
System Informatics (Ñèñòåìíàÿ èíôîðìàòèêà), No. 17 (2020) 21

ÓÄÊ 519.713.8

Using an extension of CTL∗ for speci�cation and

veri�cation of sequential reactive systems

Gnatenko A.R., Zakharov V.A.

(National Research University Higher School of Economics)

Sequential reactive systems such as controllers, device drivers, computer interpreters

operate with two data streams and transform input streams of data (control signals, in-

structions) into output streams of control signals (instructions, data). Finite state trans-

ducers are widely used as an adequate formal model for information processing systems of

this kind. Since runs of transducers develop over time, temporal logics, obviously, could

be used as both simple and expressive formalism for specifying the behavior of sequen-

tial reactive systems. However, the conventional applied temporal logics (HML, LTL,

CTL, µ-calculus) do not suit this purpose well, since their formulae are interpreted over

ω-languages, whereas the behavior of transducers are represented by binary relations on

in�nite sequences, i.e. by ω-transductions. To provide temporal logics with the ability to

specify the property of transductions that characterize the behavior of reactive systems, we

introduced new extensions of these logics. Two principal features distinguish these exten-

sion: 1) temporal operators are parameterized by sets of streams (languages) admissible

for input, and 2) sets (languages) of expected output streams are used as basic predicates.

In our previous papers [7, 8, 13] we studied the expressive power and the model checking

problem for Reg-LTL and Reg-CTL which are the extensions of LTL and CTL where the

languages mentioned above are regular ones. We discovered that parametrization of this

kind increases expressive power of temporal logics though retains the decidability of the

model checking problem. Our next step in the systematic exploration of new extensions

of temporal logics intended for speci�cation and veri�cation of sequential reactive systems

is the study of the model checking problem for �nite state transducers against Reg-CTL∗

formulae. In this paper we develop a model checking algorithm for Reg-CTL∗ and show

that this problem is in ExpSpace.

Keywords: reactive system, model checking, �nite state transducer, temporal logic,

regular language, speci�cation, veri�cation

1. Introduction

Finite state machines are widely used in computer science as models of sequential computing

systems. In particular, �nite state transducers serve as a suitable formal model for various

22 Gnatenko A.R., Zakharov V.A.Using an extension of CTL∗ for sequential reactive systems

software and hardware systems such as controllers, device drivers, network switches, computer

interpreters, etc. which operate with two data streams. These devices and programs receive

streams of data (control signals, instructions) at their inputs and transform them into output

streams of control signals (instructions, data). Hardware devices of this type include adapters,

network switches, controllers. In software engineering transducers are used as formal models

of various programs and protocols that manipulate with strings of symbols, �ows commands,

data streams, etc. (see [2, 11, 19]). Such programs, systems and devices can be grouped under

the general name sequential reactive systems. A sequential reactive system operates in discrete

time. At each step of computation it receives a control signal (or a piece of input data) from

the environment and generates (performs, outputs) a sequence of actions (or a piece of output

data) in response. Those output actions and the order of their performance depend on the

received input signal, but also on all the previous control signals.

We focus on so called online systems which are supplied with only �nite memory. In [7] we

presented and discussed a number of examples to show that �nite state transducers is a simple

albeit rather adequate formalism for modeling the behavior of reactive sequential systems in

many applications. The behavior of such systems is characterized not by a set of sequences of

events, but by a relationship between two sequences of events. A typical property of such a

behavior that needs veri�cation is that for for each input word of a given pattern the transducer

always outputs a word of another given pattern. The requirements of this kind can be formally

speci�ed by means of temporal logics adapted for reasoning about pairs of sequences of events.

Such temporal logics were introduced and studied in [6, 7, 13]. In [13] a new extension

of Linear Temporal Logics (LTL) was introduced as a formal language for speci�cation of

the behavior of sequential reactive systems. In this logic LP-LTL the temporal operators

are parameterized by sets of words (languages) that represent distinguished �ows of control

signals that impact on a reactive system. Basic predicates in LP-LTL are also languages

in the alphabet of basic actions of a transducer; they represent the expected response of a

transducer to the speci�ed environmental in�uences. In [13] the authors studied the model

checking problem for regular fragment Reg-LTL of this logic when only regular languages are

used as basic predicates and parameters of temporal operators. It was shown that the model

checking problem for �nite state transducers against the formulae of Reg-LTL is decidable in

double exponential time. In [7] we estimate the expressive power LP-LTL by comparing it with

some well known logics widely used in computer science for speci�cation of reactive systems

System Informatics (Ñèñòåìíàÿ èíôîðìàòèêà), No. 17 (2020) 23

behavior. In [6] a model checking algorithm was proposed for Reg-CTL which is a regular

extension of Computational Tree Logic CTL.

In this paper we consider a more general speci�cation language Reg-CTL∗ which is a regular

extension of Generalized Computation Tree Logic CTL∗, develop a model checking algorithm

for this logic and estimate its complexity. This is the main contribution of the paper. The

results obtained are based on the methods developed in [6, 8, 13]; they are to continue the

line of research initiated in these papers. In Section 2 we introduce the formal de�nition of a

�nite state transducers as well as the syntax and the semantics Reg-CTL∗. In Section 3 we

give a short survey of some previously known extensions of conventional temporal logics and

compare them with our family of logics. In Section 4 we propose a model checking procedure

for Reg-CTL∗ and estimate its complexity. Section 5 is left for the comparative analysis of

the results obtained and similar decisions of model checking problem for other extensions of

temporal logics, and also for a discussion on the further lines of research.

This research is supported by RFBR project No. 18-01-00854.

2. Reactive systems models and their speci�cations

Sequential reactive systems such as adapters, controllers, device drivers, computer inter-

preters operate with two data streams and transform input streams of data (control signals, in-

structions, etc.) into output streams of data (control signals, instructions, etc.). Such mappings

are called transduction relations, and �nite state transducers are widely used as an adequate

formal model for information processing systems of this kind.

Let C and A be �nite alphabets. The elements of C are called input signals and the elements

of A are basic actions. Denote by A∗ the set of all �nite words over A, which are called

compound actions. Given two compound actions u and v, we write uv for their concatenation,

and ε for the empty word.

A �nite state transducer over the C and A is a quintuple π = (Q, C,A, qinit, T), where Q

is a �nite set of control states, qinit ∈ Q is the initial state, and T ⊆ Q × C × Q × A∗ is a

total transition relation. The size |π| of a transducer π is the size of a table description of its

transition relation T . A transition τ = (q′, c, q′′, h) ∈ T means that a transducer is capable to

output a compound action h and pass control to a state q′′ at receiving an input signal c in a

state q′. A trajectory of π from a state q0 is any in�nite sequence of transitions tr = {τi}i>1

such that τi = (qi−1, ci, qi, hi) ∈ T for all i, 1 6 i 6 n. A sequence of pairs (c1, h1), (c2, h2), . . .

24 Gnatenko A.R., Zakharov V.A.Using an extension of CTL∗ for sequential reactive systems

of a trajectory tr displays a behavior of a transducer as seen by an outside observer. We denote

by Trπ(q) the set of all trajectories of π from a state q, and write simply Trπ in the case when

q = qinit. We denote by Fin(Trπ(q)) the set of all �nite pre�xes of trajectories in Trπ(q); such

pre�xes will be called �nite trajectories from a state q.

To be able to analyze the behavior of a transducer π, it is advisable to use a structure

that represents all runs of π; it is obtained as an unfolding of the transition relation of π. A

computation graph of a �nite state transducer π = (Q, C,A, qinit, T) is a labeled digraph Γπ =

(V,E, vinit), which has the set of nodes V = Q×A∗ and the set of labeled arcs E ⊆ V ×C×V ,

such that for every pair of nodes u = (q′, s′) and v = (q′′, s′′) the following relationship holds

(u, c, v) ∈ E ⇐⇒ ∃h ∈ A∗ such that (q′, c, q′′, h) ∈ T and s′′ = s′h.

The node vinit = (qinit, ε) is called the initial node of Γπ. As it can be seen from the relationship

above, the correspondence between trajectories of π and paths in Γπ is as follows: for every

state q0 and a compound action s0 a trajectory tr = {(qi−1, ci, qi, di)}i>1 from q0 corresponds

to such a path ρ = {(vi−1, ci, vi)}i>1 in Γπ that v0 = (q0, s0) and vi = (qi, si−1hi) for all i > 1.

If tr = {(qi−1, ci, qi, di)}ki=1 is an initial �nite trajectory then we denote by vinit[tr] such a node

(qk, h) of Γπ that h = h1h2 . . . hk. If ρ = {(vi−1, ci, vi)}i>1 is a path in Γπ then we denote for

every k ≥ 0 by ρ|k its pre�x {(vi−1, ci, vi)}ki=1.

The veri�cation of information processing systems is a checking that the actual behavior of

a system satis�es the expected properties. By choosing �nite state transducers for a formal

model of sequential reactive system we thus formalize the notion of �behavior� of such systems:

a behavior of a transducer π manifests itself in the set of trajectories Trπ(qinit) of all initial

runs of π; this set is represented by the computation tree Γπ. Any set of trajectories can be

regarded as a property of transducers behavior. It is well known that the properties of behaviors

represented by in�nite sequences of events, as well as discrete structures that combine these

sequences, can be conveniently speci�ed by means of temporal logics (LTL, CTL, CTL∗, etc.).

However, when speci�cation of transducers behavior is concerned, one should keep in mind that

an adequate speci�cation language must admit interpretation over dual sequences of input and

output events. The authors of [13] drew attention to this particular feature of formal languages

for specifying the behavior of transducers, and they proposed a novel logic LP-LTL intended for

reasoning about the behavior of transducers. This logic is an extension of LTL, where temporal

operators are parametrized with languages over C and A. In [13] it was shown that in the case

System Informatics (Ñèñòåìíàÿ èíôîðìàòèêà), No. 17 (2020) 25

when only regular languages are used as parameters of temporal operators the model checking

of �nite state transducers against Reg-LTL speci�cations is decidable in double exponential

time. Next, in [6] Reg-CTL � a regular extension of CTL adapted for reasoning about dual

sequences of events � was introduced, and it was proved that model checking problem for �nite

state transducers against Reg-LTL speci�cations is PSPACE-complete. The expressive power

of these and some other extensions of temporal logics was studied in [7]. It is quite natural

that the next stage of research is the study of the veri�cation problem for the extension of

even more general logic CTL∗. In this section we present a temporal logic LP-CTL∗ and its

regular fragment Reg-CTL∗, which is of particular interest for model checking of �nite state

transducers.

As it was noticed above, the correct behavior of a sequential reactive system depends on

how it responds to certain environmental requests. The type of environmental impact on the

system can be represented as a language L over the set of input signals, and the type of the

response to such a stimulus � as a language P over the set of actions. A language L over C is

called an environment behavior pattern, and a language P over A is called a basic predicate.

Suppose that we are given a family L of environment behavior patterns and a family P of

basic predicates P . The set of LP-CTL∗ formulae consists of the subset of state formulae and

the subset of path formulae which are de�ned as follows:

1) every basic predicate P ∈ P is a state formula;

2) if ϕ1, ϕ2 are state formulae then ¬ϕ1 and ϕ1 ∧ ϕ2 are state formulae;

3) if ψ is a path formula then Aψ and Eψ are state formulae;

4) if ϕ is a state formula then ϕ is a path formula;

5) if ψ1, ψ2 are path formulae then ¬ψ1 and ψ1 ∧ ψ2 are path formulae;

6) if ϕ, ϕ1, ϕ2 are path formulae, c ∈ C, and L ∈ L thenXcϕ and ϕ1ULϕ2 are path formulae.

An intuitive meaning of LP-CTL∗ formulae is as follows. A basic predicate P holds whenever

an output result computed so far by a reactive system is a compound action from the set P .

A formula Aψ (or Eψ) means that every (some) computation of a reactive system satis�es the

requirement ψ. A formula Xcϕ claims that a reactive system is able to receive the input signal c

and its subsequent behavior satis�es the requirement ϕ. A formula ϕ1ULϕ2 asserts that every

time after receiving a sequence w of input signals such that w ∈ L, the behavior of a system

satis�es the requirement ϕ1 until, upon receipt of an input sequence from L, the behavior of

the system meets the requirement ϕ2.

26 Gnatenko A.R., Zakharov V.A.Using an extension of CTL∗ for sequential reactive systems

Formally, LP-CTL∗ formulae are interpreted over computation graphs Γπ of �nite state

transducers π = (Q, C,A, qinit, T). By writing Γπ, v |= ϕ we indicate that a state formula ϕ

is satis�ed at the node v of Γπ, and by writing Γπ, ρ |= ψ we indicate that a path formula ψ

is satis�ed on a path ρ of Γπ. The satis�ability relation |= is de�ned by structural induction

on the formulae for every node v = (q, s) in the computation graph Γπ, and a path ρ in Γπ

assuming that ρ = (v0, c1, v1), (v1, c2, v2), . . . as follows:

1. Γπ, v |= P ⇐⇒ s ∈ P for every basic predicate P ∈ P ;

2. Γπ, v |= ¬ϕ⇐⇒ it is not true that Γπ, v |= ϕ;

3. Γπ, v |= ϕ1 ∧ ϕ2 ⇐⇒ Γπ, v |= ϕ1 and Γπ, v |= ϕ2;

4. Γπ, v |= Eϕ⇐⇒ there exists such a path ρ from the node v in Γπ that Γπ, ρ |= ϕ;

5. if ϕ is a state formula then Γπ, ρ |= ϕ⇐⇒ Γπ, v0 |= ϕ;

6. Γπ, ρ |= ¬ψ ⇐⇒ it is not true that Γπ, ρ |= ψ;

7. Γπ, ρ |= ψ1 ∧ ψ2 ⇐⇒ Γπ, ρ |= ψ1 and Γπ, ρ |= ψ2;

8. Γπ, ρ |= Xcϕ⇐⇒ c = c1 and Γπ, ρ|1 |= ϕ;

9. Γπ, ρ |= ϕULψ ⇐⇒ ∃i > 0: c1c2 . . . ci ∈ L such that Γπ, ρ|i |= ψ and ∀j, 0 6 j < i, if

c1c2 . . . ci ∈ L then Γπ, ρ|j |= ϕ.

In the case when v = vinit we will write π |= ϕ instead of Γπ, v |= ϕ. In the de�nition

above environment behavior patterns and basic predicates may be arbitrary languages over the

alphabet of signals and the alphabet of actions, respectively. As one might expect, this freedom

of choice leads to undecidability. For example, let C be an alphabet of two or more letters, and

A = C. Consider such a transducer π that T = {(qinit, c, c, qinit) : c ∈ C}, i.e. π just retransmits

the received signals. Then, for any pair of context-free languages U and V over C it is true

that π |= EFUV i� U ∩ V 6= ∅. Since the emptiness of intersection problem for context-free

languages is undecidable (see [10]), the problem of checking whether a transducer π satis�es a

LP-CTL∗ formula ϕ (the model checking problem π |= ϕ) is also undecidable when L and P

are classes of context-free languages.

In order to �nd an e�ective solution to the model checking problem for LP-CTL∗ thus

introduced, we restrict ourselves to more simple classes of environment patterns and basic

predicates. In Section 4 we consider a fragment of LP-CTL∗, namely, Reg-CTL∗, where all

environment behavior patterns and all basic predicates are regular languages. But �rst, it is

worthwhile to brie�y compare the logic LP-CTL∗ introduced here with other previously known

extensions of conventional temporal logics.

System Informatics (Ñèñòåìíàÿ èíôîðìàòèêà), No. 17 (2020) 27

3. Other extensions of temporal logics

In [5] the �rst comprehensive analysis of LTL as a formal language for describing the behavior

of computing systems was carried out, and several attempts were made shortly thereafter to

improve the expressive power of this temporal logic. The modi�cations were made mainly in

two directions: 1) adding new expressive means (quanti�ers, modalities, etc.), and 2) changing

the semantics of temporal operators existing in LTL.

For example, the authors of [15] supplied the syntax of LTL with quanti�cation for basic

predicates and discovered that the expressive power of the quanti�ed extension thus introduced

signi�cantly exceeds the descriptive capabilities of the plain LTL. On the other hand, in [20]

a method for introducing new temporal operators using right-linear grammars was proposed.

The words generated by these grammars de�ne the patterns on which the satis�ability of the

formulas in the scope of a temporal operator is checked. Similarly, in [14, 18] it was shown that

the patterns for describing the semantics of new temporal operators can be de�ned by means

of �nite automata. The idea of supplying temporal operators with some parameters is not

new: almost the same parameterization of temporal operators as in this paper was introduced

in [9] for dynamically extend LTL. Since then several attempts of this kind were made to

merge regular languages and temporal operators (e.g. see [16] among the latest). In almost all

these cases a remarkable e�ect was found: an expressive power of such extensions increases and

becomes equivalent to that of S1S logic, while satis�ability checking problem for these logics

remains PSPACE-complete.

When introducing LP-CTL∗, we did not seek only to improve the expressive power of CTL∗

as such. Our goal was to o�er an adequate language for the speci�cation of the behavior of

reactive systems modeled by transducers. In the computation of a transducer, a coordinated

formation of two sequences is carried out � a sequence of input signals and a sequence of output

actions. Therefore, a distinctive feature of LP-CTL∗ semantics is a certain synchronization

of the parameters of temporal operators (their interpretation is determined by the sequence

of input signals) and the truth values of basic predicates (they depend on the sequence of

output actions). It could be said that the semantics of our logic is de�ned on traces in two-

dimensional space, while in all previously known parameterized extensions of temporal logics

only one-dimensional traces were used. This feature signi�cantly a�ects algorithms for checking

the satis�ability of formulas.

28 Gnatenko A.R., Zakharov V.A.Using an extension of CTL∗ for sequential reactive systems

4. Model ñhecking of �nite state transducers against Reg-CTL∗

speci�cations

The study of model checking problem for �nite state transducers was �rst initiated in [13].

The authors of this paper considered the case when speci�cations are given by Reg-LTL for-

mulae. This logic is an extension of the well-known temporal logic LTL and it is also linear

fragment of Reg-CTL∗ which contains only the formulae of the typeAϕ, where ϕ is a quanti�er-

free path formula. The model checking procedure developed in [13] is based on a translation of

a pair (π, ϕ) to a B�uchi automaton B(π, ϕ) such that π |= ϕ i� B(π, ϕ) 6= ∅.

In [6] the study of the model checking problem for �nite state transducers was continued.

The authors of this paper considered the temporal logic Reg-CTL. This logic is an extension

of another well-known temporal logic CTL; and it is also another fragment of Reg-CTL∗ which

consists of those formulae where each temporal operator F,G or U is preceded by a path

quanti�er E or A.

Model checking algorithms for Reg-LTL and Reg-CTL developed in [6, 13] follow respec-

tively the automata-theoretic and tableau-based approaches used for the solution of model

checking problem for conventional temporal logics LTL and CTL. In [4] it was shown (see

also [3]) that model checking problem for Extended Computational Tree Logic CTL∗ can be

solved with essentially the same complexity as LTL, using a combination of the algorithms for

LTL and CTL. However, when model checking of transducers against Reg-CTL∗ formulae is

concerned some speci�c features of transducers behavior make it impossible a straightforward

application of this combination techniques; model checking of Reg-CTL∗ speci�cations of �nite

state transducers needs a far elaborate study. In this section we present a model checking

algorithm for Reg-CTL∗ which is based on an iterated translation of a Reg-CTL∗ formula into

B�uchi automata.

4.1. Finite automata and B�uchi automata

A deterministic �nite state automaton (DFA) over an alphabet Σ is a quintuple A =

(Q,Σ, qinit, δ, F), where Q is a �nite set of states, qinit ∈ Q is an initial state, F ⊆ Q is a

set of accepting states and δ : Q × Σ 7→ Q is a transition function. This function can be

extended to the set of words Σ∗ as follows: δ(q, ε) = q, and δ(q, σx) = δ(δ(q, σ), x) for all

q ∈ Q, σ ∈ Σ and x ∈ Σ∗. A DFA A accepts a word x (we will write x ∈ A to denote this fact)

i� δ(qinit, x) ∈ F . A DFA A recognizes a language L(A) = {x : x ∈ A} of all words it accepts.

System Informatics (Ñèñòåìíàÿ èíôîðìàòèêà), No. 17 (2020) 29

A DFA A[x] = (Q,Σ, δ(qinit, x), δ, F) is called a shift of a DFA A by a word x. The size |A| of

an automaton A is the size of a table description of its transition function δ. By the size |L| of

a regular language L we mean the size |A| of the minimal DFA A which recognizes L.

In addition to deterministic automata, we will also use nondeterministic �nite state automata

(NFA) for manipulations with regular languages. NFA have transition functions of the type

Q× Σ 7→ 2Q, and its extension to Σ∗ is de�ned by the equalities δ(q, ε) = {q}, and δ(q, σx) =⋃
q′∈δ(q,σ) δ(q

′, x). A NFA A accepts a word x i� δ(qAinit, x) ∩ F 6= ∅ holds.

Finite state automata can be further extended to allow recognition of sets of in�nite words

over Σ. A nondeterministic generalized B�uchi automaton over an alphabet Σ is a quintuple

B = (Q,Σ, qinit,∆,F), where Q is a �nite set of states, qinit is an initial state, ∆ ⊆ Q×Σ×Q is

a transition relation, and F = {F1, . . . , Fm} is an accepting rule, where Fi ⊆ Q, 1 6 i 6 m. For

every in�nite word x = σ0σ1σ2 · · · ∈ Σω, a run of B on x is an in�nite sequence q0, q1, q2, . . .

of states of B, where q0 = qinit and for all i, i > 0, (qi, σi, qi+1) ∈ ∆. A run q0, q1, q2, . . . is

accepting if for all i, 1 6 i 6 m, there exist in�nitely many j, such that qj ∈ Fi. A word x ∈ Σω

is accepted by B (we write x ∈ B to denote this fact) i� there exists an accepting run of B

on x. In [3] it was shown that there exists a linear-time algorithm for checking, given a B�uchi

automaton B, i� B = ∅.

4.2. Translation of Reg-CTL∗ formulae to automata

Consider a �nite state transducer π = (Q, C,A, qinit, T) and a Reg-CTL∗ formula ϕ. A model

checking automaton is such a DFA A(π, ϕ) = (QA, T, q
A
init, δA, FA) over the �nite alphabet T

of transitions of π which satis�es for any �nite trajectory tr ∈ Pref(Trπ(qinit)) the following

relationship: Γπ, vinit[tr] |= ϕ ⇐⇒ tr ∈ A(π, ϕ).

Clearly, having constructed such a DFA A(π, ϕ), we obtain a solution to the model checking

problem, since π |= Eϕ i� ε ∈ A(π, ϕ). The main result of the paper is

Theorem 1. For every �nite state transducer π and a state Reg-CTL∗-formula ϕ the model-

checking automaton A(π, ϕ) can be e�ectively constructed within a memory space |π| ·2poly(|ϕ|).

Proof. From the de�nition of satis�ability relation for Reg-CTL∗ formulae it follows that

|= P ≡ EP holds for every basic predicate P . Therefore, it may be assumed without loss of

generality that every occurrence of a basic predicate in ϕ follows a path quanti�er E.

30 Gnatenko A.R., Zakharov V.A.Using an extension of CTL∗ for sequential reactive systems

Next, it should be noted that every state Reg-CTL∗-formula ϕ can be attributed to one of

three types of formulas:

1. ϕ = EP for some basic predicate P ;

2. ϕ = Φ(Eϕ1, . . . ,Eϕm) for some Boolean formula Φ(p1, . . . , pm);

3. ϕ = Eψ(Eϕ1, . . . ,Eϕm) for some quanti�er-free path Reg-CTL∗-formula ψ(P1, . . . , Pm).

Therefore, the construction of the model checking automaton A(π, ϕ) is carried out recursively.

1. For every regular basic predicate P the model checking automaton A(π,EP) can be easily

built of a transducer π and a DFA AP which recognizes P .

2. For every Boolean formula Φ(p1, . . . , pm) a model checking automaton A(π, ϕ) for a state

Reg-CTL∗-formula ϕ = Φ(Eϕ1, . . . ,Eϕm) can be built as a Boolean combination of model

checking automata A(π,Eϕi) corresponding to subformulae Eϕi, 1 ≤ i ≤ m.

3. Suppose that ϕ = Eψ(Eϕ1, . . . ,Eϕm), where ψ(P1, . . . , Pm) is some quanti�er-free path

Reg-CTL∗-formula, and model checking automata A(π,Eϕi), 1 ≤ i ≤ m, are available.

Then regular languages L(A(π,Eϕi)) recognized by these automata are regarded as basic

predicates P1, . . . , Pm, and model-checking automaton A(π, ϕ) is built as follows:

� by applying a model checking algorithm proposed in [13] build a B�uchi automaton

Bψ(P1,...,Pm) which accepts a trace tr ∈ Trπ i� tr corresponds to such a path ρ that

Γπ, ρ |= ψ(P1, . . . , Pm);

� next, by combining a B�uchi automaton Bψ(P1,...,Pm) and a transducer π build such a

B�uchi automaton B(π, ϕ) that for any �nite trajectory tr the following relationship

holds: Γπ, vinit[tr] |= Eψ(P1, . . . , Pm) i� there exists an accepting run of B(π, ϕ) on

some trace tr′ which is an extension of tr;

� �nally, by using a simple reachability checking techniques build a model checking

automaton A(π, ϕ) from B(π, ϕ).

Corollary. The model checking problem for �nite state transducers against Reg-CTL∗ speci-

�cations is in ExpSpace.

Theorem 2. The model checking problem for �nite state transducers against Reg-CTL∗

speci�cations is PSpace-hard.

Proof (sketch). In [12] it was proved that it is PSpace-hard to check whether the intersection

of an arbitrary number of deterministic �nite state automata is empty. This problem can be

reduced to our model checking problem in polynomial time. 2

System Informatics (Ñèñòåìíàÿ èíôîðìàòèêà), No. 17 (2020) 31

5. Conclusion

In this paper we introduced an extension Reg-CTL∗ of Generalized Computational Tree

Logic CTL∗ as a formal language for speci�cation the behavior of sequential reactive systems,

de�ne its semantics on the models of �nite state transducers, and give a solution to the model

checking problem for �nite state transducers against formulae from Reg-CTL∗. The solution is

obtained by means of automata-theoretic techniques following the ideas of our model checking

algorithms for and Reg-LTL and Reg-CTL presented in the early papaers [8?]. It may

be noticed that this model checking algorithm is exponentially more time consuming than

the similar algorithm for plain CTL∗ (see [?]). However, there remains an exponential gap

between the lower and the upper bounds on the complexity of the model checking problem for

Reg-CTL∗. We assume that this gap can be �lled by improving the proposed algorithm using

the promising techniques suggested in [9], where a logic similar to Reg-LTL was studied.

The authors of the article are grateful to the anonymous reviewers for useful comments that

helped to improve the article.

Ñïèñîê ëèòåðàòóðû

1. Ãíàòåíêî À. Ð., Çàõàðîâ Â. À. Î ñëîæíîñòè âåðèôèêàöèè àâòîìàòîâ-ïðåîáðàçîâàòåëåé

íàä êîììóòàòèâíûìè ïîëóãðóïïàìè // Ìàòåðèàëû XVIII Ìåæäóíàðîäíîé êîíôåðåíöèè

�Ïðîáëåìû òåîðåòè÷åñêîé êèáåðíåòèêè�. 2017. Ñ. 68�71.

2. Alur R., Cerny P. Streaming transducers for algorithmic veri�cation of single-pass list-processing

programs // Proceedings of the 38-th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-

gramming Languages. 2011. P. 599�610.

3. Clarke E.M., Gramberg O., Kroening D., Peled D.A., Veith H. Model Checking. MIT Press. 2018.

424 p.

4. Emerson E.A., Lei C.-L. Modalities for model checking: branching time logic strikes back // Science

of Computer Programming. 1987. Vol. 8, � 3. P. 275�306.

5. Gabbay D., Pnueli A., Shelach S., Stavi J. The temporal analysis of fairness // Proceedings of the

7-th ACM Symposium on Principles of Programming Languages. 1980. P. 163�173.

6. Gnatenko A.R., Zakharov V.A. On the model checking of �nite state transducers over semigroups

// Proceedings of ISP RAS. 2018. Vol. 30, � 3, P. 303�324

7. Gnatenko A.R., Zakharov V.A. On the expressive power of some extensions of Linear Temporal

Logic // Automatic Control and Computer Sciences. 2019. Vol. 53, � 7, P. 506�524.

8. Gnatenko A.R. On the complexity of model checking problem for �nite state transducers over free

semigroups. // Proceedings of the Student Session of European Summer School on Logic, Language

and Information, Riga, 2019.

32 Gnatenko A.R., Zakharov V.A.Using an extension of CTL∗ for sequential reactive systems

9. Henriksen J.J., Thiagarajan P.S., Dynamic linear time temporal logic // Annals of Pure and

Applied Logic. 1999. Vol. 96, � 1�3. P. 187�207.

10. Hopcroft J.E., Ullman J.D. Introduction to Automata Theory, Languages, and Computation (1st

ed.). Addison-Wesley. 1979.

11. Hu Q., D'Antoni L. Automatic Program Inversion using Symbolic Transducers // Proceedings of

the 38-th ACM SIGPLAN Conference on Programming Language Design and Implementation.

2017. P. 376�389.

12. Kozen D. Lower bounds for natural proof systems. // Proceedings of the 18-th Symposium on the

Foundations of Computer Science. 1977. P. 254�266.

13. Kozlova D.G., Zakharov V.A. On the model checking of sequential reactive systems // Proceedings

of the 25th International Workshop on Concurrency, Speci�cation and Programming (CS&P 2016),

CEUR Workshop Proceedings. 2016. Vol. 1698, P. 233�244.

14. Kupferman O., Piterman N., Vardi M.Y. Extended temporal logic revisited // Proceedings of the

12-th International Conference on Concurrency Theory. 2001. P. 519�535.

15. Manna Z., Wolper P. Synthesis of communicating processes from temporal logic speci�cations //

ACM Transactions on Programming Languages and Systems. 1984. Vol. 6, � 1. P. 68�93.

16. Mateescu R., Monteiro P.T., Dumas E., De Jong H. CTRL: Extension of CTL with regular expres-

sions and fairness operators to verify genetic regulatory networks // Theoretical Computer Science.

2011. Vol. 412, � 26. P. 2854�2883.

17. Savitch W.J. Relationships between nondeterministic and deterministic tape complexities. // Jour-

nal of Computer and System Sciences, 1970. Vol. 4, � 2.

18. Vardi M.Y., Wolper P. Yet another process logic // Proceedings of the Carnegie Mellon Workshop

on Logic of Programs. 1983. P. 501�512.

19. Veanes M., Hooimeijer P., Livshits B., et al. Symbolic �nite state transducers: algorithms and

applications // Proceedings of the 39-th ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, ACM SIGPLAN Notices. 2012. Vol. 147. P. 137�150.

20. Wolper P. Temporal logic can be more expressive // Information and Control. 1983. Vol. 56, ��

1�2, P. 72�99.

