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State identification is the well-known problem in the theory of Finite State Machines (FSM) 

where homing sequences (HS) are used for the identification of a current FSM state, and this 

fact is widely used in the area of software testing and verification. For various kinds of FSMs, 

there exist sufficient and necessary conditions for the existence of preset and adaptive HS and 

algorithms for their derivation. Nowadays timed aspects become very important for hardware 

and software systems. In this work, we address the problem of checking the existence and 

derivation of homing sequences for FSMs with timed guards. The investigation is based on the 

FSM abstraction of a Timed FSM. 
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1. Introduction 

Testing is an important part of the hardware and software life cycle and since the complexity of 

telecommunication and other control systems permanently increases, formal methods for deriving 

high quality tests are in a great demand [1-2]. When deriving tests with guaranteed fault coverage of 

reasonable length, state identification sequences for Finite State Machines (FSM) are widely 

utilized [3]. Homing sequences (HS) allow determining a current state of an FSM under test and can 

be efficiently used for reducing testing efforts in active and passive testing [4, 5]. Various 

approaches for deriving homing sequences are developed and these sequences can be preset or 

adaptive [7, 8, 9]. Preset input sequences are derived before starting the identification procedure 

based on a successor tree of an FSM under investigation [6, 7] and such techniques exist for 

deterministic and nondeterministic, partial and complete, weakly initialized and non-initialized 

FSMs [8]. 

Nowadays time aspects become very important for digital and hybrid systems, and, respectively, 

classical FSMs have been extended with time variables [11-15]. A timed FSM (TFSM) is an FSM 

annotated with a clock and extended by input/output timeouts [12, 14] and input/output timed 
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guards [11, 15]. Input timed guards describe the behavior at a given state for inputs which arrive 

during an appropriate time interval until the state timeout expires. As mentioned above, methods for 

deriving preset HS are well studied for classical FSMs and in this work, we consider the problem of 

the HS derivation for FSMs with timed guards. 

The rest of the paper has the following structure. Section 2 contains preliminaries. In Section 3, 

the problem of deriving a HS for an FSM with timed guards is investigated. Section 4 contains 

optimization methods for solving a HS problem for FSMs with timed guards. Section 5 concludes 

the paper. 

2. Preliminaries 

In this section, we briefly remind the notions of classical and Timed Finite State Machines and 

discuss existing methods for representing a Timed FSM by the corresponding abstraction that is a 

classical FSM. 

2.1. Finite State Machines 

Finite State Machines (FSM) [3] or simply machines are used for describing the behavior of a 

system that moves from state to state under input stimuli and produces a prescribed output response. 

Formally, an FSM is a 4-tuple S = S, I, O, hS where S is a finite non-empty set of states, I and O 

are input and output alphabets, and hS (S  I  O  S) is the transition (behavior) relation. Such 

FSMs are sometimes called non-initialized FSMs; an initialized FSM has the designated initial 

state s0 and is a 5-tuple S, s0, I, O, hS. A transition (s, i, o, s) describes the situation when an input 

i is applied to S at the current state s. In this case, the FSM moves to state s and produces the output 

(response) o. In this work we consider complete observable machines, i.e., machines where for 

each pair (s, i)  S  I there exists (o, s′) ∈ O  S such that (s, i, o, s′)  hS and for every two 

transitions (s, i, o, s1), (s, i, o, s2)  hS it holds that s1 = s2. A complete FSM S is deterministic if 

for each pair (s, i)  S  I there exists exactly one (o, s′) ∈ O  S such that (s, i, o, s′)  hS. 

A trace or an Input/Output sequence / of the complete FSM S at state s is a sequence of 

consecutive input/output pairs starting at the state s, where  is the input sequence and  is the 

corresponding output sequence. Given a complete observable FSM S, states s and p are 

equivalent if the sets of output responses at these states coincide for each input sequence. A 

complete deterministic FSM S is reduced if every two different states s1, s2 S are not 

equivalent. FSM S is strongly connected if for each pair of states s1, s2 S there exists a trace that 

takes the FSM from state s1 to state s2. 
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2.2. Timed Finite State Machines 

In this paper, we consider FSMs with timed guards (TFSM), i.e., FSMs which are enriched with 

a clock variable and timed guards [11, 13, 15]. A non-initialized TFSM is a 4-tuple S = (I, S, O, hS) 

where S is a finite non-empty set of states, I and O are input and output alphabets,  is a set of 

input timed guards and hS  S  I  O  S   is the transition relation. An initialized TFSM has 

the designated initial state s0. An input timed guard g  describes the time domain when a 

transition can be executed and is given in the form of interval <min, max> of [0; ), where <  {(, 

[}, >  {), ]}. We also denote BS the largest finite boundary of timed guards of S. The transition (s, 

i, o, s, g)  S  I  O  S  means that TFSM S being at state s accepts an input i applied at time 

t  g measured from the initial moment or from the moment when TFSM S has produced the last 

output; the clock then is set to zero and S produces output o.  Given TFSM S, S is a complete 

TFSM if every input is defined at every state and the union of all input timed guards at any state s 

under every input i equals [0; ). A TFSM S is deterministic if for every two transitions (s, i, o1, s1, 

g1), (s, i, o2, s2, g2) hS, s1  s2 or o1  o2, it holds that g1  g2 = , otherwise, TFSM S is 

nondeterministic. A TFSM is observable if for every two transitions (s, i, o, s1, g1), (s, i, o, s2, g2) 

hS, where g1  g2  , it holds that s1 = s2.  

A timed input is a pair (i, t) where i  I and t is a real; a timed input (i, t) means that input i is 

applied to the TFSM at time instance t measured from the initial moment or from the moment when 

the last input was applied to TFSM S. A sequence of timed inputs  = (i1, t1) … (in, tn) is a timed 

input sequence. Given a timed input sequence (i1, t1) … (in, tn), an input i1 is applied when the clock 

value is equal to t1; after applying the input, the machine produces a prescribed output and the clock 

is set to 0. The machine is then waiting for the next input i2 that is applied when the clock value 

equals t2. A sequence / = (i1, t1)/o1 … (in, tn)/on of consecutive pairs of timed inputs and outputs 

starting at the state s is a timed trace of TFSM S at state s. Similar to FSMs,  is an applied timed 

input sequence while  is the corresponding output response of the TFSM to sequence  of 

applied inputs. For example, when the timed input (i1, 1.7) is applied to TFSM S (Figure 1) at state 

s1 the TFSM moves to state s3, produces output o2, reset the clock and waits for the next input.  

The notions of reduced and strongly connected TFSMs are similar to those of classical FSMs up 

to the replacement of an input sequence to a timed input sequence. 
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Fig. 1. FSM with timed guards S. 

2.3. FSM Abstraction 

In a number of cases, the behavior of a TFSM can be adequately described by a classical FSM 

that is called the FSM abstraction of the TFSM [13]. Given a complete observable possibly 

nondeterministic TFSM S = (S, I, O, hS) with the largest finite boundary of timed guards BS, a 

corresponding FSM abstraction AS = (S, IA, O, hAS), where IA = {(i, [0, 0]), (i, (0, 1)), …, (i, (BS – 1, 

BS)), (i, [BS, BS]), (i, (BS, )): i  I}, can be derived as follows. There is a transition (s, (i, gi), o, s) 

 hAS if and only if there is a transition (s, i, o, s, g)  hS such that gi  g. For the nondeterministic 

TFSM S in Figure 1, Table 1 represents the flow table of the corresponding FSM abstraction where 

rows correspond to inputs, columns correspond to states and a corresponding item for state s and 

input i contains the corresponding pairs of state s' and output o such that (s, i, o, s')  hAS. A timed 

input sequence  = (i1, t1) … (in, tn) of the FSM with timed guards S can be transferred into a 

corresponding sequence of inputs FSM = (i1, g1) … (in, gn) for the FSM abstraction AS and vice 

versa where tj  gj, j = 1…n. By direct inspection, a reader can assure that for every other input, a 

corresponding row coincides with one of three inputs colored in grey. 

Table 1. Flow table of the FSM abstraction of the TFSM in Fig 1. 

i/s s1 s2 s3  i/s s1 s2 s3 

(i1, [0, 0])  s3/o2 s1/o2 s2/o2  (i2, [0, 0]) s1/o4 s2/o4 s2/o4 

(i1, (0, 1)) s3/o2 s1/o2 s2/o2  (i2, (0, 1)) s1/o4 s2/o4 s2/o4 

(i1, [1, 1]) s3/o2 s1/o2 s2/o2  (i2, [1, 1]) s1/o4 s2/o4 s2/o4 

(i1, (1, 2)) s3/o2 s1/o2 s2/o2  (i2, (1, 2)) s1/o4 s2/o4 s2/o4 

(i1, [2, 2]) s3/o2 s1/o2 s2/o2  (i2, [2, 2]) s1/o4 s2/o4 s2/o4 

(i1, (2, )) s2/o3 s1/o1, s3/o3 s3/o1  (i2, (2, )) s1/o4 s2/o4 s2/o4 
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Note that the FSM abstraction of a complete deterministic (nondeterministic) TFSM is a 

complete deterministic (nondeterministic) FSM and similar to the statement proven in [13] for 

initialized TFSMs, the following statement holds for a non-initialized TFSM. 

Proposition 1. There exists a timed trace / at state s of a non-initialized TFSM S if and only if 

the FSM abstraction AS has a trace FSM/ at state s. 

3. Homing sequences for TFSMs 

A Homing Sequence (HS) allows to determine a state reached by an FSM after applying this 

input sequence and observing the produced outputs. In this section, we define a Homing Sequence 

for a complete FSM with timed guards and show how this sequence can be derived based on the 

FSM abstraction of the TFSM. 

Given a trace / of a complete observable possibly nondeterministic FSM, state s' is the /-

successor of state s in FSM S if S moves from state s to state s' by trace /. The /-successor of a 

subset S' of states is the union of /-successors over all states s  S'; note that the /-successor of 

a state s as well as of a subset S' can be the empty set. In the same way the /-successor is defined 

for a timed trace / for a complete observable TFSM. 

An input sequence  is a Homing Sequence (HS) for a non-initialized complete observable 

possibly nondeterministic FSM S if for each output sequence , the /-successor of S is a singleton 

or does not exist. A HS for a complete observable FSM can be derived using an appropriate 

truncated successor tree [3, 8, 16].  

When timed FSMs are considered, the value of the clock variable must be taken into account 

before starting a homing experiment. By definition, the value of the TFSM clock is always reset to 

zero when an input is applied and respectively a HS is derived under the same assumption. Thus, a 

timed input sequence  is a homing sequence for a non-initialized complete observable possibly 

nondeterministic FSM with timed guards S if and only if the /-successor of S for each output 

sequence  is a singleton or the empty set. Proposition 1 and the one-to-one correspondence 

between states of an FSM with timed guards and its FSM abstraction imply the following statement. 

Proposition 2. A timed input sequence  is a HS for a complete non-initialized observable 

possibly nondeterministic FSM with timed guards S if and only if the input sequence FSM is a HS 

for the FSM abstraction AS. 

Therefore, a HS for an FSM with timed guards can be constructed as a HS for its FSM 

abstraction. At the next step, a HS for the FSM abstraction should be transformed into a timed HS 

for the FSM with timed guards. 
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Here we notice that if a complete deterministic FSM is reduced and strongly connected then a 

homing sequence always exists and length of a shortest homing sequence does not exceed n(n – 1)/2 

where n is the number of FSM states. Since in this case, according to propositions below, the FSM 

abstraction of an FSM with timed guards possesses the same features, the same holds for TFSMs.  

Proposition 3. A complete deterministic FSM with timed guards S is strongly connected if and 

only if the FSM abstraction AS is a strongly connected FSM. 

Proposition 4. A complete deterministic FSM with timed guards S is state reduced if and only if 

the FSM abstraction AS is a reduced FSM. 

Based on Propositions 2-4, the following statement holds. 

Proposition 5. Given a complete deterministic reduced and strongly connected FSM with timed 

guards S, a homing sequence always exists for TFSM S and length of a shortest homing sequence 

does not exceed n(n – 1)/2 where n is the number of TFSM states. 

Thus, a HS always exists for a complete reduced and strongly connected deterministic FSM with 

timed guards. Moreover, according to Proposition 4 and the results in [17], the upper bound of HS 

length cannot be reduced. 

Note that for a non-initialized complete observable nondeterministic FSM length of a shortest 

homing sequence can reach 2n – 1 – 1 [16] and thus, the following statement holds due to Proposition 

2. 

Proposition 6. Given a non-initialized complete observable nondeterministic FSM with timed 

guards S, length of a shortest homing sequence can reach 2n – 1 – 1 where n is the number of TFSM 

states. 

Similar to classical FSMs, a HS does not always exist for a nondeterministic observable FSM 

with timed guards. Checking the existence and deriving a HS for TFSMs can be performed by a 

slightly modified algorithm for FSMs [16]. 

Algorithm 1 for checking the existence and deriving a HS for an FSM with timed guards 

Input: A complete non-initialized observable possibly nondeterministic FSM with timed guards 

S = (S, I, O, hS) 

Output: Message ‘There is no HS for S‘ or a HS  for TFSM S 

Step 1. Derive the FSM abstraction AS = (S, IA, O, hAS) for TFSM S. 

Step 2. Construct a truncated successor tree for the FSM AS. The root of the tree is labeled by the 

set of all pairs of different states while the nodes of the successor tree are labeled by sets of pairs of 

different states from S or empty set; edges of the tree are labeled by inputs. There exists an edge 

labeled by an input i from a node labeled by the set P at level j, j  0, to a node at level j+1 labeled 
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by the set Q where a pair {s1, s2}  Q if and only if this pair is an i/o-successor of some pair of P.  

Given a node labeled by the set P at the level k, k  0, the node is terminal if P is empty (Rule 1) or 

P contains a set R that labels a node at a level j, j < k (Rule-2). If the successor tree has no nodes 

labeled with the empty set, then there is no HS for FSM AS. An input sequence FSM that labels a 

path with minimal length to a node labeled with the empty set is transformed into a corresponding 

timed input sequence  that is a shortest HS for S. 

Nevertheless, the number of successors for each node of a truncated successor tree when 

checking the HS existence equals the number of inputs of the FSM abstraction, i.e., reaches (2(BS + 

1)*|I|) instead of |I| for classical FSMs. In the next section, we consider classes of TFSMs for which 

the number of the FSM abstraction inputs can be optimized when checking the existence and 

deriving a HS for a timed FSM. 

4. Optimizing the number of the FSM abstraction inputs when 

checking the existence and deriving a HS for TFSMs 

Here we notice that when constructing a HS for the FSM abstraction, the number of inputs 

becomes larger than that for the initial TFSM. In [11], approaches for the FSM abstraction 

optimization have been proposed in the context of test derivation procedures and in this section, we 

propose to use some of them for solving the HS problem for TFSMs. 

Consider the FSM abstraction (Table 1) of the TFSM in Figure 1. As we can see it can well 

happen that there exist two equal rows for different inputs of the FSM abstraction. For example, the 

rows of the table for inputs (i1, [0, 0]) and (i1, (0, 1)) coincide and thus, it is sufficient to consider 

only one of them when looking for a HS. 

Proposition 7. Given a complete FSM S = (S, I, O, hS) and two inputs i and i', let for each state s 

it holds that (s, i, o, s')  hS implies (s, i', o, s')  hS. The FSM S has a HS  if and only if a 

sequence ' obtained from  by the replacement of each input i' in  by i is a HS for the FSM S' = 

(S, I \{i'}, O, hS') where hS' is obtained from hS by the removing transitions under input i'.  

Proof. Let there exist HS  = i1 … il of FSM S. Therefore, for each trace / = i1/o1 … il/ol the 

/-successor of S is a singleton or does not exist. According to the statement conditions, for a 

sequence ' obtained from  by the replacement of each input i' in  by i it holds that the '/-

successor of S is a subset of the /-successor of S, i.e., is a singleton or does not exist. Thus, ' is a 

HS for S'. 

Corollary. The FSM S has a HS  of length l if and only if the FSM S' = (S, I \{i'}, O, hS') a HS 

' of length l. 
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In other words, if for a pair of inputs the rows of the transition table coincide then the latter can 

be deleted from the FSM without losing a homing sequence if such a sequence exists, i.e., it is a 

way to minimize the number of FSM inputs when solving the HS problem. For example, a 

transition table for the input reduced form of the FSM abstraction in Table 1 has three rows colored 

in grey and, respectively, the number of successors for each node of a successor tree is three (Figure 

2). By direct inspection, one can assure that there is a HS (i1, (2, )), (i1, (2, )), (i1, (2, )) of 

length 3. 

 

Fig. 2. The successor tree for the integer projection of FSM abstraction AS (Table 1). 

Let all the timed guards of a given TFSM S be closed on the left, i.e., each timed interval is of 

the form [m, n). In this case, the integer projection Aint
S= (S, IA

int, O, hAS) of the FSM abstraction 

where IA
int = {(i, [m, m]) : i  I, 0 ≤ m ≤ BS} can be used for the HS derivation. 

Proposition 8. Given a complete possibly nondeterministic TFSM S = (S, I, O, hS) where each 

timed interval has the form [m, n), let Aint
S= (S, IA

int, O, hint
AS) where IA

int = {(i, [m, m]) : i  I, 0 ≤ m 

≤ BS} be the integer projection of the FSM abstraction. The FSM Aint
S has a HS FSM' of length l if 

and only if TFSM S has a HS  of length l. 

Proof. Let there exist a HS  of length l for FSM with timed guards S. By definition,  is a HS 

for TFSM S if and only if FSM is a HS for FSM abstraction AS. If all the timed guards of TFSM S 

are closed on the left, then for each input (i, (a, b)) of AS, there exists input (i, [a, a]) of Aint
S such 

that (s, (i, (a, b)), o, s')  hAS if and only if (s, (i, [a, a]), o, s')  hint
AS. Respectively, by Proposition 

7, the FSM abstraction AS has a HS FSM of length l if and only if FSM Aint
S has a HS 'FSM of 

length l. 

Thus, the above proposition claims that when deriving a HS for a machine with timed guards, in 

some situations, the number of inputs of the FSM abstraction can be twice minimized without 

losing a solution.  
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5. Conclusions 

In this work, a method for deriving a homing sequence for an FSM with timed guards is 

proposed based on its FSM abstraction. We show that similar to classical FSMs, length of a shortest 

HS is polynomial with respect to the number of states for a deterministic reduced FSM with timed 

guards and can reach an exponential value for the nondeterministic case. However, the FSM 

abstraction has more inputs than the initial TFSM and for this reason, we discuss how the number 

of inputs of the FSM abstraction can be optimized when solving the HS problem. 
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