
System Informatics, No. 21 (2022) 1

UDC 004.05, 372.8

Teaching the Discipline “Software Testing and Verification” to
Future Programmers

Sergey Staroletov

(Polzunov Altai State Technical University)

An introduction to the study of quality assurance methods is essential to understand the devel-

opment of complex and reliable software. Nevertheless, the modern software industry requires the

earliest possible launch of a product to the market, and the methods of formal specification and

verification of programs do not find much interest among the broad mass of future programmers.

In this article, the author proposes to organize a dedicated discipline and conduct seamless train-

ing in testing, test-driven development and formal verification using various methods for writing

program specifications and using software tools for program checking. The purpose of discussing

discipline is to redefine the attitude of future developers towards software quality, its specifica-

tion and automatic checking. Within the framework of this article, the author considers his own

discipline, which combines two courses – software testing and formal verification. The proposed

approach of teaching is primarily practice-oriented and includes teamwork. In accordance with

the current curriculum, the discipline is held in the last semester for undergraduate students (4th

course). The material of the article is based on the author’s five-year experience of teaching the

subject to students of the Software Engineering specialty. The article offers rather voluminous

and descriptive examples of specifications and programs in model languages.

Keywords: teaching, software models, testing, specification, formal verification.

1. Introduction

The development of reliable programs is inconceivable without the organization of the industrial

testing process in accordance with the latest established trends in software engineering. In order to

obtain a holistic picture by future software engineers, it is advisable to introduce a special discipline

in which quality assurance methods in software development are studied. At the same time, this

course should be expanded with formal verification methods, which have recently been developed

as one of the directions of modern software engineering devoted to proving the behavior of program

models for the operation of software systems in conditions with increased reliability requirements.

The combination of testing, test driven development, static analysis, and formal verification allows

the software engineers to seamlessly move from tests to models and choose the right quality assurance

method based on labor costs and system requirements.

Пользователь
Typewriter
, December 15th, 2022

2 Staroletov S.M. Teaching Software Testing and Verification

Setting up an author’s new course is always fraught with difficulties. In this article, the author

presents a plan for conducting classes in his discipline related to testing, formal specification and

verification methods in order to take care of the quality of software by future programmers. Since the

course was made from scratch, there were some reasons for creating it.

After the transition to a two-level education system in our country (undergraduate student+master,

4+2 years) from a 5-year education system (specialist or engineer), the question arose of revising the

curriculum with the development of new disciplines. Note, we use a competency-based approach,

which means that the Ministry of Education lowers the expected competencies from above, and then

the University itself decides which disciplines are needed for covering them. At the same time, the

current elaborations by the departments were mostly used and, as a rule, the existing disciplines

were updated. The same cannot be said about some competencies that required the creation of new

disciplines. For example, for the discipline under discussion, the competency “the ability to apply

testing and verification methods” was set (however, it does not imply which methods and whether

they should be formal – this should be decided locally depending on the qualifications of lecturers).

At the same time, this competency belongs to the professional type, and not general, which implies

the obligatory study of the discipline by all groups of the specialty.

Since the author had a background both in the fields of formal verification and model based testing,

had industrial experience and understood that formal methods are primarily applicable to study the

latest achievements in the field of software engineering (nevertheless, their applicability in industry

is limited by time and complexity), then he enthusiastically started creating this course. The main

goal was to introduce as much specifications as possible into the development process and show

that program correctness is only possible if there exist additional artifacts that the future developer

should pay attention to. If these artifacts are expressed formally, then this opens the door to prove

the correctness of systems with complicated quality requirements. If informally, then it offers at

least manual or automatic regression check, which allows taking into account incremental changes in

constantly changing software.

The resulting course for the 4th year of the specialty “Software Engineering” [56] has the following

structure: 8 lectures, 8 labs for 17 weeks, the assessment includes three equally weighted components:

the attendance, semester work (weighted by 8 labs) and a final test, which will be discussed later. The

author already has five years of teaching experience of the discipline, so some modules have been

updated due to the feedback. The course has also served as the basis for more streamlined courses

for “Computer Science” specialty as well as for college students with less lab work and almost no

System Informatics, No. 21 (2022) 3

formal verification material. The author created a textbook in Russian [57] for the course, but it is not

available in the public domain, however, this article describes the main points from there. Preliminary

requirements for students are the following: (1) knowledge of mathematical logic as well as theory of

algorithms and (2) practical skills in writing programs in modern IDEs. The skills obtained as a result

of mastering the discipline are used in the implementation of the graduation projects by students and

(possible) in their future work.

Fig. 1. Triple-V model and tools

The author would like to highlight two key points on which the approach to this discipline is

based: (1) the theorem on the undecidability of testing within the framework of the existing theory of

algorithms and (2) the Triple-V model, indicating levels and specific tools for the application in the

course.

Let us assume that the program works in a simple single-tasking environment, has a set of control

states, and after each step of transition to the next state, the values of variables are output. If after

the completion of the program, the output is exactly equal to the expected one, then the program is

recognized as a correct one. The problem of testing is whether it is possible to make such a check for

any program P according to its description, or formally, for the input X , the output Y and the Gödel

number Ng(P) to make a translation:

X ∗Ng(P) ∗ Y ⇒
{
true, false

}
Then the given problem is undecidable, since it is a more general case of the translatability problem,

which is closely related to the CircuitSAT and to the Halting problem which are undecidable problems

[23]. Thus, testing (using current assumptions about algorithms on current computer architectures)

4 Staroletov S.M. Teaching Software Testing and Verification

cannot show the correctness of a program only using data from its code. This all implies either a

transition to the search for errors or counterexamples (that is, violations of the correctness of work),

or to the use of artifacts (models and specifications) additional to the code. Also, if it is impossible

to prove the complete correctness of the program, then one should use as many projections of the

programs into different models and apply different methods to check different aspects of the programs,

which is called the principle of methodological diversity.

To solve problems with the impossibility of proving programs by testing, formal verification meth-

ods are began to develop, which are according to Clarke “mathematically based languages, tech-

niques, and tools for specifying and verifying systems that operate reliably despite this complexity”

[12]. A prospective review on the occasion of the fortieth anniversary of formal methods was pub-

lished in the work [8]. Also of note are the annual workshops: International Symposium on Formal

Methods [31], NASA Formal Methods [43], and Model Checking Software [32].

In [20], the Triple-V (triple-waterfall) model of software development is considered. The Triple-V

scheme is an idealized scheme with maximum quality control for systems that are decomposed into

modules, components and subsystems. Here at each development phase the result is a model and

the phases of verification of model tests (left) as well as verification phases of test results (right) are

added. We consider a modified model of the Triple-V, indicating the possible tools and methods for

some levels, which are studied in the discussed discipline (Fig. 1).

As for related works, today the trend is to create open courses and present them at specialized

international workshops. In particular, in the field of formal methods, the community holds a Formal

Methods Teaching Workshop (FMTea). For example, in 2021, ten significant works were published

[19] with the presentation of their courses, including the use of formal methods in games, working

with Dafny and Isabelle tools. In 2023, a lot of papers were submitted for the outgoing workshop

[21], it is due to the large number of online seminars and the dissemination of information about the

workshop during the pandemic.

In the next section with eight subsections, we consider all the components of the discipline plan,

and in conclusion, we discuss the results of conducting final test for the discipline. It should also be

noted that we use a language-agnostic approach: by the 4th year, students already code in various pro-

gramming languages. Therefore, we present examples in different languages that are most convenient

for showing each new approach in specification, testing, and verification.

System Informatics, No. 21 (2022) 5

2. Structure of the discipline

2.1. Software specification and black box testing

The purpose of the first module is to prepare students for writing natural language specifications

and black box testing them. To begin with, the concept of a software bug is introduced as a violation

of the specification (after all, as it was shown before, just a program in any form is not enough).

Consequently, students become technical writers and manual testers. However, it is proposed to write

not just textual descriptions, but rather formal specifications according to the famous Hoare triples

approach [24] (if it is understood in a worldly sense):

{Precondition}Program action{Postcondition(result)}

By the time of this course, the trainees already know how to create interactive programs or web

applications in different languages. In addition, during four years of training, everyone has a number

of programs passed as a result of laboratory works. These programs, obviously, were made in the last

moments and have bugs. Such programs are supposed to be described and tested.

An example specification for an engine ECU simulation program is shown in Table 1. There is

also a related publication [59] on demonstration of using industry standards and the Hoare triples

approach to check non-trivial cyber-physical models.

Since we also promote the importance of describing the software architecture in some other

courses, in addition to the text specification, it is proposed to draw a diagram on the software in

the form of a UML use-case diagram, where the actor is a window or program mode which is associ-

ated with other actors and transition conditions between them. As a result, the specification will be in

two formats – textual and graphical, and a potential tester can think over test scenarios in advance. All

students are divided into minigroups of about three people, choose its software and distribute work

within the group.

When the artifacts are ready, the minigroup submits them along with the program to a GitHub/Git-

Lab repository and waits for the submitted programs from other minigroups to appear. Then they

start writing about the bugs found by others in a bug tracker, in this case using the “Issues” tool.

To learn how to describe correct bug reports, the author suggests getting acquainted with public bug

trackers (for example, Google Chrome [33], etc.) and taking into account the 4W+1H principle [1].

As a result, we will get the involvement of students in the specification and finding bugs from friends,

especially from those who did not specify their software in enough detail.

6 Staroletov S.M. Teaching Software Testing and Verification

Table 1

Specifications in tabular form for an engine model

Precondition / Action Postcondition

1 The ambient temperature is greater

than -30 and less than 0, the battery

voltage is greater than or equal to

12V, or the ambient temperature is

greater than or equal to 0, the bat-

tery voltage is greater than or equal

to 11V / Start button pressed

A message about the successful start of

the engine is shown, the output parame-

ters panel displays the current parameters

of the engine, the slider “Battery voltage”

and “Current value, V” on the input pa-

rameters panel increases over time until

it reaches 14, the “Current state” on the

launch panel changes from “Engine is not

running” to “Engine is running”

2 The engine is not started, the am-

bient temperature is below -30, or

the ambient temperature is above -

30 and less than 0, the battery volt-

age is less than 12V, or the ambient

temperature is greater than or equal

to 0, the battery voltage is less than

11V / Start button pressed

A message is shown stating that the en-

gine cannot start

3 Engine is running / Start button

pressed

A message is shown stating that the en-

gine has been started before

4 Engine is running / Stop button

pressed

“Engine was stopped” message is dis-

played, “Outputs” set to zero, “Current

Status” on Launchpad set to “Engine is

not started”

Invariants: the program is not closed, there are no messages about

exceptional situations, the information in the program window cor-

responds to its internal state

System Informatics, No. 21 (2022) 7

The work of the minigroup is judged on the details of specifications and the quality of bug reports

from others. This topic also explains testing standards [29] and provides links to the International

Software Testing Qualifications Board training syllabuses [30] for those who are interested in the

professional work of a tester.

2.2. Code level. Unit testing and project documentation

After testing systems without knowledge of their internal organization, we move on to unit testing

the code. Such testing can be formally represented as:

∧
Mi∈Testcase

Macti(x1..xn) == Retexpect(Mi)

where Macti(x1..xn) is the result of running the tested method (function) Mi with the specified param-

eters x1..xn, Retexpect is the expected return value of the method. Methods (functions) are grouped

into test cases. Conjunction means that if one of the tested values does not correspond to the expected,

the operation of the entire test suite is considered incorrect. While the pioneering standard for such

type of testing was proposed in 1987 [9], the commence of industrial applicability of this method was

done around 1998 by the famous people in Java software engineering, Kent Beck and Erich Gamma,

who invented JUnit [6].

During the labs, students are required to understand that it is necessary to build the code in such a

way that it becomes checkable by the unit testing method. For arbitrarily written software, where I/O

calls are mixed with program logic, such checking is difficult to perform without refactoring the code,

so here the author reminds students of the need for organization of architecture with separation of

responsibility [37] and design patterns [17]. Students should also understand that writing unit tests is

on the developers’ duty and the unit testing is primarily a development methodology, not a pure testing

methodology. However, writing such artifacts as tests today is the preferred way to organize a project

by default. Now starting the project from main() is not practical until the logic has been well tested

(by running only the tests, not the project as a whole). The lecturer can also make some technical

introductions about xUnit frameworks as well as testing support by modern IDEs (for example, [34]),

and about the need for a CI process in a project when tests are run when they are committed to the

version control repository [7].

This all allows us to get rid of regression errors, i.e. errors associated with new changes that are

correct in themselves but lead to the inoperability of already written code. Thus, with the support of

previously written tests, it is possible to conduct regression testing at the code level. Therefore, with

8 Staroletov S.M. Teaching Software Testing and Verification

such testing, we can solve a very important problem for modern software, which is distinguished by

its incremental structure.

To support teamwork when writing specifications, the following techniques are suggested:

• Tests for a code should not be written by the person who wrote the code.

• To make it easier for others to write tests, the developer is advised to make specifications for

the methods that are supposed to be tested.

• The specifications at this stage should not be formal but should be sufficiently capacious, in

particular, each parameter and return value should be described.

• Documentation is proposed to be made in the JavaDoc annotation format, or rather, in a more

generalized form for all major programming languages processed by the DoxyGen tool [14].

An example of such a specification for a matrix processing library:

/**

* Bring the matrix to a triangular form

* @param matrix - nonzero original matrix

* @param col - complement of matrix, column vector of

size as number of rows of original matrix (may be null)

* @param useMainElement - the parameter indicating whether

to use the main (maximum modulo) element and rearrange

rows, @see maxPosInColumn

* @return Returns the number of row permutations, while

changing the original matrix

* @throws Exception when original matrix is degenerate

*/

public static int toTriangleMatrix(double[][] matrix,

double[] col, boolean useMainElement) throws Exception {

...

}

It was noticed that when writing specifications and writing tests based on them, students begin to

have questions about their completeness. So, we can think that the approach of creating informal (but

nevertheless at least some) specifications and tests in accordance with them is the first step towards

creating future formal specifications.

System Informatics, No. 21 (2022) 9

2.3. *DD development methodologies. Test Driven and Behaviour Driven

Development

Considering the methodologies in software engineering over time, we can state that by now the

process has moved from “code writing” programming methodologies named *OP (like OOP and

AOP), to development methodologies (something more significant than just writing code) named

*DD, with examples will be considered here: MDD, TDD and BDD.

Remembering that the unit testing approach is a development methodology and that we consider

teaching it for student programmers. Therefore, it is required to dive into programming at this stage,

but with the use of modern methodologies that assume that the code is not a primary, but a secondary

stage of the development. The article by Harry Robinson [53] presents the application of graph

theory to the tests generation. The program here is given by a transition system, that is, the graph

is a model, and then the code and tests can be obtained from it. In the modern development of

cyber-physical systems (see our already mentioned article [59]), engineers (1) build a physical model

based on diagrams using formulas according to physical laws, (2) simulate its operation (analogous to

testing with the analysis of graphs) and (3) finally, based on this model, the code for a microcontroller

and workpieces for tests can be generated. All of the above corresponds to MDD – the Model Driven

Development approach, where there is an initial abstract model and everything else in the development

comes from it.

Fig. 2. On the left is the unit testing process (the code encourages us to write a test), on the right is the TDD development process (the

test encourages us to write new code)

If we consider a development process, where the initial attribute is a test, then we move on to

the test driven development (TDD) process [5]. The author of the methodology is Kent Beck, one

of the developers of JUnit [6]. It should be noted here that this approach was borrowed (as Beck

notes) from the development of programs on punched cards, when the developer saw the input and

output sequences and thought about what transformations should be applied to obtain the latter. This

methodology, in addition, expects the writing of program code (changes) only after the discovery

of the fact of not passing any test (Fig. 2) and assumes to use the laziness of the human being.

10 Staroletov S.M. Teaching Software Testing and Verification

Therefore, these changes should be minimal and it is sufficient to pass only the failed test. Thus, for

further implementation, we need to think about tests and evolve the code according to them. In this

case, when developing in the IDE, we immediately have the opportunity to create the code templates

we need, which speeds up the development (see Fig. 3).

Fig. 3. Creating a method during a test writing

As for the sufficiency of the method for passing the test, it is initially written trivially:

public double add(double a, double b) {

return 4;

}

Further, when other tests appear, the implementation can turn into a set of switches by parameters of

the method and return the expected constants, which can later be generalized into formulas. However,

this code can be used at any stage (it is already in the working state on given inputs according to

the tests), can be transferred to other team members to develop other modules, or demonstrated to

customers. At the same time, some generalization can be done later if there is time.

The process of performing work on the TDD part by the students consists in receiving a task for

the implementation of a computer system or game (which can be completed in a short time), and

proceeding to individual implementation according to the task using the methodology, starting with

tests. In the time of the development, each step (written test or added/changed code) is committed to

the student’s private git repository, and when submitting the assignment, the project is shown to the

teacher in the form of a sequence of changes.

However, the current applicability of the TDD process is limited due to the following things:

• the developer thinks too much about the code;

• the customer is not involved into the process;

• managers think that the process is costly;

• small amount of companies still use it because of lack for experience how to setup this process.

The BDD (Behavior driven development) methodology was proposed to involve customers and

domain experts in the development and testing process. These people write specifications (work

scripts) for the system, how they expect the system to work correctly, then the specifications are tied

System Informatics, No. 21 (2022) 11

to program objects and become unit tests. At the same time, the developer can set up IDE and see

which specification (and not the test!) is being executed and what are the results of its checking.

The implicative Gherkin language [54] with constructions of the form given, where, and, then is used

here as a specification language. It creates the illusion of writing specifications in natural (controlled)

language. The approach was first implemented for Ruby in the Cucumber framework, ported to

major programming languages, and, at least the author knows, it is actually used in the industry in

web development companies, where specifications come from real customers. So, an example of

BDD scenario:

Scenario:

Given I have my software calculator

When I have entered 2 as first operand

And I have entered 2 as second operand

And I press ’Add’

Then The result should be 4

In the case of Java, a Step Definition file for the scenario is then generated using IDE tools. It

contains ready-made methods for the given natural language scenario (iHaveMySoftwareCalculator,

iHaveEnteredAsFirstOperand, iHaveEnteredAsSecondOperand, iPressAdd, theResultShouldBe). The

developer’s task is now to implement the code for creating an environment for a test object (its creation

and passing parameters), and then check the expected and actual values:

public class MyStepdefs {

private Calculator calc;

int operand1, operand2, result;

@Given("ˆI have my software calculator$")

public void iHaveMySoftwareCalculator() {

this.calc = new Calculator();

}

@When("ˆI have entered (\\d+) as first operand$")

public void iHaveEnteredAsFirstOperand(int number) {

this.operand1 = number;

}

12 Staroletov S.M. Teaching Software Testing and Verification

public void iHaveEnteredAsSecondOperand(int number) {

this.operand2 = number;

}

@And("ˆI press ’Add’$")

public void iPressAdd() {

this.result = calc.add(operand1, operand2);

}

@Then("ˆThe result should be (\\d+)$")

public void theResultShouldBe(int expected) {

Assert.assertEquals(expected, this.result, 1e-5);

}

}

Thus, we got a mapping of texts in controlled natural language into unit test-style calls. The initial

specification can be written by a non-programmer, and then the developer should take care of the code

so that this specification is executed correctly. Here one can also use all the assumptions of the TDD

approach about the minimum code for passing tests. In addition, current implementations support

tabular data values for working with datasets. The task for students here is also to implement their

previous exercise, but now with the Cucumber-like environment set up and the specifications (not

tests) written in advance than the code.

2.4. Functional automated testing

Testing programs with user interaction requires writing automation scripts that replace manual

testers. If there is a means of recording and reproducing such scripts, then, it allows us to set the initial

conditions for the test (by influencing the controls), perform the necessary actions (button click, for

example), and read the resulting state of the program from its user interface. When conducting this

course, the author all the time defends the approach in modern testing – what the teacher can enter

with his own hands and check with his own eyes, it could be done automatically and this should be

done on each commit of a change. Therefore, we are here learning how to manage programs and do

“assert” to check the expected value against the actual one, but in this case, at the functional level by

managing a ready-made application with its user interface.

When conducting practical tasks, we are primarily interested in an automation tool that allows

System Informatics, No. 21 (2022) 13

us to record scripts in the form of programs in some programming language. Here one can fully

control the setting of the initial values for the program, make different loops with different data, and

compare the results. Historically, automation has been well implemented for programs under MacOS

from Apple. In fact, all MacOS programs have some kind of interface for “listening to what they

tell us from the outside” and in the Automator tool [35], one can record and play scripts in a special

language. Further, a good support for UI scripts was implemented [4], and a functional test for the

designed solution in the XCode environment is launched as a unit test. For Windows and Linux,

the IBM Rational tester [28] has historically been a good tool, allowing the users to write scripts in

Java, support tests by datasets and other program management. It does not require source code, all

operations are carried out according to a user interface model that the program can access. In this

approach, it is also possible to express functional tests as unit tests. However, times and technologies

are changing, and the most popular automation tool in the world today is Selenium [55]. It targets for

modern web-based applications that work in the browser, so it is advisable to focus on it.

Selenium consists of three parts: Selenium IDE for writing and playing scripts, Selenium Web-

Driver for controlling the browser programmatically, and Selenium Cloud for running scripts on the

server. Selenium IDE operates as a browser plugin that works with the DOM model of the current

document and intercepts events when clicking on links, submitting forms, and so on. Also, it provides

a context menu where the user can choose, for example, which element on the page can be verified

now. For each action, a certain log is generated in the form of Selenium commands, which can be

then replayed. Manual testers usually limit themselves to recording sequences of working with the

web application under test, where they click on elements and make sure that the required element is

on the page. For example, when the user successfully logs in, an element to edit user’s data appears –

its presence can show us that the user is logged in:

open /blog/login

clickAndWait link=Registration

type id=inputEmail serg_soft@mail.ru

type id=inputPassword password

clickAndWait //button[@type=’submit’]

verifyElementPresent link=Edit my data

clickAndWait link=Exit

The considered log is a specification, according to which it is possible in the future to generate a

program code for different programming systems using a set of Selenium WebDriver libraries. This

14 Staroletov S.M. Teaching Software Testing and Verification

allows testers to write initial scripts, and developers integrate them into their development tools to

control the browser from programs.

An example of the generated code from the given log:

driver = new FirefoxDriver();

...

driver.Navigate().GoToUrl(baseURL + "/blog/login");

driver.FindElement(By.LinkText("Registration")).Click();

driver.FindElement(By.Id("inputEmail")).Clear();

driver.FindElement(By.Id("inputEmail")).SendKeys

("serg_soft@mail.ru");

driver.FindElement(By.Id("inputPassword")).Clear();

driver.FindElement(By.Id("inputPassword")).SendKeys

("password");

driver.FindElement(By.XPath("//button[@type=’submit’]")).

Click();

Assert.IsTrue(IsElementPresent(

By.LinkText("Edit my data"))); //assertion

driver.FindElement(By.LinkText("Exit")).Click();

One may notice that this code is the secondary artifact derived from the initial specification in the

form of Selenium commands. Such specifications are easier to write, modify, and maintain.

A developer with some experience will be able to further learn WebDriver commands and inte-

grate them into unit tests, as well as use such commands in writing programs in accordance with the

discussed TDD and BDD methodologies.

Lab assignments in this module include writing various scripts for existing programs, checking

their correct state on key interface elements, and developing a simple web application with authenti-

cation using BDD and WebDriver.

2.5. Static checks and dynamic program analysis

Static analysis is very important in the modern world of programming. A large number of vulner-

abilities today arise from code written with incorrect assumptions or gross errors. Modern languages

like Kotlin, Swift and Rust are come with built-in null-safety and type checking, while classic lan-

guages like C/C++ or Java are neither memory-safe nor type-safe. At the same time, a lot of modern

System Informatics, No. 21 (2022) 15

code is written (and is being written) in unsafe languages. Therefore, it makes sense to use tools that

check the source code and identify typical instances of potentially unsafe behavior. Static checkers

or linters analyze the abstract syntax tree of the program (this is shown for example in our work [60])

in order to find typical errors and vulnerabilities. They also build a limited control flow graph to find

potential paths with erroneous behavior and use various heuristics. Now in industrial development

processes, it is good practice to launch a static analyzer during the build of a project using a CI tool,

so it is necessary to accustom future developers using such tools. We consider both the easy-to-use

cppcheck [36] and PVS-Studio [52] built into the development environment, as well as the popular

SonarQube [13].

For complex programs, especially those working in a multi-threaded environment and dealing with

memory in a non-trivial way, static checking will not do much. For these purposes, dynamic analyzers

are used, in particular the Valgrind tool [44]. One can execute a long-running tool like a server for a

while and observe possible incorrect operation and memory leaks.

The labs consist of checking past code of the students and discussing the output of analyzer with

the teacher to get feedback on their code. In this case, the students can learn something new about

writing quality code based on messages from analysers.

2.6. Hoare triples. Deductive verification. Code Contracts

At this point, the students already have a good idea of what the specifications and Hoare triples

are, and it is time to try to check them at the code level. Bertrand Meyer’s Eiffel language was the first

attempt to exploit Hoare’s ideas in a general-purpose object-oriented programming language [16]. At

the same time, the so-called contracts have been introduced as part of the syntax of the language:

preconditions and postconditions have been added to methods, and invariants have been added to

classes. Of the interesting things, Eiffel offers the generation of random tests under the contract and

introduces its own multithreading model based on contracts [42]. However, for an average developer,

learning new languages just because the contracts can be specified there does not seem to make sense.

Therefore, it is better to learn how to write contracts for existing languages using syntactic extensions

or annotations. The most successful state-of-the-art product for developers, according to the author,

is the experimental MS Code Contracts tool by Microsoft Research, which integrates the contracts

approach into the C# language [40].

An example of a contract for the “Student” class that can be checked right in the development

environment [18] (code like stud.age = 10 will violate the contract and get highlighted):

16 Staroletov S.M. Teaching Software Testing and Verification

public Student(String name) {

Contract.Requires(name != null,

"Name should not be empty");

Contract.Requires(name.Contains(" "),

"Name should have at least 2 words");

this.name = name;

this.age = 16;

this.yearOfAdmission = DateTime.Now.Year;

}

[ContractInvariantMethod]

private void ObjectInvariant() {

Contract.Invariant(this.name!= null && this.age >= 14

&& this.age <= 80 && this.yearOfAdmission > 2000,

"Student’s fields are not set correctly");

}

Let us now consider more complex contracts for the container class “Student group”. The method that

adds the “Student” object to the list checks that the specified object is not empty and it is not in the

current list. It is checked by using the lambda predicate in C#. The postcondition is that the number

of elements in the list has increased by 1 and the list contains the added element:

protected List<Student> list { get; set; }

public GroupStudents() {

list = new List<Student>();

}

public void AddStudent(Student stud) {

Contract.Requires(stud != null);

Contract.Requires(! this.list.Exists(x => x.number ==

stud.number && x.name == stud.name));

System Informatics, No. 21 (2022) 17

Contract.Ensures(list.Count ==

Contract.OldValue(list.Count) + 1);

Contract.Ensures(list.Contains(stud));

list.Add(stud);

}

As for the class invariant, consider the code to ensure that there will never be two students with the

same number in the list:

[ContractInvariantMethod]

private void GroupInvariant() {

Contract.Invariant(Contract.ForAll(list, x =>

Contract.ForAll(list,

y => (x != y && x.number != y.number)

|| (x == y && x.number == y.number)

)));

}

Thus, this approach allows us to embed correctness conditions inside classes and check them using

contract library methods, C# language tools, and possibly auxiliary methods. At the same time, there

is no talk of any sufficiency of such a check.

To specify contracts for code with improved reliability requirements, we consider the Frama-C

approach [22] (an extensible platform for static and dynamic analysis) and its WP (Weakest Precon-

dition) subsystem for specifying formal specifications for C code. This approach allows developers to

specify contracts in the form of an ISO-standardized extension for C [2]. The place for the contracts

is in code comments with special keywords (vs the informal specification we learned in Section 2.1).

Here, in order for the contract to be proved automatically, it is necessary to set postconditions with

all changing variables in the function, as well as invariants for loop, essentially turning an impera-

tive program into a predicative functional one. This is all done by hand, and since we will have two

representations of the same code, we can guarantee its quality according to our assumptions if the

contracts are proven. An example of the applicability of the approach for standard library functions

on the example of working with files is well considered in the article [51]. For a different example,

consider the open-source C-code of the ArduPilot project for Arduino:

18 Staroletov S.M. Teaching Software Testing and Verification

float get_i(PID *pid, float error, float dt) {

if ((pid->ki != 0) && (dt != 0)) {

pid->integrator += ((float) error * pid->ki) * dt;

if (pid->integrator < -pid->imax) {

pid->integrator = -pid->imax;

} else

if (pid->integrator > pid->imax) {

pid->integrator = pid->imax;

}

return pid->integrator;

}

return 0;

}

In the next snippet, we show a specification for the function. Here \old is a memory state before

calling the function and \at(..., Post) – after calling it:

ensures ((pid->ki != 0) && (dt != 0)) ==> \at(pid->integrator, Post

) ==

CheckUp((float) (\old(pid->integrator) + ((float) error * pid->ki)

* dt), (int)pid->imax);

ensures !((pid->ki != 0) && (dt != 0)) ==> \at(pid->integrator,

Post) ==

\old(pid->integrator);

ensures ((pid->ki != 0) && (dt != 0)) ==> \result == \at(pid->

integrator, Post);

ensures !((pid->ki != 0) && (dt != 0)) ==> \result == 0;

Firstly, it can be seen that the function changes the value of pid->integrator and there are three cases:

• pid→ integrator < -pid→ imax: it is limited to -pid→ imax;

• pid→ integrator > pid→ imax: it is limited to pid→ imax;

• otherwise, that is, (pid→ integrator >= -max) and (pid→integrator <= max): do not change

of pid→ integrator.

At the same time, there must first be a change of pid→ integrator to error * (pid→ ki) * dt. Therefore,

System Informatics, No. 21 (2022) 19

the solution is to create a set of lemmas and an axiomatic that is used as a function in the ensures

section. Secondly, it can be noted that the function returns 0 if the first condition does not hold and

does not change the value of pid→ integrator. To describe the postcondition, the description of the

guard conditions in the form of implications can be performed.

axiomatic CheckAxiomatic {

logic float CheckUp{L}(float integrator, integer max);

lemma CheckUpMin{L}: \forall float integrator, integer max; (

integrator < -max) ==>

CheckUp(integrator, max) == (float)-max;

lemma CheckUpMax{L}: \forall float integrator, integer max;

integrator > max ==>

CheckUp(integrator, max) == (float)max;

lemma CheckUpNorm{L}: \forall float integrator, integer max; (

integrator >= -max) && (integrator <= max) ==> CheckUp(

integrator, max) == integrator;

}

In general, there is a good manual with a large number of discussed specifications of well-known

algorithms from Fraunhofer [3].

When performing laboratory work on these topics, students in minigroups propose contracts for

their existing code, analyze examples for Frama-C and try to specify some of the algorithms previ-

ously written on their own.

2.7. Model Based Testing. MS Specification Explorer

In this module, we move from code to formalized behavioral models and consider the model

based testing approach. This approach is interesting in that it can automatically generate unit tests

from specified behavioral automata. The author believes that the best tool that combines research and

industry for this approach is Microsoft Spec Explorer [39], originally created by MS Research for

internal purposes of testing Office and Internet Explorer (however, the tool does not work with the

latest versions of MS Visual Studio). The approach is based on the ASM theory [10]. An overview of

the approach in a pioneering version of the tool is done in the paper [46].

To demonstrate the approach, let us briefly consider an example of describing the behavior of a

login-password application in the special CordScript language [38]:

20 Staroletov S.M. Teaching Software Testing and Verification

machine LoginScenario():Main where ForExploration = true {

Initialize; (EnterLogin; EnterPassword; call Login;

((return Login/0; ResultFail){0,1}))+;

((return Login/1; ResultOK) |

(return Login/2; ResultOver))

}

Here we are modeling that Login() can return ResultOK on success, ResultFail on failure, and Resul-

tOver if the number of login attempts has been exceeded. For such a model, SpecExplorer generates

the automaton representation shown in Fig. 4. Actions here are not states, but arcs. Next, using the

Fig. 4. A login model

parallel composition operation, we intersect the behavioral automaton with the system model:

machine LoginScenarioSliced():Main

where ForExploration = true {

LoginScenario || ModelProgram

}

machine TestSuite():Main where ForExploration = true,

TestEnabled = true

{

construct test cases for LoginScenarioSliced()

}

System Informatics, No. 21 (2022) 21

Here ModelProgram is originally written in C# and presents a simplified model for implementation

of the program under test with some special annotations. Spec Explorer itself builds an automaton

based on this program. Ultimately, a suite of unit tests is built from the parallel composition and

generated as suites that can be run like regular tests in Visual Studio.

Labs on this topic include studying ways to specify the behavior of programs in the form of au-

tomata, implementing simple model programs and generating unit tests for them, as well as introduc-

ing errors into specifications and models in order to check the generated unit tests.

2.8. Model Based Checking. SPIN tool

In this module, we move from automata models of specifications to their expression in the form of

formulas of temporal logics. In accordance with the considered test undecidability theorem, additional

artifacts are needed besides the code. In the case of the model based checking method, the program

is replaced by its model (in the form of automata or some executable model), and in addition, the

requirements for the model are set in the form of temporal formulas. If the executable model has

the form of a program in a language with strict semantics, then it is possible to prove its correctness

with respect to given formulas with requirements. Such a proof, however, does not guarantee the

correctness of the original program in a real-world programming language, since such languages have

very complex semantics that cannot be expressed formally, or program verification will be possible in

this case only for simple programs due to inefficiency caused by the complexity.

This section discusses the SPIN model checker (or verifier) created by Gerard Holzmann [26].

The advantages of this product are that the model programs for it are expressed in the special Promela

language, which corresponds to the CSP formalism [25] and is somewhat similar in syntax to the

original EMC language [11] implemented by Clarke as the first model checking system. Requirements

for programs are expressed in the LTL language [47] (in the form of predicates with boolean and

temporal operators over the key variables of the program). The use of SPIN in teaching to software

engineering students is especially useful, since here the model is expressed in code that they are able

to understand. The ability to model interacting processes with the SPIN system allows us to simulate

interactions between models of microservice programs, which is relevant today.

In the course of teaching, we learn the syntax of the Promela model language [48] and the syntax

of LTL formulas for expressing various requirements patterns [15]. We also study some internals of

model checking according to Clarke’s works [41] and issues of their implementation in SPIN from

Holzmann’s articles [26]. We also touch the main problem of state explosion [41] in the model

22 Staroletov S.M. Teaching Software Testing and Verification

checking and the optimization methods implemented in SPIN to somewhat bypass it.

Previously, the author created a sufficient number of good examples demonstrating the Promela

language and the tasks solved on it. In a very basic example, we consider a service system as pro-

cesses interacting in a given sequence [49]. Following this example, students can make models of

the interaction of windows or screens in a program or models of interacting microservices. There is

also a good and complex model of a partitioned operating system scheduler presented in article [61].

In Fig. 5, we show how the current implementation of the operating system model works: processes

make system calls as messages and our scheduler encoded in Promela schedules them.

Fig. 5. Simulation of an OS model in iSpin

An interesting feature of the model checking is the generation of a counter-example when a re-

quirement formula is violated. This provides a transition sequence that leads to a violation of the

requirement. If we negate the LTL formula with the requirement, then the verifier will try to generate

a path from the initial state to the accepted state, which can find a solution to the problem given as

a transition system. Therefore, to solve search problems, one can encode behavior using all possible

non-deterministic transitions and deny the requirement that the problem be solvable. An example of

solving the Hanoi Towers problem is given below. Here we introduce arrays rodi by the number of

rods that store the numbers of disks on the rod (counti denotes the count of disks on the ith rod), and

in the following Promela code we just try to non-deterministically move a disk from the top to the

other rod or not move it:

System Informatics, No. 21 (2022) 23

do

:: count1 > 0 -> {

disk = rod1[count1-1]; //get the top disk from the rod 1

//and try moving it to 1st rod

if //here we try to move a disk...

::(count2==0 || (count2 < N && rod2[count2-1] > disk)) ->

{

printf("Disk %d from 1 to 2 \n", disk);

rod2[count2] = disk;

moves++;

count1--;

count2++;

}

//...or refuse to move it and try other branches

::(count2==0 || (count2 < N && rod2[count2-1] > disk)) ->

skip;

fi

}

//1->3; 2->1; 2->3; 3->1

od

ltl count_check { [] (count3 != 5) }

During the proof of the negation that the problem can be solved, the verifier will try all the branches

and find a solution to the Hanoi Towers problem. The full solution is given in [50]. This approach

can solve difficult problems, especially when using the Swarm Model Checking technology [27].

As for laboratory work, students are invited in minigroups to describe models of their interacting

programs in a simplified form and come up with requirements for them, showing the teacher the

results of simulation and verification in the iSpin tool.

24 Staroletov S.M. Teaching Software Testing and Verification

3. Results and Conclusion

In this discipline, the basics methods and tools for testing and verification are studied. The fact that

the subject is compulsory suggests that it is aimed at the average student programmer. Nevertheless,

the author believes that the majority of students, as a result of studying the course, have practically

successfully mastered all of the listed methods, or at least understood what is intended for what.

During the teaching of the course, a final test of 70 questions was prepared (the online test is available

under the link [45]). It has already been passed by 175 students, the results are shown in Fig. 6.

Fig. 6. Distribution of correct answers in the final test

The OX axis shows the number of correct answers, and the OY axis shows the number of passes

for that correct answers. The maximum score is 63/70 or 90%. The accuracy of answers on the right

side of the graph is greater, which indicates rather good mastering of the discipline by students.

Over the five years of teaching the discipline, it was necessary to change the distribution of labora-

tory work depending on the readiness of the audience (specifically, in the field of mathematical logic).

In some years, testing methods occupied a significant amount of time, while there were also student

groups that understood the examples well and made their own unique formal models. Teamwork in

minigroups of three people eliminates the unpreparedness of some students and allows students to

achieve basic mastery of the competencies considered.

It can be concluded that when training young developers, if from the very beginning they have

an understanding of the methods and tools for testing and verification and the need to set an initial

specification of the behavior of the software system, then in the future, they would be ready to produce

software of a different quality level.

As for a further work, it is planned to expand the material of the manual and the course with

an introduction to the verification of cyber-physical systems using formal methods. An example of

specification and verification of stability properties for a continuous-time system has already been

created [58].

System Informatics, No. 21 (2022) 25

Abbreviations. The following abbreviations are used in this paper:

ACSL ANSI/ISO C Specification Language

BDD Behavior Driven Development

LTL Linear Time Logic

MBC Model Based Checking

MDD Model Driven Development

MBT Model Based Testing

SPIN Simple Promela Interpreter

Promela Protocol meta-language

TDD Test Driven Development

Bibliography

1. 4W1H & 5W1H with examples : 2022. URL: https://readandgain.com/2022/07/05/4w1h-5w1h-

with-examples/.

2. ACSL: ANSI/ISO C Specification / Baudin P., Filliâtre J.-C., Marché C., Monate B., Moy Y., and

Prevosto V. 2015. URL: https://frama-c.com/download/acsl.pdf.

3. ACSL by example, towards a verified C standard library / Burghardt J., Ger-

lach J., Gu L., Hartig K., Pohl H., Soto J., and Völlinger K. // DEVICESOFT

project publication. Fraunhofer FIRST Institute (December 2011). 2016. URL:

https://www.cs.umd.edu/class/spring2016/cmsc838G/frama-c/ACSL-by-Example-12.1.0.pdf.

4. Apple. UI Testing in Xcode : 2015. URL: https://developer.apple.com/videos/play/wwdc2015/

406/.

5. Beck K. Test-driven development: by example. Addison-Wesley Professional, 2003.

6. Beck K., Gamma E. Test infected: Programmers love writing tests // Java Report. 1998. Vol. 3,

no. 7. P. 37–50.

7. Beller M., Gousios G., Zaidman A. Oops, my tests broke the build: An explorative analysis

of travis CI with github // 2017 IEEE/ACM 14th International Conference on Mining Software

Repositories (MSR) / IEEE. 2017. P. 356–367.

8. Bjørner D., Havelund K. 40 years of formal methods // International Symposium on Formal Meth-

ods / Springer. 2014. P. 42–61.

9. Board I. IEEE standard for Software unit Testing. ANSI/IEEE Std 1008-1987 // IEEE Computer

Society, New York, YK1987. 1987.

10. Börger E., Stärk R. F. Abstract state machines: a method for high-level system design and analy-

26 Staroletov S.M. Teaching Software Testing and Verification

sis. Springer, 2007.

11. Clarke E. M., Emerson E. A., Sistla A. P. Automatic verification of finite-state concurrent systems

using temporal logic specifications // ACM Transactions on Programming Languages and Systems

(TOPLAS). 1986. Vol. 8, no. 2. P. 244–263.

12. Clarke E. M., Wing J. M. Formal methods: State of the art and future directions // ACM Comput-

ing Surveys (CSUR). 1996. Vol. 28, no. 4. P. 626–643.

13. Code Quality and Code Security : 2022. URL: https://www.sonarqube.org.

14. Doxygen – Generate documentation from source code. 2022. URL: https://www.doxygen.nl.

15. Dwyer M. B., Avrunin G. S., Corbett J. C. Patterns in property specifications for finite-state verifi-

cation // Proceedings of the 21st international conference on Software engineering. 1999. P. 411–

420.

16. Eiffel: analysis, design and programming language / Bezault E., Howard M., Kogtenkov A.,

Meyer B., and Stapf E. // ECMA International, Tech. Rep. ECMA-367. 2006. URL:

https://www.ecma-international.org/publications-and-standards/standards/ecma-367/.

17. Elements of Reusable Object-Oriented Software / Gamma E., Helm R., Johnson R., and Vlis-

sides J. // Design Patterns. Massachusetts: Addison-Wesley Publishing Company. 1995.

18. Fähndrich M. Static verification for code contracts // International Static Analysis Symposium /

Springer. 2010. P. 2–5.

19. Ferreira J. F., Mendes A., Menghi C. Formal Methods Teaching. LNCS 13122. 2021.

20. Firesmith D. Using V Models for Testing : 2013. URL:

https://insights.sei.cmu.edu/sei blog/2013/11/using-v-models-for-testing.html.

21. Formal Methods Teaching Workshop : 2022. URL: https://fmtea.github.io.

22. Frama-C: A software analysis perspective / Kirchner F., Kosmatov N., Prevosto V., Signoles J.,

and Yakobowski B. // Formal Aspects of Computing. 2015. Vol. 27, no. 3. P. 573–609.

23. Garey M. R., Johnson D. S. Computers and intractability. 1979.

24. Hoare C. A. R. An axiomatic basis for computer programming // Communications of the

ACM. 1969. Vol. 12, no. 10. P. 576–580.

25. Hoare C. A. R. Communicating sequential processes. 1985.

26. Holzmann G. J. Software model checking with SPIN // Advances in Comput-

ers. 2005. Vol. 65. P. 77–108.

27. Holzmann G. J., Joshi R., Groce A. Swarm verification techniques // IEEE Transactions on Soft-

ware Engineering. 2010. Vol. 37, no. 6. P. 845–857.

System Informatics, No. 21 (2022) 27

28. IBM. IBM Rational Functional Tester : 2022. URL: https://www.ibm.com/products/rational-

functional-tester.

29. IEEE/ISO/IEC International Standard for Software and systems engineering–Software testing–

Part 3:Test documentation - Redline // ISO/IEC/IEEE 29119-3:2021(E) - Redline. 2021. P. 1–

274.

30. International Software Testing Qualifications Board : 2022. URL: https://www.istqb.org.

31. International Symposium on Formal Methods, https://link.springer.com/conference/fm : 2021.

32. International Symposium on Model Checking Software : 2022. URL:

https://link.springer.com/conference/spin.

33. Issues - Chromium : 2022. URL: https://bugs.chromium.org/p/chromium/issues/list.

34. Jetbrains. IDEA. Testing : 2021. URL: https://www.jetbrains.com/help/idea/testing.html.

35. Kissell J. Take Control of Automating Your Mac. Alt concepts, 2022.

36. Marjamaki D. Cppcheck – Online Demo : 2022. URL: http://cppcheck.net/demo/.

37. Martin R. C. SRP: The Single Responsibility Principle // Agile Software Development: Principles,

Patterns, and Practices. 2003.

38. Microsoft. Cord Syntax Definition : 2013. URL: https://msdn.microsoft.com/en-

us/library/ee691953.aspx.

39. Microsoft. Spec Explorer 2010 Visual Studio Power Tool : 2013. URL:

https://marketplace.visualstudio.com/items?itemName=SpecExplorerTeam.SpecExplorer2010

VisualStudioPowerTool-5089.

40. Microsoft. Source code for the CodeContracts tools for .NET : 2015. URL:

https://github.com/Microsoft/CodeContracts.

41. Model checking and the state explosion problem / Clarke E. M., Klieber W., Nováček M., and

Zuliani P. // LASER Summer School on Software Engineering / Springer. 2011. P. 1–30.

42. Morandi B., Bauer S. S., Meyer B. SCOOP–A contract-based concurrent object-oriented pro-

gramming model // Advanced Lectures on Software Engineering. Springer, 2007. P. 41–90.

43. NASA Formal Methods Symposium, https://link.springer.com/conference/fm : 2022.

44. Nethercote N., Seward J. Valgrind: a framework for heavyweight dynamic binary instrumenta-

tion // ACM Sigplan notices. 2007. Vol. 42, no. 6. P. 89–100.

45. Online test on testing and verification : 2017. URL:

https://onlinetestpad.com/t/testingverification.

46. Online testing with model programs / Veanes M., Campbell C., Schulte W., and Tillmann N. //

28 Staroletov S.M. Teaching Software Testing and Verification

Proceedings of the 10th European software engineering conference held jointly with 13th ACM

SIGSOFT international symposium on Foundations of software engineering. 2005. P. 273–282.

47. Pnueli A. The temporal logic of programs // 18th Annual Symposium on Foundations of Computer

Science (SFCS 1977) / IEEE. 1977. P. 46–57.

48. Promela grammar. URL: http://spinroot.com/spin/Man/grammar.html.

49. Promela samples – cafe : 2020. URL: https://github.com/SergeyStaroletov/PromelaSamples/blob/

master/cafe.pml.

50. Promela samples – Hanoi Puzzle : 2020. URL: https://github.com/SergeyStaroletov/Promela

Samples/blob/ master/HanoiPuzzle.pml.

51. Promsky A. V. C program verification: verification condition explanation and standard library //

Automatic Control and Computer Sciences. 2012. Vol. 46, no. 7. P. 394–401.

52. PVS-Studio : 2022. URL: https://pvs-studio.com/en/.

53. Robinson H. Graph theory techniques in model-based testing // International Conference on Test-

ing Computer Software. 1999. URL: http://www.harryrobinson.net/GraphTheoryInMBT.pdf.

54. Rose S., Wynne M., Hellesoy A. The Cucumber for Java book: Behaviour-driven development

for testers and developers // The Cucumber for Java Book. 2015. P. 1–338.

55. Selenium automates browsers : 2022. URL: https://www.selenium.dev.

56. Software Engineering. Federal Standard [in Russian] : 2017. URL: https://fgos.ru/fgos/fgos-09-

03-04-programmnaya-inzheneriya-920/.

57. Staroletov S. Basics of Software Testing and Verification [in Russian]. Lanbook, Saint Petersburg,

2020. P. 344. – EDN SGQVLL. URL: https://e.lanbook.com/book/138181.

58. Staroletov S. Automatic proving of stability of the cyber-physical systems in the sense of Lya-

punov with KeYmaera // 2021 28th Conference of Open Innovations Association (FRUCT) /

IEEE. 2021. P. 431–438.

59. Staroletov S. Modeling the Anti-Lock Braking System in Scilab and Its Checking for Com-

pliance with Uniform Requirements // International Conference on Industrial Engineering /

Springer. 2021. P. 413–424.

60. Staroletov S., Dubko A. A Method to Verify Parallel and Distributed Software in C# by Doing

Roslyn AST Transformation to a Promela Model // System Informatics. 2019. Vol. 15. P. 13–

44. URL: https://system-informatics.ru/files/article/staroletovdubko.pdf.

61. Staroletov S. M. A formal model of a partitioned real-time operating system in Promela // Pro-

ceedings of the Institute for System Programming of the RAS. 2020. Vol. 32, no. 6. P. 49–66.

