, что близко к концепции онтологической

семантики исполнения [3, 7, 8, 28].



System Informatics (Системная информатика), No. 29 (2025) 181

Атрибутные грамматики и расширенные модели исполнения Исследования ат-

рибутных грамматик расширили классические синтаксические грамматики, включая се-

мантические атрибуты и контекстно-чувствительные преобразования [16, 40, 50]. Эти мо-

дели стали основой для дескриптивных семантик, где семантика операций определяется

не только формальными правилами, но и дополнительной структурной информацией о

контексте исполнения [13, 40, 50].

Атрибутные грамматики остаются важным инструментом для определения семантики,

особенно в расширенных моделях исполнения, где семантика контекста учитывается более

гибко [6, 29, 55].

Современные расширения включают поддержку динамического контекста, агентных

систем и взаимодействия с внешней средой [13, 51, 53].

Связь с задачами анализа и верификации программ. Формальные семантики ак-

тивно используются в статическом анализе, доказательстве корректности и проверке оп-

тимизаций [4, 9, 11, 17, 31, 38, 39, 43, 49, 57, 58, 62].

Семантика LLVM IR, а также моделей C и Rust, обеспечивает основу для автоматиче-

ской верификации и анализа системного программного обеспечения [10, 20, 56].

Онтологическая операционная семантика обещает более лёгкую интеграцию с система-

ми логического вывода, поскольку онтологии являются стандартным формализмом для

представления знаний и могут напрямую связываться с автоматизированными анализа-

торами [30, 44, 46].

Сравнение с настоящей работой. В отличие от большинства исследований, где се-

мантика операторов передачи управления задаётся в рамках фиксированной модели со-

стояний, настоящая работа предлагает интерпретацию операционной семантики как дина-

мики онтологических моделей, обеспечивая модульность и концептуальную целостность

спецификации. Это позволяет естественно выразить нелокальную передачу управления и

восстановление контекста исполнения, что остаётся сложной задачей для традиционных

подходов.

10. Заключение

В данной работе был предложен онтологический подход к заданию операционной се-

мантики операторов передачи управления языка C с использованием предметно-ориенти-



182 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML

рованного языка ABML. Показано, что системы переходов, традиционно применяемые

для определения операционной семантики, естественным образом интерпретируются как

дискретные динамические системы и могут быть формализованы в терминах онтологиче-

ского моделирования.

В рамках работы была построена онтология операторов передачи управления, охва-

тывающая операторы goto, break, continue и return, а также онтологии конструкций, ре-

агирующих на передачу управления, включая помеченные операторы, блоки и оператор

switch. Для этих онтологических моделей была задана операционная семантика в виде

атрибутных замыканий относительно атрибута opsem, вычисляемых в контексте агентов

и окружения.

Существенным результатом является адаптация языка ABML к задачам задания се-

мантики языков программирования. Уточнение понятия атрибутного замыкания, введе-

ние стадий вычисления и явное моделирование контекста выполнения позволили выразить

сложные аспекты семантики, такие как нелокальная передача управления и восстановле-

ние состояния после завершения операторов.

Предложенный подход обладает рядом преимуществ по сравнению с традиционными

формализациями. Он обеспечивает модульность спецификаций, возможность повторного

использования онтологических моделей, а также естественную расширяемость при до-

бавлении новых конструкций языка. Кроме того, онтологическое представление создает

предпосылки для интеграции с инструментами анализа знаний, логического вывода и ве-

рификации.

В дальнейшем представляется перспективным расширение разработанной модели на

другие конструкции языка C, включая выражения, функции и механизмы обработки ис-

ключений, а также применение подхода к другим языкам программирования. Отдельный

интерес представляет использование онтологической операционной семантики для ана-

лиза свойств программ, построения интерпретаторов и разработки формальных средств

верификации.

Список литературы

1. Achieving safety incrementally with Checked C / Ruef A., Lampropoulos L., Sweet I.,

Tarditi D., and Hicks M. // International Conference on Principles of Security and Trust /

Springer International Publishing Cham. — 2019. — P. 76–98.



System Informatics (Системная информатика), No. 29 (2025) 183

2. Adamo G., Villa F. Ontology of Descriptions and Observations for Integrated Modelling

(ODO-IM). — 2024.

3. Angele J., Kifer M., Lausen G. Ontologies in F-logic // Handbook on ontologies. — Springer,

2009. — P. 45–70.

4. Appel A. W. Program logics for certified compilers. — Cambridge University Press, 2014.

5. Atkey R. e. a. Semantic Foundations for Rust Ownership // Journal of Functional

Programming. — 2022.

6. Author A. Advanced Attribute Grammars: Contextual Semantics // Journal of Formal

Languages. — 2021.

7. Babaei Giglou H., D’Souza J., Auer S. LLMs4OL: Large language models for ontology

learning // International Semantic Web Conference / Springer. — 2023. — P. 408–427.

8. Balaban M. The F-logic approach for description languages // Annals of Mathematics and

Artificial Intelligence. — 1995. — Vol. 15, no. 1. — P. 19–60.

9. Barroso P., Pereira M., Ravara A. Leroy and Blazy Were Right: Their Memory Model

Soundness Proof // Verified Software. Theories, Tools and Experiments.: 14th International

Conference, VSTTE 2022, Trento, Italy, October 17–18, 2022, Revised Selected Papers /

Springer Nature. — 2023. — Vol. 13800. — P. 20.

10. Beck C., Chen H., Zdancewic S. Vellvm: Formalizing the Informal LLVM: (Experience

Report) // NASA Formal Methods Symposium / Springer. — 2025. — P. 91–99.

11. Beringer L., Appel A. W. Abstraction and subsumption in modular verification of C

programs // Formal Methods in System Design. — 2021. — Vol. 58, no. 1. — P. 322–345.

12. Blazy S., Leroy X. Mechanized Semantics for the Clight Subset of the C Language // Journal

of Automated Reasoning. — 2009. — Vol. 43. — P. 263–288.

13. Bridging MDE and AI: a systematic review of domain-specific languages and model-driven

practices in AI software systems engineering / Rädler S., Berardinelli L., Winter K.,

Rahimi A., and Rinderle-Ma S. // Software and Systems Modeling. — 2025. — Vol. 24,

no. 2. — P. 445–469.

14. Checked C: Making C safe by extension / Elliott A. S., Ruef A., Hicks M., and Tarditi D. //

2018 IEEE Cybersecurity Development (SecDev) / IEEE. — 2018. — P. 53–60.

15. Checkedcbox: Type directed program partitioning with checked c for incremental spatial

memory safety / Li L., Bhattar A., Chang L., Zhu M., and Machiry A. // arXiv preprint

arXiv:2302.01811. — 2023.

https://doi.org/10.1007/s10817-009-9141-2
https://doi.org/10.1007/s10817-009-9141-2


184 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML

16. Ciccaglione M., Caliandro P., Pellegrini A. Tahr: The Generative Attribute Grammar

Framework // arXiv preprint arXiv:2512.01872. — 2025.

17. Cohen J. M., Wang Q., Appel A. W. Verified erasure correction in Coq with MathComp

and VST // International Conference on Computer Aided Verification / Springer. — 2022. —

P. 272–292.

18. CompCert: A Formally Verified C Compiler. — https://compcert.org. — 2025.

19. The computer science ontology: A comprehensive automatically-generated taxonomy of

research areas / Salatino A. A., Thanapalasingam T., Mannocci A., Birukou A., Osborne F.,

and Motta E. // Data Intelligence. — 2020. — Vol. 2, no. 3. — P. 379–416.

20. Crux, a precise verifier for rust and other languages / Pernsteiner S., Diatchki I. S.,

Dockins R., Dodds M., Hendrix J., Ravich T., Redmond P., Scott R., and Tomb A. //

arXiv preprint arXiv:2410.18280. — 2024.

21. A Formal Semantics of C with Applications : Rep. / Technical Report ; executor: Ellison C.,

Ros,u G. : 2010. — Access mode: https://iris-project.org/pdfs/2025-icfp-osiris.

pdf.

22. A formal model of Checked C / Li L., Liu Y., Postol D., Lampropoulos L., Van Horn D.,

and Hicks M. // Journal of Computer Security. — 2023. — Vol. 31, no. 5. — P. 581–614.

23. Formalizing the LLVM intermediate representation for verified program transformations /

Zhao J., Nagarakatte S., Martin M. M., and Zdancewic S. // Proceedings of the 39th annual

ACM SIGPLAN-SIGACT symposium on Principles of programming languages. — 2012. —

P. 427–440.

24. Guizzardi G., Guarino N. Explanation, semantics, and ontology // Data & Knowledge

Engineering. — 2024. — Vol. 153. — P. 102325.

25. Harper R. Semantic Foundations for Programming Languages. — MIT Press, 2023.

26. Hoare C. A. R., He J. Unifying Theories of Programming. — Prentice Hall, 1998.

27. Kan S. e. a. An Executable Operational Semantics for Rust // arXiv preprint

arXiv:1804.07608. — 2018. — Access mode: https://arxiv.org/abs/1804.07608.

28. Kifer M., Lausen G., Wu J. Logical foundations of object-oriented and frame-based

languages // Journal of the ACM (JACM). — 1995. — Vol. 42, no. 4. — P. 741–843.

29. Knuth D. E. Semantics of Context-Free Languages // Mathematical Systems Theory. —

1968.

30. Koopmann P. Explaining Reasoning Results for Description Logic Ontologies // Joint

https://compcert.org
https://iris-project.org/pdfs/2025-icfp-osiris.pdf
https://iris-project.org/pdfs/2025-icfp-osiris.pdf
https://arxiv.org/abs/1804.07608


System Informatics (Системная информатика), No. 29 (2025) 185

Proceedings of the 20th and 21st Reasoning Web Summer Schools (RW 2024 & RW 2025) /

Schloss Dagstuhl–Leibniz-Zentrum für Informatik. — 2025. — P. 6–1.

31. Krebbers R. A formal C memory model for separation logic // Journal of Automated

Reasoning. — 2016. — Vol. 57, no. 4. — P. 319–387.

32. Krebbers R., Leroy X., Wiedijk F. Formal C semantics: CompCert and the C standard //

International Conference on Interactive Theorem Proving / Springer. — 2014. — P. 543–548.

33. Lee J. A Validated Semantics for LLVM IR. — PhD thesis, IST UT Lisbon. — 2024. — Access

mode: https://web.ist.utl.pt/nuno.lopes/students/Juneyoung_Lee_PhD.pdf.

34. Leroy X. Formal certification of a compiler back-end or: programming a compiler with a

proof assistant // Conference record of the 33rd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages. — 2006. — P. 42–54.

35. Leroy X. Formal verification of a realistic compiler // Communications of the ACM. —

2009. — Vol. 52, no. 7. — P. 107–115.

36. Leroy X., Blazy S. From Mechanized Semantics to Verified Compilation: the Clight

Semantics of CompCert // FASE 2024. — Springer. — 2024.

37. Li L., Gunter E. L. K-LLVM: a relatively complete semantics of LLVM IR // 34th European

Conference on Object-Oriented Programming (ECOOP 2020) / Schloss Dagstuhl–Leibniz-

Zentrum für Informatik. — 2020. — P. 7–1.

38. Mansky W. Bringing Iris into the Verified Software Toolchain // arXiv preprint

arXiv:2207.06574. — 2022.

39. Mansky W., Du K. An Iris instance for verifying CompCert C programs // Proceedings of

the ACM on Programming Languages. — 2024. — Vol. 8, no. POPL. — P. 148–174.

40. Michaelson D., Nadathur G., Van Wyk E. A modular approach to metatheoretic reasoning

for extensible languages // ACM Transactions on Programming Languages and Systems. —

2025. — Vol. 47, no. 3. — P. 1–56.

41. Na Nongkhai L., Wang J., Mendori T. Development and evaluation of adaptive learning

support system based on ontology of multiple programming languages // Education

Sciences. — 2025. — Vol. 15, no. 6. — P. 724.

42. Nongkhai L. N., Wang J., Mendori T. Developing an Ontology of Multiple Programming

Languages from the Perspective of Computational Thinking Education. // International

Association for Development of the Information Society. — 2022.

43. Park S. H., Pai R., Melham T. A formal CHERI-C semantics for verification // International

https://web.ist.utl.pt/nuno.lopes/students/Juneyoung_Lee_PhD.pdf


186 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML

Conference on Tools and Algorithms for the Construction and Analysis of Systems /

Springer. — 2023. — P. 549–568.

44. Pileggi S. F. Ontology in hybrid intelligence: A concise literature review // Future

Internet. — 2024. — Vol. 16, no. 8. — P. 268.

45. Plotkin G. D. A Structural Approach to Operational Semantics. — University of Edinburgh,

1970.

46. Qureshi H. M., Faber W. Evaluating Datalog Tools for Meta-reasoning over OWL 2 QL //

Theory and Practice of Logic Programming. — 2024. — Vol. 24, no. 2. — P. 368–393.

47. Ramel D. Modernizing C for Security: the Checked C Initiative // ADTmag. — 2016.

48. Rasband V. e. a. Formalizing Undefined Behavior in C // ACM SIGPLAN Notices. — 2020.

49. RefinedC: automating the foundational verification of C code with refined ownership types /

Sammler M., Lepigre R., Krebbers R., Memarian K., Dreyer D., and Garg D. // Proceedings

of the 42nd ACM SIGPLAN International Conference on Programming Language Design

and Implementation. — 2021. — P. 158–174.

50. Ringo N., Kramer L., Van Wyk E. Nanopass attribute grammars // Proceedings of the 16th

ACM SIGPLAN International Conference on Software Language Engineering. — 2023. —

P. 70–83.

51. The rise of agentic AI: A review of definitions, frameworks, architectures, applications,

evaluation metrics, and challenges / Bandi A., Kongari B., Naguru R., Pasnoor S., and

Vilipala S. V. // Future Internet. — 2025. — Vol. 17, no. 9. — P. 404.

52. Ros,u G., Serbanuta T. K Framework and Formal Semantics // Journal of Functional

Programming. — 2010.

53. A survey of ai agent protocols / Yang Y., Chai H., Song Y., Qi S., Wen M., Li N., Liao J.,

Hu H., Lin J., Chang G., et al. // arXiv preprint arXiv:2504.16736. — 2025.

54. Thibault J. e. a. SECOMP: Formally Secure Compilation of Compartmentalized C

Programs // arXiv preprint arXiv:2401.16277. — 2024. — Access mode: https://arxiv.

org/abs/2401.16277.

55. Towler C. e. a. Operational Semantics for Low-Level Languages // Journal of Programming

Languages. — 2023.

56. Van Oorschot D., Huisman M., Şakar Ö. First steps towards deductive verification of LLVM

IR // International Conference on Fundamental Approaches to Software Engineering /

Springer. — 2024. — P. 290–303.

https://arxiv.org/abs/2401.16277
https://arxiv.org/abs/2401.16277


System Informatics (Системная информатика), No. 29 (2025) 187

57. Vst-a: A foundationally sound annotation verifier / Zhou L., Qin J., Wang Q., Appel A. W.,

and Cao Q. // Proceedings of the ACM on Programming Languages. — 2024. — Vol. 8, no.

POPL. — P. 2069–2098.

58. VST-Floyd: A separation logic tool to verify correctness of C programs / Cao Q., Beringer L.,

Gruetter S., Dodds J., and Appel A. W. // Journal of Automated Reasoning. — 2018. —

Vol. 61, no. 1. — P. 367–422.

59. Wang F. e. a. KRust: A Formal Executable Semantics of Rust // arXiv preprint

arXiv:1804.10806. — 2018. — Access mode: https://arxiv.org/abs/1804.10806.

60. Wils S., Jacobs B. Certifying C Program Correctness with Respect to CompCert with

VeriFast // arXiv preprint arXiv:2110.11034. — 2021. — Access mode: https://arxiv.org/

abs/2110.11034.

61. Zakowski Y. e. a. Modular, Compositional, and Executable Formal Semantics for LLVM

IR. — 2021. — Access mode: https://dl.acm.org/doi/10.1145/3473572.

62. Zhao Y., Sanan D. Rely-guarantee Reasoning about Concurrent Memory Management:

Correctness, Safety and Security // arXiv preprint arXiv:2309.09997. — 2023.

63. Ануреев И.С. Язык спецификации дискретных динамических систем, ориентирован-

ных на знания, структурированные в онтологиях // Системная информатика. —

2025. — no. 29. — P. 137–158.

https://arxiv.org/abs/1804.10806
https://arxiv.org/abs/2110.11034
https://arxiv.org/abs/2110.11034
https://dl.acm.org/doi/10.1145/3473572


188 Ануреев И.С. Операционная семантика операторов передачи управления в языке C на языке ABML


	Введение
	Адаптация ABML для разработки операционных семантик
	Этапы построения операционной семантики на языке ABML
	Онтология операторов передачи управления
	Онтология операторов, связанных с операторами передачи управления
	Модели агентов и окружения
	Операционная семантика моделей операторов передачи управления
	Операционная семантика моделей операторов, связанных с операторами передачи управления
	Родственные работы
	Заключение

