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Finite state transducers over semigroups can be regarded as a formal model of sequential

reactive programs. In some cases verification of such programs can be reduced to minimiza-

tion and equivalence checking problems for this model of computation. To solve efficiently

these problems certain requirements are imposed on a semigroup these transducers operate

on. Minimization of a transducer over a semigroup is performed in three stages: at first

the greatest common left-divisors are computed for all states of a transducer, next a trans-

ducer is brought to a reduced form by pulling all such divisors ”upstream”, and finally a

minimization algorithm for finite state automata is applied to the reduced transducer. As

a byproduct of this minimization technique we obtain an equivalence checking procedure

for transducers operating on certain classes of semigroups.
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1. Introduction

Finite state transducers extend finite state automata to model functions on strings or lists.

That is why they are used in fields as diverse as computational linguistics [9] and model-based

testing [1, 18]. In software engineering transducers provide a suitable formal model for various

device drivers for manipulating with strings, transforming images, filtering dataflows. Trans-

ducers also found a usage in regular model checking of parameterized distributed systems. In

some formal models of these systems configurations are modeled as words over finite alphabet

and a transition relation is specified by a finite state transducers [21]. The more succinct is the

presentation of these transducers, the more efficient are regular model checking algorithms. The

authors of [17] proposed models of communication protocols as regular transducers operating

on bit strings and set up the verification problem as equivalence checking between the protocol

transducer and the specification transducer. These considerations show that algorithms for

building compositions of transducers, checking equivalence, reducing their state space consider-

ably enhance the effectiveness of designing, verification and maintenance of software routines.
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Transducers can take on the role of simple models of sequential reactive programs. These

programs operate in the interaction with the environment permanently receiving data (requests)

from it. At receiving a piece of data such program performs a sequence of actions. When

certain control points are achieved a program outputs the current results of computation as

a response. Since different sequences of actions may yield the same result we need a more

sensitive interpretation of the outputs than just words in some alphabet. Basic actions of a

program are interpreted as generating elements of an appropriate semigroup, and the result of

computation is a composition of actions performed by the program.

Imagine, for example, that a radio-controlled robot moves on the earth surface. It can make

one step moves in any of 4 directions N,E, S,W . When such robot receives a control signal

syg in a state q it must choose and carry out a sequence of steps (say, N,N,W, S), and enter

to the next state q′. At some distinguished state qfin robot reports its current location. The

most simple model of computation which is suitable for designing such a robot and analyzing

its behaviour is non-deterministic finite state transducer operating on free Abelian group of

rank 2. These considerations give rise to the concept of a transducer which has some finitely

generated semigroup S for the set of outputs.

In this paper we study minimization and equivalence checking problems for finite state trans-

ducers operating on certain semigroups. The study of these problems for classical transducers

over words began in the early 60s. First, it was shown that the equivalence checking problem

is undecidable for non-deterministic transducers [8]. But the undecidability displays itself only

in the case of unbounded transduction when an input word may have arbitrary many images.

At the next stage bound-valued transducers were studied. The equivalence checking problem

was shown to be decidable for deterministic [3], functional transducers [2, 15], and k-valued

transducers [5, 20]. In a series of papers [12, 13, 16] a construction to decompose k-valued trans-

ducers into a sum of functional and unambiguous ones was developed and used for checking

k-valuedness and equivalence of finite state transducers over words. An alternative approach

which is applicable to a more wide class of transducers was introduced in [23]. It was shown

that the equivalence checking problem is decidable for k-valued transducers operating on any

semigroup S which is embeddable in a decidable group.

The minimization problem for finite state transducers over words was considered in [11], but

only in [10] an admissible solution to this problem was obtained. Later a minimization algorithm

proposed by Mohri was corrected and improved in [4, 14]. In [7] an attempt was made to adapt
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this result to weighted transducers. An alternative approach to this problem was suggested in

[24]: it was shown that minimization of finite state transducers operating on decidable groups

can be achieved through the using of equivalence checking algorithms developed in [23].

In this paper a minimization technique proposed by M. Mohri [10] is extended to cover the

case of finite state transducers operating on ordered semigroups. Minimization of a transducer

π over a semigroup S is performed in three stages. At the first stage for every state q we

compute the greatest common left-divisor GCD(π, q) of all those elements of S that are the

results of the runs of π beginning in q. At the next stage we pull all GCD(π, q) ”upstream”

to obtain such a transducer π′ that GCD(π′, q) for every state q is the neutral element of

S. A transducer enjoying this property can be minimized by considering its underlying finite

automaton only and by applying any minimization algorithm for finite automata (see, e.g.

[19]). As a byproduct of this minimization technique we obtain also an equivalence checking

procedure for transducers operating on S.

This work is supported by the Basic Research Program at the National Research University

Higher School of Economics in 2016 and by RFBR grants N 16-01-00546.

2. Transducers as models of sequential reactive systems

Let C and A be two finite sets. The elements of C are called signals ; they may be viewed as

abstractions of messages (control instructions, instrument readings, etc.) received by a reactive

system from its environment. Finite sequences of signals (words over alphabet C) are called

signal flows. As usual, the set of signal flows is denoted by C∗. We write uv for concatenation

of signal flows u and v.

The elements of A are called basic actions ; they may be viewed as abstractions of operations

(data processings, movements, etc.) performed by a reactive system in response to received

messages. Finite sequences of basic actions (words over A) are called compound actions.

Actions are interpreted over semigroups. Consider a semigroup (S, e, ◦) generated by the

set A, where e is the neutral element, and ◦ is a composition operation. The elements of S

may be regarded as data states. Every basic action a, a ∈ A, always terminates and when been

applied to a data state s, s ∈ S, yields the result s ◦ a. Every compound action g = a1a2 . . . ak

is interpreted as the composition a1 ◦ a2 ◦ · · · ◦ ak. In order to distinguish a compound action

g from its interpretation we denote the latter by [g]S and skip the index S when a semigroup

is clearly assumed from the context.
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A deterministic finite state transducer over a set of signals C and a set of basic actions A is

a labeled transition system π = (C,A, Q, q0, F, T, g0), where Q is a finite set of control states,

q0, q0 ∈ Q, is an initial state, F, F ⊆ Q is a subset of output states, T, T : Q×C → Q×A∗, is a

transition function, and g0, g0 ∈ A∗, is an initializing action. Every quadruple (q, c, q′, g) such

that T (q, c) = (q′, g) is called a transition which is depicted as q
c,g−→ q′. By the size |π| of a

transducer π we mean the number |Q| of its control states.

A run of π on a signal flow w = c1c2 . . . cn is a sequence of transitions

q
c1,g1−→ q1

c2,g2−→ q2
c3,g3−→ · · · cn,gn−→ q′ . (1)

We denote this run by q
w,h−→∗ q

′, where h = g1g2 . . . gn. If q is the initial state then the run is

called initial, and if q′ ∈ F then the run is called output. If a run is both initial and output

then it is called complete. When q
w,h−→∗ q is a complete run of π and the actions are interpreted

over a semigroup S the element [g0h] is called the result of the run.

Finite state transducers can be used as formal models of sequential reactive systems. At

the beginning of the computation a reactive system executes an initializing action g0. At each

step of its computation it receives a signal c from the environment and performs a transition

q
c,g−→ q′ by passing its control to a state q′ and executing an action g. When a system turns out

to be in an output state it displays an achieved result of its computation to an outside observer

and continues its interaction with the environment. A behaviour of such a reactive system is

completely specified by a partial function π : C∗ → S such that

π(w) =

[g0h], if there exists a complete run q
w,h−→∗ q

′ of π,

undefined, otherwise,

for every signal flow w.

Transducers π1 and π2 are S-equivalent (π1 ∼S π2 in symbols) iff π1(w) = π2(w) holds for

every signal flow w. A transducer π′ is called S-minimal if |π′| ≤ |π| holds for any S-equivalent

transducer π. The minimization problem for transducer over a semigroup S is to build, given

an arbitrary transducer π, a S-minimal transducer π′ such that π′ ∼S π.

With every transducer π = (C,A, Q, q0, F, T, g0) operating on a semigroup S one can asso-

ciate a deterministic finite state automaton Aπ = (C × S,Q, q0, F, φ) over a (possibly infinite)

alphabet of pairs C × S; its transition function φ : Q × (C × S) → Q is specified as follows:

φ(q, (c, s)) = q′ ⇐⇒ T (q, c) = (q′, g) ∧ s = [g]. Such an automaton takes at its input a finite
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sequence of pairs α = (c1, s1), (c2, s2), . . . , (cn, sn) and accepts it at reaching an output state q′.

Clearly, Aπ accepts α iff the transducer π has a complete run (1) such that [gi] = ci for every

i, 1 ≤ i ≤ n. Let L(Aπ) be the set of all sequences α, α ∈ (C×S)∗, accepted by Aπ. Transducers

π′ and π′′ are strongly equivalent on a semigroup S (in symbols π′ ≈S π′′) iff L(A′
π) = L(A′′

π).

It is easy to see that if transducers π′ and π′′ have the same initializing action (i.e. [g′0] = [g′′0 ])

and π′ ≈S π′′ then π1 ∼S π2. In general case the converse is not true. The key idea of our

minimization technique is that of finding, given a certain semigroup S, a subclass of reduced

transducers such that

1. for every transducer π one can effectively construct a reduced S-equivalent transducer π′

such that |π| = |π′|,

2. for any pair of reduced transducers π′ and π′′ it is true that π′ ∼S π′′ iff π′ ≈S π′′ and

[g′0] = [g′′0 ].

Then to minimize a transducer π one needs only to build an equivalent reduced transducer π′

and then apply any of the well-known techniques [19] for minimization of a deterministic finite

state automaton Aπ′ . This approach can be used also for equivalence checking of finite state

transducers operating on certain semigroups: to check whether π1 ∼S π2 it is sufficient to build

S-equivalent reduced transducers π′
1 and π′′

2 and then check the equivalence of deterministic

finite state automata Aπ′
1

and Aπ′
2
.

3. Ordered semigroups

In this section we will impose certain requirements on a semigroup S to solve efficiently the

minimization problem for transducers operating on such a semigroup.

Let a binary relation ≼S on S be defined as follows: s1 ≼S s2 ⇐⇒ ∃s : s1 ◦ s = s2. A

semigroup S is called ordered iff (S,≼S) is a partially ordered set. Sometimes we will skip the

underscore symbol S if it is clear from the context. Our first requirement is

Req1: (S,≼) is a well-founded lattice such that the greatest lower bound is effectively com-

putable for every pair of elements [h] and [g], where g, h ∈ A∗.

Denote by s1 ∨ s2 and s1 ∧ s2 the greatest lower bound and the least upper bound of elements

s1 and s2 respectively. Actually, s1 ∨ s2 is the greatest common left-divisor of s1 and s2, and

s1 ∧ s2 is the lowest common multiple of s1 and s2. From the definition of ≼ it follows that

s ◦ s1 ∨ s ◦ s2 = s ◦ (s1 ∨ s2). The neutral element e of S is the least element in (S,≼) but

this lattice may have no maximal elements. We add to S a new virtual element τ such that
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s ◦ τ = τ ◦ s = τ holds for any element s in S. Clearly, s ≼ τ holds for every s, s ∈ S. Let

Sτ = S ∪ {τ} Thus, if S meets the requirement Req1 then (Sτ ,≼) is a complete lattice. For

any subset S ′ of Sτ we write
∨

S ′ for the greatest lower bound of S ′.

Req2: There exists an algorithm for solving equations of the form [g] ◦X = [h] for every pair

of actions g, h ∈ A∗.

It is easy to see that if a semigroup S satisfies the requirements Req1 and Req2 then the word

problem "[g] ?
= [h]” is decidable in S.

A semigroup S is called left cancellative iff s ◦ s′ = s ◦ s′′ ⇒ s′ = s′′ holds for every triple

of elements s, s′, s′′. Our final requirement is

Req3: S is a left cancellative semigroup.

Many semigroups widely used in computer science, including free monoids, partially commuta-

tive monoids (traces) [6], a semigroup of conservative substitutions [22], etc. meet the require-

ments Req1–Req3 listed above.

4. Greatest common divisors

Our minimization algorithm comprises three stages. At the first stage it figures out for every

control state q the greatest common divisor of all results of all output runs that start in q.

A control state q of transducer π is useful if it is traversed by at least one complete run. It

easy to see that useless states do not affect the function π(·) and by deleting all useless states

with the incoming and outcoming transition we obtain an equivalent transducer π′. We will

assume without loss of generality that all control states of transducers are useful.

Let π be a finite state transducer such that Q = {q1, q2, . . . , qn}. Consider an arbitrary

control state qi of a transducer π and a set

S(π, qi) = {[h] : qi
w,h−→∗ qj, qj ∈ F} .

of results computed by the output runs started in the state qi. We say that the element

gcd(π, qi) =
∨
S(π, qi) is the greatest common divisor of the state qi and use a notation GCD(π)

for the tuple ⟨gcd(π, q1), gcd(π, q2), . . . , gcd(π, qn)⟩.

To compute the greatest common divisors of all control states of π we introduce an op-

erator Ψπ : Sn
τ → Sn

τ as follows. For every tuple ⟨s1, s2, . . . , sn⟩ in Sn
τ we assume that
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Ψπ(s1, s2, . . . , sn) = ⟨s′1, s′2, . . . , s′n⟩, where

s′i =

e, if qi is an output state,∨
{[g] ◦ sj : T (qi, c) = (qj, g), c ∈ C}, otherwise,

for every i, 1 ≤ i ≤ n.

The partial order ≼ can be extended on the set of tuples Sn
τ in the usual way:

⟨s1, s2, . . . , sn⟩ ≼ ⟨s′1, s′2, . . . , s′n⟩ ⇐⇒ ∀i : si ≼ s′i .

Proposition 1. If a semigroup S meets the requirement Req1 then Ψπ is monotone operator.

This proposition follows immediately from the definition of Ψ. Since Sτ is a complete

lattice, the operator Ψπ by Knaster-Tarsky theorem has the greatest fixed point gfp(Ψπ).

By Kleene theorem the greatest fixed point of Ψπ is the limit of the descending sequence

⊤ ≽S Ψπ(⊤) ≽S Ψπ(Ψπ(⊤)) ≽S . . . , where ⊤ = ⟨τ, τ, . . . , τ⟩. Since by Req1 the partially

ordered set (S,≼) is well-founded, Ψk
π(⊤) = Ψk+1

π (⊤) = gfp(Ψπ) holds eventually for some k.

Proposition 2. If a semigroup S meets the requirement Req1 then gfp(Ψπ) = GCD(π).

Proof. 1). If qi ∈ F then e ∈ S(π, qi) and, hence, gcd(π, qi) = e. If qi is not an output control

state then S(π, qi) =
∪
c∈C

{[g] ◦ [h] : T (qi, c) = (qj, g), h ∈ S(π, qj)}. Therefore,

gcd(π, qi) =
∨

{[g] ◦GCD(π, qj) : T (qi, c) = (qj, g), c ∈ C}

by left-distributivity of ◦ over ∨. Hence, GCD(π) is a fixed point of the operator Ψπ.

2). Suppose that gfp(Ψπ) = ⟨s′1, s′2, . . . , s′n⟩ and qi
w,h−→∗ qj is an arbitrary output run of π. It

could be shown by induction on the length of this run that s′i ≼ [h]. If si = sj then by definition

of Ψπ we have s′i = e ≼ [h] for any action h. Consider a case of a run qi
w,h−→∗ qj = qi

c,g−→ qk
w′,h′
−→∗

qj. Then by induction hypothesis and by definition of Ψπ we have s′i ≼ [g] ◦ s′k ≼ [g] ◦ [h′] = [h].

Therefore, s′i ≼ [h] holds for every [h] in S(π, qi). This implies that s′i ≼ gcd(π, qi) for every

i, 1 ≤ i ≤ n. Thus, gfp(Ψπ) ≤ GCD(π). 2

5. Reduced transducers

At the next stage our minimization algorithm brings a finite state transducer to a reduced

form. We say that a transducer π operating on a semigroup S which satisfies Req1 is reduced

iff GCD(π) = ⟨e, e, . . . , e⟩.
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Theorem 1. If a semigroup S meets requirements Req1–Req2 then every transducer π can

be effectively transformed into a reduced transducer π′ such that π ∼S π′ and |π| = |π′|.

Proof. Suppose that q1 is the initial control state of π. For an arbitrary transition qi
c,g−→ qj in

π consider an equation gcd(π, qi) ◦X = [g] ◦ gcd(qj). Since S(π, qi) ⊇ {[g] ◦ s : s ∈ S(π, qj)}, by

definition of GCD(π) we have gcd(π, qi) ≼ [g] ◦ gcd(π, qj). Hence, the equation above always

has a solution. By Req2 this solution X = g′ can be computed effectively. A transducer π′

is obtained from π by the replacement of every transition qi
c,g−→ qj with a transition qi

c,g′−→ qj

and by the replacement of the initializing action g0 of π with an initializing action g′0 such that

[g′0] = [g0] ◦ gcd(π, q1).

The relationship gcd(π, qi) ◦ g′ = g ◦ gcd(π, qj) between transitions qi
c,g−→ qj and qi

c,g′−→ qj in

transducers π and π′ can be extended to the runs of these transducers. Consider an arbitrary

pair of corresponding runs of π and π′ on some signal flow w = c1c2 . . . cm−1cm:

q1
c1,g1−→ q2

c2,g2−→ · · · qm−1
cm−1,gm−1−→ qm

cm,gm−→ qm+1,

q1
c1,g′1−→ q2

c2,g′2−→ · · · qm−1

cm−1,g′m−1−→ qm
cm,g′m−→ qm+1.

Then by definition of π′ we have the following chain of equalities:

[g1 . . . gm−1gm] ◦ gcd(π, qm) = [g1g2 . . . gm−1] ◦ [gm] ◦ [gcd(π, qm+1)] =

= [g1g2 . . . gm−1] ◦ [gcd(π, qm)] ◦ [g′m] = [g1g2 . . . gm−2] ◦ gcd(π, qm−1) ◦ [g′m−1g
′
m] = · · ·

· · · = [g1] ◦ [gcd(π, q2)] ◦ [g′2 . . . g′m−1gm] = gcd(π, q1) ◦ [g′1 . . . g′m−1g
′
m] .

To make sure that π ∼S π′ it should be noticed first that both functions π(·) and π′(·) have

the same domain. Consider then an arbitrary signal flow w such that π(w) is defined. Let

q1
w,h−→∗ qm and q1

w,h′
−→∗ qm be complete runs of π and π′ on w. Since gcd(π, qm) = e due to

qm ∈ F , the following chain of equalities holds:

π(w) = [g0] ◦ [h] = [g0] ◦ [h] ◦ [gcd(π, qm)] = [g0] ◦ [gcd(π, q1)] ◦ [h′] = [g′0] ◦ [h′] = π′(w) .

Hence, π(w) = π′(w) for every signal flow w.

To make certain that π′ is a reduced transducer consider an arbitrary control state qi in π′

(which is also a control state in π) and gcd(π′, q) =
∨
{[h′] : qi

w,h′
−→∗ q, q ∈ F}. Relying on

the relationship between the corresponding runs of transducers π and π′ and on the fact that

gcd(π, q) = e holds for any final state q it is easy to notice that

gcd(π, qi) ◦ gcd(π′, qi) =
∨
{gcd(π, qi) ◦ [h′] : qi

w,h′
−→∗ q, q ∈ F} =

=
∨
{[h] ◦ gcd(π, q) : qi

w,h−→∗ q, q ∈ F} = gcd(π, q) .

Since S is an ordered semigroup, gcd(π, qi) ◦ gcd(π′, qi) = gcd(π, q) implies gcd(π′, qi) = e. 2
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6. Minimization of reduced transducers

At the final stage to minimize reduced transducers we apply any of minimization techniques

for deterministic finite state automata. This consideration is based on the close relationships

between reduced transducers and finite state automata revealed in the propositions below.

Proposition 3. Suppose that a semigroup S meets the requirements Req1, Req3. Let π′

and π′′ be a pair of reduced S-equivalent transducers such that g′0 and g′′0 are their initializing

actions. Then [g′0] = [g′′0 ].

Proof. Consider an arbitrary pair q′0
w,h′
−→∗ q′ and q′′0

w,h′′
−→∗ q′′ of complete runs of π′ and π′′

on some signal flow w. Since π′ ∼S π′′, it is true that [g′0h
′] = [g′′0h

′′]. The latter means that

[g′0] ∧ [g′′0 ] ̸= τ . Hence, by definition of the least upper bound in the lattice (S,≼) there exists

a triple of elements s, s′, s′′ such that [g′0] ∧ [g′′0 ] = [g′0] ◦ s′ = [g′′0 ] ◦ s′′ and [g′0h
′] = [g′′0h

′′] =

([g′0] ∧ [g′′0 ]) ◦ s. Thus, [g′0rc[h′] = [g′0] ◦ s′ ◦ s and [g′′0h
′′] = [g′′0 ] ◦ s′′ ◦ s. Since S satisfies the

requirement Req3, these equalities imply [h′] = s′ ◦ s and [h′′] = s′′ ◦ s. It should be noticed

that the elements s′ and s′′ depend on g′0 and g′′0 only. Therefore, the conclusion can be made

that s′ ≼ gcd(π′, q′0) and s′′ ≼ gcd(π′′, q′′0). But once π′ and π′′ are reduced transducers, we have

gcd(π′, q′0) = gcd(π′′, q′′0) = e. Hence, s′ = s′′ = e. This means that g′0 = g′′0 2

Proposition 4. Suppose that a semigroup S meets the requirements Req1, Req3 and let π′

and π′′ be a pair of reduced S-equivalent transducers. Suppose also that q′0
w,h′
−→∗ q

′
1

c,g′−→ q′2 and

q′′0
w,h′′
−→∗ q′′1

c,g′′−→ q′′2 are initial runs of π′ and π′′ on some signal flow wc, where c ∈ C. Then

[g′] = [g′′].

The proof of Proposition 4 follows the same line of reasoning as that of Proposition 3. These

propositions bring us to

Theorem 2. If a semigroup S satisfies the requirements Req1, Req3 then for any pair of

reduced transducers π′ and π′′ it is true that

π′ ∼S π′′ ⇐⇒ π′ ≈S π′′ ∧ [g′0] = [g′′0 ],

where g′0 and g′′0 are initializing actions of π′ and π′′.

Theorems 1 and 2 provide a solution to both minimization problem and equivalence checking

problem for deterministic finite state transducers operating on a semigroup S which satisfies the

requirements Req1–Req3. To verify the S-equivalence of transducers π1 and π2 it is sufficient

to minimize both transducers and then check that these S-minimal transducers are isomorphic.
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7. Conclusions

Complexity issues of the minimization problem for finite state transducers over semigroups

that fall into the scope of requirements Req1–Req3 is a topic for further research since the

complexity depends greatly on the individual algebraic properties of a lattice (S,≼).

One may also wonder how much important for minimization problem are the requirements

Req1–Req3. Some ordered semigroups of actions arising in program modeling are not left-

cancellative, and their lattices (S,≼) are not well-founded. It would be interesting to study to

build effectively S-minimal transducers for such semigroups.
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