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1. Introduction 

At early stages of software projects development during requirements capturing and analysis 

error prevention is of importance due to high cost on this stage. Use Case Maps (UCM) scenario-

oriented graphical notation [10] allows users to formalize and analyze functional requirements. At 

the same time, it allows customers to monitor the system requirements. UCM models are general 

purpose. They are used for test case generation [3, 4], building test coverage criteria [2], and as a 

property specification language [8] for use with model checkers. 

UCM model of a system depicts a set of scenarios as cause-and-effect relations between 

responsibilities. Responsibilities may be superimposed on the underlying components structure, 

reflecting the architecture of the system. UCM describes interaction of architectural entities 

focusing on causal relations and abstracting from some details of messaging and data processing. 

However, tools for analysis and verification of UCM models are insufficiently developed. The 

UCM standard [10] defines an analysis procedure, which is implemented in the jUCMNav editor 

[11]. This analysis technique is rather primitive and it is hard to use. Since the standard describes 

the language semantics informally using traversal requirements for UCM, a number of papers are 
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focused on providing a formal UCM semantics [6]. A few papers present a solution for verification 

of UCM models [7]. Verification methods for specific subject domains are also being developed. 

The paper [1] describes testing, analysis, and verification methods for telecommunication 

applications based on UCM models. 

In previous papers [15, 16], we described an approach for general-purpose UCM models analysis 

and verification using coloured Petri nets (CPN). UCM models are translated into CPN models. The 

latter are then verified using the well-known SPIN model checker [9]. CPN models may also be 

analyzed directly using CPN Tools [5]. 

This article extends the scope of previously supported UCM constructs with protected 

components and failure handling constructs. It describes a method of analysis and verification for 

these UCM constructs. 

2. Use Case Maps Notation Overview 

The Use Case Maps notation is one of the languages defined in the User Requirements Notation 

standard [10]. The UCM visual notation is a high-level scenario-oriented modeling tool. It focuses 

on the causal flow of behavior, which is optionally superimposed on a structure of components. 

UCM models depict the causal interaction of architectural entities in a system while abstracting 

from message passing and data details. The notation simplifies modeling and analysis of functional 

requirements for distributed and concurrent systems while also allowing to reason about system 

architecture. 

 

Fig. 1. Top-level map of the network protocol UCM model 

Below we provide a short overview of basic elements of the UCM notation. Detailed language 

description including its graphical syntax is provided in [10] and [15]. A map (see Figure 1) 

contains any number of paths and components. Paths (depicted as connecting lines) express causal 

sequences and causal relationships between path nodes. Paths are directed. They may contain 

several types of path nodes. Paths start at Start Points (for example, StartTransmit on Figure 
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1) and end at End Points (EndTransmit). These nodes define triggering and resulting conditions 

respectively or pre-conditions and post-conditions (shown in square brackets). Start Points also may 

denote the beginning of scenarios for failure and exception handling. Such Start Points are called 

Failure Start Points and Abort Start Points respectively. Start Point type is defined by a 

failureKind attribute, while a failureList attribute specifies a list of failures it may 

respond to. Abort Start Point is a Failure Start Point that in addition cancels all scenario behaviors 

in its abort scope – map of the Abort Start Point as well as all lower level maps as defined by Stub 

hierarchy (see below). Responsibilities (Split) define steps or actions required to fulfill a 

scenario. Or-Forks, possibly including conditions for outgoing path selection (shown in square 

brackets), and Or-Joins are used to model alternatives and loops. And-Forks and And-Joins express 

concurrency. Waiting Places and Timers (ResendTimer) denote points on the path where a 

scenario stops until a condition is satisfied or a triggering signal arrives. Scenario may also continue 

past the Timer using the timeout path. Connect nodes and Empty Points are used to connect two 

paths synchronously or asynchronously. Failure Points represent points on a path where the 

continuation of a scenario depends on the occurrence of a failure or exception. Each failure point 

has an associated triggering condition, as well as a failure name, which indicates the failure or 

exception that happened. Failure name effectively defines Failure or Abort Start Points used to 

continue scenario execution in case triggering condition is true. UCM models can be hierarchically 

decomposed using Stubs (TransmitConnection) that contain reusable units of behavior and 

structure called plug-in maps. 

Components (Sender) are used to specify structural aspects of a system. Path nodes that reside 

inside a component are said to be bound to it. UCM models without components are said to be 

unbounded. Components may contain sub-components and have various types. However, most of 

them do not influence model semantics and serve only to convey architectural aspects of a system. 

Exceptions include components of kind Object that force interleaved traversal of path nodes of 

parallel branches that are bound to the component and protected components 

(TransmitNetwork) that restrict the amount of concurrent scenarios inside them. In the URN 

standard, maximum amount of concurrent scenarios inside a protected component is always 1. 

Therefore, protected components work as a mutual exclusion mechanism for concurrent scenario 

execution. 
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3. UCM Models to Coloured Petri Nets Translation Method 

To analyze and verify UCM models we translate them into coloured Petri nets [12]. Input and 

output models are represented as hierarchical directed graphs with additional information associated 

with vertices and arcs. 

3.1. Input UCM Model Restrictions 

The following important restrictions are imposed on the input UCM models. All  

model elements have unique names and direction of all paths is defined. Special traversal semantics 

for the components of type Object is not supported. UCM models with Abort Start Points are 

rejected. These path nodes are rarely used and cause state space explosion upon translation due to 

scenarios termination semantics. Therefore, we do not translate them to CPN. 

For the translation of protected components, we also impose an additional restriction on Or-Fork, 

Timer, and Or-Join nodes. Each path node of these types should be either bound or not to a given 

protected component together with all of its adjacent path nodes. This limitation is not fundamental 

since it could be achieved by simple UCM model modification. In case the system detects that this 

limitation is not held, the user is offered to modify the UCM model by either introducing additional 

Empty Point nodes adjacent to the problematic path nodes or in any other way that ensures that the 

limitation is held. 

The listed restrictions do not limit significantly the set of supported UCM models since the most 

used elements and their use cases are supported.  

3.2. UCM to CPN Translation Algorithm Overview 

On the top level, UCM to CPN translation algorithm consists of five steps. On the first step pre-

processing of an input UCM model is performed. The first step includes simple conversions of an 

input model as well as checks of input model constraints. The second step creates various CPN ML 

language definitions common to the entire CPN model. On the third step, additional vertices are 

added to the UCM model graph to simplify its conversion to a bipartite graph. On the fourth step, 

path node vertices with their immediate vicinity are translated independently of each other 

according to their types. The fifth step combines CPN fragments produced on the previous steps 

into a single CPN model. The translation algorithm is described in detail in [15, 16]. 

On the first step, UCM model is pre-processed. As part of this process the model is converted to 

an unbounded one, i.e. all components are removed. Information about protected components is 

stored in the attributes of each path node bound to the given protected component. All initial values 
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for variables in the UCM model are determined. Algorithm constraints for input models are 

checked. The system notifies the user about any implicit conversions during this step. 

The second step defines colours, constants, and some variables. A number of auxiliary colours 

are introduced, including UNIT – standard “base” colour with only one possible value (). Tokens 

with the colour UNIT are normally used to model signal transmission or scenarios execution. 

On the third step, graph arcs that are not incident to vertices representing Connect path nodes are 

partitioned. Each arc is partitioned into two arcs using new helper vertices i.e. vertices of the new 

type FakePathNode. The resulting arcs preserve directions as well as annotations on the arcs 

outgoing from non-helper vertices. 

On the fourth step, each path node vertex with its immediate neighborhood defined by adjacent 

Connect and helper vertices is handled separately. Each path node and its neighborhood are 

translated into a CPN model fragment – an annotated graph with additional definitions in CPN ML 

language. For each failure name, a CPN model fragment is also generated. During translation, 

helper vertices become places of type UNIT. 

The fifth step combines CPN model fragments produced on the fourth step into a single resulting 

CPN model. Model elements with same names are either merged or represented as fusion places if 

necessary. 

4. Translation of Path Nodes Bound to Protected Components 

To verify UCM models efficiently using CPN, number of scenarios being executed at a given 

point of the model should be limited. Otherwise, translated CPN model will have places with 

unbounded place capacity since places are used to model signal transport. 

The UCM standard provides a method for modeling mutual scenarios exclusion for a subset of 

the UCM model paths. Protected components depicted with a double outline fulfill this purpose. All 

UCM model path nodes bound to the protected component are affected by it. Execution of any 

scenario may continue inside a protected component only if no other scenario is already being 

executed inside of it. 

However, the semantics of the protected components offered by the standard is too restrictive to 

represent a wide variety of scenarios interactions while keeping the capacity of CPN places in the 

translated model limited. Thus, we propose to extend the standard by allowing to specify a 

maximum amount of concurrent scenarios within a protected component. This could be 

implemented either by adding a new integer attribute scenarios into the Component class of 

UCM abstract grammar or by using comment elements attached to a given protected component. 

The latter approach may be used to avoid modifying existing UCM editors. 
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Below we will describe translation of UCM components with attribute protected = true 

and positive values of the scenarios attribute, as well as other UCM path nodes which are bound 

to such components. Note that if scenarios = 1 then the protected component has the same 

semantics as in the UCM standard. 

As any other UCM element, protected components have unique names. We will also impose an 

additional restriction for Or-Fork and Or-Join nodes. Each path node of these types should be either 

bound or not to a given protected component together with all of its adjacent path nodes. This 

limitation is not fundamental since it could be achieved by a simple UCM model modification. 

However, it avoids semantics ambiguity for such UCM models, as well as significant complication 

of the translation algorithm. 

The example of protected components translation from Figure 1 is provided in Section 7 and a 

more detailed description of it is given in [14]. 

On the first step of the translation algorithm, we additionally check that scenarios > 0 for 

all protected components. Otherwise, UCM model is deemed incorrect. The additional limitation on 

Or-Fork and Or-Join nodes is checked as well. If it does not hold user is advised to modify the 

UCM model by adding new Empty Points on the arcs incident to the problematic path nodes and 

adjusting protected components. Information about each protected component is stored in the 

attributes of path nodes bound to it. Each path node may be bound to multiple protected 

components. 

The second and third steps of the translation algorithm have nothing specific for protected 

components. They are considered in Section 3.2. 

Protected components are modeled in CPN using anti-places. Anti-place is a common CPN 

modeling pattern used to limit the amount of tokens in a given fragment of CPN. Initial marking of 

an anti-place usually holds the amount of UNIT tokens equal to the limit. When other tokens are 

created in a given CPN fragment an equal amount of tokens from the anti-place should be 

consumed. When other tokens are removed from a given CPN fragment, an equal amount of tokens 

should be put back to the anti-place. 

On the fourth step, each path node vertex and its adjacent vertices is translated into a CPN 

fragment. An anti-place is created for each protected component a vertex has information about in 

its attributes. The anti-place has a colour UNIT and an initial marking with the same amount of 

tokens as the value of the scenarios attribute was for the protected component. Only the nodes 

that are capable of starting (forking) or terminating (joining) scenarios that flow through them and a 
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protected component will actually create additional anti-places and arcs. Anti-places are named 

after the corresponding protected components, so they are uniquely identifiable as well. 

The fifth step of the translation algorithm stays the same – all additional anti-places will be 

joined according to their names in the same way other places of CPN fragments are joined, using 

fusion places if necessary. 

Translation of separate UCM path nodes is described below. For each path node and each 

protected component, we may define whether this path node and any of the path nodes adjacent to it 

are bound to the component. For Or-Fork and Or-Join nodes the path node itself as well as other 

path nodes adjacent to it are either all bound or not to a given protected component. They do not 

create or terminate scenarios. Therefore, CPN transitions corresponding to Or-Fork and Or-Join 

nodes never need to be connected to anti-places. 

Let us consider the translation of path nodes that may create or terminate scenarios. These 

include And-Forks, And-Joins, Start Points, and End Points. If a path node is bound to a protected 

component, a difference between the number of outgoing and incoming arcs is calculated. In case it 

is positive, an arc is added to the resulting CPN fragment from the anti-place to the transition 

corresponding to the path node. In case it is negative, an arc is added in the reverse direction. In 

both cases, arc inscription equals to the () times the absolute difference value. Note that 

difference value cannot be zero – otherwise, there is no scenario creation or termination. 

Let us consider the translation of path nodes bound to a protected component that have adjacent 

path nodes not bound to the component. We calculate a balance value for a path node. Starting 

balance value is 0. Each outgoing arc that leads to a path node not bound to the component 

decreases balance by 1. Each incoming arc from a path node not bound to the component increases 

balance by 1. After considering all incident arcs for the given path node we have a balance value of 

this path node in relation to the protected component. In case the balance value is positive, an arc is 

added to the resulting CPN fragment from the anti-place to the transition corresponding to the path 

node. In case it is negative, an arc is added in the reverse direction. In both cases, arc inscription 

equals to the () times the absolute balance value. In case the balance is zero no new arcs are 

added. 

The additional arcs described above may be added independently of one another. In this case, 

their inscriptions are combined in a natural way. If a stub is bound to a protected component then 

the described procedure is applied to all path nodes on child diagrams of the stub as well, 

accounting for Start Points and End Points that have bindings to the stub, which do not create or 

terminate scenarios. 
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5. Translation of Failure Handling Path Nodes 

Failure handling in UCM is modeled using Failure Point and Failure Start Point path nodes. 

Failure Point represents a point in scenario behavior where the continuation of the scenario depends 

on the occurrence of failure or exception. Failure Start Point denotes the beginning of a scenario 

behavior in response to failure or, in other words, a start of a failure handler. 

Failure Start Point nodes have a list of failure names they are supposed to be triggered for, while 

Failure Point nodes have a failure attribute that denotes the name of failure that is triggered. 

After a failure is triggered, the triggering scenario at the Failure Point terminates, and a number of 

scenarios start at Failure Start Point nodes with a matching failure name in their failure list. 

On the fourth step of the translation algorithm, each failure name is translated into a CPN model 

fragment – a transition and a place named after the failure name. The place has UNIT type with 

empty initial marking. An arc leading from the place to the transition is added with a () inscription. 

Arcs are also added from the transition to each place matching Failure Start Points with a 

corresponding failure name in their failure list. Each of these arcs has a () inscription as well. This 

translation procedure closely resembles And-Fork path nodes translation [15]. 

Translation of Failure Start Points is similar to ordinary Start Points on child maps when they are 

bound to stub inputs [16]. Transition corresponding to a Failure Start Point is linked with a place of 

type UNIT, with empty initial marking. Arc from the place to the transition has a () inscription. 

Translation of a Failure Point is similar to an Or-Fork [15], which has two output paths – one 

that continues the normal execution of the scenario and one that leads to a placed named after the 

failure name. The conditions on the output paths are based on the failure condition – one of them is 

the failure condition and the other one is its negation. Therefore, there is no need for additional 

*_OrForkWarnings place which normally tracks that conditions on the output paths of an Or-

Fork path node are mutually exclusive. 

Note that a Failure Point and Failure Start Points it triggers may be on different maps. This case 

is automatically resolved on the fifth step of the algorithm by converting some of the places 

adjacent to the transition that corresponds to the triggered failure name into fusion places when 

joining CPN model fragments. 

6. Verification of CPN Models 

A CPN model translated from UCM model may be analyzed using CPN Tools [5, 12] facilities. 

In fact, it is especially useful for simulation. It also provides some limited state space analysis tools. 

However, we find that certain model properties may also be formally verified in an automated and 
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more efficient way. We use our own verification system for CPN that uses well-known SPIN model 

checker [9]. In order to employ SPIN, CPN models are translated into its input language Promela 

[13]. 

Properties for verification are expressed either as simple predicates that are expected to be true at 

the end state (any state without enabled transitions) or as linear temporal logic formulas. In the 

former case, the property check is represented as an assertion at the end states of the Promela 

model. In a number of cases, properties for verification may be derived from the UCM model itself. 

A common choice is to verify that End Points post-conditions hold and the UCM model is correct 

with respect to branching conditions. Since UCM models are translated into CPN in a way that 

provides auxiliary warning places to track the branching errors, it is possible to define such kind of 

property for verification. On the CPN model level, the property holds if all warning places are 

empty and all post-condition places contain only true tokens in the end state. This is translated to 

Promela model level as a conjunction of several simple state conditions, which is asserted for the 

end states. 

Several restrictions on the input CPN models are imposed to translate them into Promela 

language. CPN models produced from UCM models by our translation algorithm conform to all of 

these restrictions but the finiteness restriction required to verify a model efficiently. CPN models 

are expected to be finite – places and data types’ capacities should be limited. The finiteness 

restriction may be viewed as a reflection of real computer memory finiteness. It is possible to set all 

finiteness limits manually before the verification. 

The finiteness restriction may be conformed to in various ways – by either constructing a UCM 

model in a certain way or applying additional restrictions on the Promela model level for state space 

exploration. In case a given finiteness limit is reached during a verification the system advises the 

user to either increase the limit value or modify the UCM model by adding protected components to 

it. Protected components are used as a means to limit places capacity. At the same time, protected 

components usually identify an important limitation on the UCM model level, such as a limited 

network bandwidth or a limited amount of memory available to the system. 

Verification may be successful or not. If the given property does not hold, a counterexample is 

generated. A counterexample is a sequence of states (places with their markings) and binding 

elements (transitions and their variable bindings) that lead to the found invalid state or does not 

satisfy linear temporal logic formula if the property was specified as one. For user convenience, 

counterexamples may then be mapped back to the UCM model or analyzed with CPN Tools. After 

correcting issues in either the UCM model or the property to verify, the verification process is 

repeated. 
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7. Case Study 

We demonstrate algorithms and tools presented in this paper in a case study. A UCM model 

describes a simple communication protocol designed to transfer reliably a decimal number over a 

network capable of transmitting only one digit per packet. Data to transfer is integer due to URN 

Data Language limitations. The UCM model is translated to CPN and then to Promela model, 

which is then executed to verify a post-condition from the UCM model. The case study 

demonstrates usage of protected components to ensure the translated model is finite. 

Figure 1 shows a top-level map of the UCM model of the protocol. All UCM elements except 

fork and join elements are labeled. URN Data Language expressions (branch conditions and post-

conditions) are depicted as labels with code in square brackets. URN Data Language actions 

(associated with Responsibilities depicted as crosses) and some expressions are not shown. The 

model includes four components: Sender, Receiver, TransmitNetwork, and AckNetwork. The latter 

two components are protected and were added by the user after the initial verification attempt 

failed. These protected components limit the amount of concurrent scenarios to 2 and reflect a 

limited network bandwidth. Sender splits SendData value into digits and sends them over the 

network, retransmitting as necessary. Each of the two network components contains a Static Stub 

that represents an unreliable network environment for transmitting packets from Sender to Receiver 

and vice versa. Both stubs contain the same Connection plug-in map. Receiver processes packets as 

soon as they arrive and assembles transmitted data from them. Receiver acknowledges each arriving 

packet with a sequence number of the next expected packet. Sender receives acknowledgement 

packets and updates the sequence number of the next packet to send. Sender assumes that sequence 

numbers can only increase.  

After sending a packet, Sender waits on a Timer element. If the current packet sequence number 

equals to the sequence number of the next packet to send, then the same packet is resent. Otherwise, 

Sender fetches the next digit to send and sends a new packet with the next sequence number. A 

packet with the payload -1 signals the end of data. If Sender receives an acknowledgement that 

such packet was received, data is considered transmitted and the EndTransmit End Point post-

condition [Received && ReceiveData = SendData_pre] is checked, where 

SendData_pre is the initial value of the SendData variable. The post-condition is satisfied if 

Receiver considers the data received (an appropriate flag is true) and the data received equals to 

the data sent. 

The UCM model post-condition for the EndTransmit End Point is verified, together with the 

absence of warnings during model execution. According to this property, the protocol always 
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finishes in the expected correct state and the source UCM model is consistent with respect to 

branching conditions. The property is simply asserted in the resulting Promela model at end states. 

The UCM model, CPN and Promela intermediate models with verification results and a detailed 

description can be found in [14]. During verification, no additional restrictions were imposed on the 

Promela model. Verification was successful. 

8. Conclusion 

The Use Case Maps graphical notation provides an expressive means of describing functional 

requirements for software systems and protocols. In this article, we have presented a method for 

translation of UCM models to CPN and its application for verification of UCM models. This 

method enables users to analyze and verify more expressive UCM models as compared with the 

method in [15, 16] by supporting failure handling and protected components. 

Protected components with the extended semantics are especially useful for verification. 

Protected components limit the number of concurrent scenarios thus limiting places capacity in the 

translated CPN model. This ensures that the model is finite and can be efficiently verified using 

SPIN. 

A current version of our tool supports translation of jUCMNav editor [11] files to CPN Tools [5] 

files. UCM models translated to CPN can be analyzed using either built-in CPN Tools facilities or 

the CPN models verifier based on SPIN [13]. A verification result shows if a model is correct with 

respect to a given property. If not, an error must be located. While it is possible to map the 

counterexample generated by SPIN to the UCM model, we find that it is often more convenient and 

productive to perform the required analysis using CPN Tools. 

The algorithm for UCM models translation into CPN is efficient. The translation method 

described in [15, 16] has polynomial complexity for the size of the resulting CPN models [16]. This 

estimate holds for the translation algorithm described in this paper as well. 

It is important to justify that UCM to CPN translation is correct. However, this requires a formal 

semantics for the UCM, which is not provided by the standard [10]. 

We plan to evaluate our tools using other UCM models of communication protocols as well as 

other systems. We also plan to explore timing extensions [7] for the UCM notation. 
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