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Process-oriented programming is a promising approach to the development of control

software. Control software often has high reliability requirements. Formal verification

methods, in particular deductive verification, are used to prove the correctness of such

programs regarding the requirements. Previously, a temporal requirements language [2] was

developed to specify temporal requirements for deductive verification of process-oriented

programs. It was also shown that a significant part of the requirements falls into a small

number of classes. Requirements patterns was developed for these classes. In this paper, we

present a collection of process-oriented programs and requirements for them. Requirements

are formalized in the temporal requirements language and classified according the set of

patterns. We also define a new requirement pattern. These results can be used in the

research of formal verification methods for process-oriented programs, in particular in the

research of methods of proving verification conditions.
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1. Introduction

Formal verification is a crucial part in the development of safety-critical software, in par-

ticular, control software. Deductive verification is one of formal verification methods in which

program properties are formalized in the form of logical formulas expressing relations between

program variables (preconditions, postconditions and invariants) and added to the programs

as annotations. Then for this annotated program, the generation and proving of verification

conditions are performed.

Process-oriented programming [11] is one of approaches to control software development. A

process-oriented program is defined as a sequence of interacting processes which is executed in

the control loop. Each process is represented by a set of named executable codes called process

states.

Control software often has temporal requirements. Previously, we developed a deductive

verification approach [1] for process-oriented programs with temporal requirements. This ap-

proach entails utilizing control loop invariants and storing the history of changes in variable
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values to specify temporal requirements. In our work [2], we introduced the DV-TRL annota-

tion language oriented to deductive verification for formalizing requirements to process-oriented

programs. We also formalized a set of 45 requirements for 10 case studies and discovered that

a considerable portion of these requirements can be classified into a few distinct classes. Based

on these findings, we established four requirement patterns.

To verify temporal requirements, model checking is a commonly used method where temporal

properties are specified using temporal logic formulas (e.g., LTL or CTL). Model checking tools

then automatically check if the program model satisfies the specified requirements. However,

one limitation of model checking is the state explosion problem. Hence, deductive verification

is also employed to verify temporal requirements.

Deductive verification is typically used to verify functional requirements [5, 6]. In deductive

verification, requirements are described by assertions at certain points in the program linking

the current values of variables at these points [4]. Nevertheless, deductive verification is also

used to verify temporal requirements. For example, in STeP [8], verification rules are used to

reduce the proof of correctness of a program in the SPL language with respect to a temporal

formula to a set of verification conditions that are formulas of first-order logic. In [7] the

deductive verification of control software with temporal properties specified using timing charts

is presented. The Why3 system is used for verification. Events and stable states of the timing

chart are represented in Why3 by loops, the body of which corresponds to the iteration of

the control loop, and the guard specifies the stable state of the timing chart. In our work,

we define temporal properties in the form of invariants of the control loop. Unlike STeP, we

do not develop special verification rules for temporal formulas, but use the rules of axiomatic

semantics, similar to the rules of Hoare logic.

Temporal specification of requirements plays a crucial role in the development of critical con-

trol software. However, this process is often burdensome and prone to errors. To address these

challenges, research is being undertaken to simplify the temporal specification. For instance,

in [9], the authors introduce a classification encompassing commonly encountered temporal

requirements in specification tasks. Similarly, we have developed our own classification and

established patterns. While our classification may be incomplete, it incorporates requirement

classes identified in real control system specifications.

This paper aims to expand the set of temporal requirements and establish control programs in

the process-oriented language poST [12]. Additionally, we enhance the collection of requirement
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patterns to align with the extended set of requirements.

The rest of the paper has the following structure. We describe the temporal requirements

language in Section 2 and requirement classification in Section 3. In Section 4, we present the

set of case studies.

This work is supported by the Russian Ministry of Education and Science, project no.

122031600173-8.

2. Temporal Requirements Language DV-TRL

The temporal requirement language DV-TRL introduced in [2] is based on state date type

storing the history of all changes of program variables and the set of specialized functions over

this data type. The state data type is defined by the following set of constructors:

• emptyState : state the initial empty state of the control system;

• toEnv : state → state inputs to the environment

• setV ar : state× variable× value → state sets values to variables;

• setPstate : setPstate : state× process× pstate → state sets process states;

• reset : state× process → state resets local clocks of processes.

A corresponding constructor is defined for each type of changes in programs.

Following domain-specific functions over the state data type are used in program annota-

tions:

• getV ar : state× variable → value returns values of variables;

• getPstate : state× process → pstate returns current states of processes;

• substate : state×state → bool checks that the first state is a substate of the second state.

A state s′ is a substate of s if s′ = s, or there exist a state s′, a constructor c, and values

v1, ..., vn such that s′ = c(s′′, v1, . . . , vn), and s′′ is a substate of s;

• toEnvNum : state× state → nat returns a number of application of constructor toEnv

for getting the second state from the first substate. The score starts anew if the reset

constructor meets;

• toEnvP : state → bool checks whether the state has the form toEnv(s) for some s;

These functions allow describing the requirements for process-oriented programs in a natural

way.

Here the value type is a union of types bool, nat and int. Types bool, nat and int describe

sets of logical constants (true and false), natural numbers and integers numbers, respectively.
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The variable, process, and pstate types are used to encode the names of variables, processes,

and process states of a process-oriented program respectively.

3. Requirements Patterns

In this section, we will be discussing 5 temporal requirements patterns. These patterns

are formulated as parametric formulas in the DV-TRL language. The initial 4 patterns were

previously introduced in [2]. We add one more pattern and present the formula only for it.

The first pattern establishes requirements that specify that event E2 should occur no later

than τ after event E1. An example of this is the first requirement for the turnstile control

program, which we will discuss further below.

The second pattern describes requirements that state that a specific event will occur after

one iteration of the loop. An example of this is the first requirement for the thermopot control

program, which we will presented on later.

The third pattern describes requirements that assert that events should occur at one specific

point within the control loop. An example of this is the sixth requirement for the revolving

door control program, which we will examine in more detail below.

The fourth pattern for requirements combines the first and second patterns. If event E1

occurs, event E2 must occur within a time interval of τ . In this scenario, the formula that

describes E1 imposes restrictions on the variable values in two different states, separated by

one iteration of the control loop. An example of this class is the first requirement for the

pedestrian crossing light control program that will be discussed later.

The fifth pattern describes requirements that state that if event E1 occurs, event E2 can

only occur after a minimum time interval of τ . The formula that describes event E1 imposes

restrictions on variable values in two distinct states, with the time between them being one

iteration of the control loop. The requirements pattern for this class can be expressed as

follows:

E1 has happened, then event E2 does not happen for at least τ .

p5(s, τ, vc1, vc2) ≡

toEnvP s∧

(∀s1s2s3. substate s1 s2 ∧ substate s2 s3 ∧ substate s3 s ∧ toEnvP s1 ∧ toEnvP s2∧

toEnvP s3 ∧ toEnvNum s1 s2 = 1 ∧ toEnvNum s2 s3 < τ ∧ vc1(s1, s2) −→ vc2(s3),

where variable constraint vc1 describes the event E1, vc2 describes the event E2. This class
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includes, for example, the fourth requirement for the fridge control program considered below.

4. Case Studies

This section presents the set of case studies. We provide descriptions of the case studies

and requirements for them as well as classify these requirements according to the patterns and

provide examples of their formalization. The poST programs can be found on GitHub [13].

4.1. Turnstile

In this case study, we examine a turnstile as a controlled device. The turnstile is equipped

with a coin acceptor, doors operated by a signal (open), an LED (enter) indicating the possibility

of passage, and two sensors to detect the presence of a user (PdOut) and the opening of the

doors (opened). The doors remain locked until a payment signal (paid) is received from the

coin acceptor, after which they open. If the user does not pass through within 10 seconds after

the doors open, they will automatically close. After a successful payment, the coin acceptor is

locked. The coin acceptor is unlocked by a reset signal once the turnstile is closed.

For the turnstile control program, we propose the following 7 requirements:

1. The open signal should remain true for a maximum of 10 seconds.

2. If the turnstile has been closed and the payment has not been made, it will not open until

the payment is made.

3. After receiving the paid signal from the coin acceptor, the open signal should be given

immediately.

4. After receiving the PdOut signal indicating the passage of a user, the turnstile must be

closed within a maximum of 1 second.

5. The open signal should remain true for a minimum duration of 1 second.

6. After the opened signal appears and until it is reset, the enter LED should be lit.

7. After the turnstile is closed, the signal reset should be given to unlock the coin acceptor.

The requirement 1 belongs to the 1st class. The requirements 2, 3 and 7 belong to the 2nd

class. The requirement 4 belongs to the 4th class. The requirement 5 belong to the 5th class.

The requirement 6 belong to the 3rd class. For example, the first requirement is formalized as

the following annotation:

toEnvP s∧

(∀s1. substate s1 s ∧ toEnvP s1 ∧ toEnvNum s1 s ≥ 100 ∧ getVarBool s1 open′ −→
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(∃s3. toEnvP s3 ∧ substate s1 s3 ∧ substate s3 s∧

toEnvNum s1 s3 ≤ 100 ∧ ¬ getVarBool s3 open′∧

(∀s2. toEnvP s2 ∧ substate s1 s2 ∧ substate s2 s3 ∧ s2 ̸= s3 −→ getVarBool s2 open′)))

4.2. Pedestrian Crossing Light

In this case study, a pedestrian crossing light with a button installed at the crossing is

considered as a controlled device. Its regular state is "red". When a pedestrian appears at the

crossing, he presses the button. If the green signal of the pedestrian crossing light was on more

than 10 seconds ago, then the green signal will turn on 5 seconds after pressing the button.

If the green light was on no more than 10 seconds ago, then the green will turn on after the

timeout between transitions equal to 15 seconds. If green is turned on, it will be on for 30

seconds, then red turns on.

Thus, there is one input signal ("the button is pressed") and one control signal ("green is

on"). The program gets the input signal and, depending on it, controls the traffic light signal.

This program should satisfy the following requirements:

1. If the red light is on and the button is pressed, the green light will be activated within a

maximum of Tr seconds.

2. If the green light just has turned on, then the green light will be on for at least Tg seconds.

3. Once the green light has just been activated, it will transition to red within a maximum

of Tg seconds.

4. If the red light just has turned on, then the red light will be on for at least Tr seconds.

Here Tr is the maximum time during which a pedestrian waits for the green signal of the

traffic light to turn on after pressing the button, equal to 15 seconds, Tg is the duration of the

green signal of the traffic light, equal to 30 seconds.

The requirements 1 and 3 belong to the 4th class. The requirements 2 and 4 belong to the

5th class. For example, the first requirement is formalized as the following annotation:

toEnvP s∧

(∀s1s2. substate s1 s2 ∧ substate s2 s ∧ toEnvP s1 ∧ toEnvP s2 ∧ toEnvNum s1 s2 = 1∧

toEnvNum s2 s ≥ Tr ∧ getVarBool s1 trafficLight = RED∧

getVarBool s1 requestButton = NOT_PRESSED∧

getVarBool s2 requestButton = PRESSED −→

(∃s4. toEnvP s4 ∧ substate s2 s4 ∧ substate s4 s ∧ toEnvNum s2 s4 ≤ Tr∧
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getVarBool s4 trafficLight = GREEN∧

(∀s3. toEnvP s3 ∧ substate s2 s3 ∧ substate s3 s4 ∧ s3 ̸= s4 −→

getVarBool s3 trafficLight = RED)))

4.3. Revolving Door

In this case study, a revolving door is considered as a controlled device. Revolving doors

are installed at the entrances to buildings with a large flow of visitors. The device consists of

a three- or four-section door rotating around a vertical axis, a motor and a brake for instant

stop of the door.

In the absence of users, the door is stationary, and when the user approaches, it begins to

rotate. The rotation continues while the user is inside the rotation space. The approach of the

user and his presence inside the rotation space is registered by the motion sensor (user). If the

user leaves the rotation space, then after a certain time the rotation stops.

The pressure sensor registers the pressure on the sectional partitions. Rotation is suspended

for a short time when pressure is exerted to the partitions.

We offer the following requirements for this program:

1. When a user enters, the door starts to rotate if pressure is not detected.

2. Rotation continues while the user is inside the rotation space if pressure is not detected.

3. If the user has left the rotation space, then the rotation should stop after no more than

1 second if users do not reappear during this time.

4. If pressure is detected, then rotation should be suspended for at least 1 second.

5. If pressure is no longer detected then rotation should resume no more than 1 second.

6. Simultaneous appearance of rotation and brake signals is prohibited.

Here the requirements 1 and 2 belong to the 2nd class. The requirements 3 and 5 belong to

the 4th class. The requirement 4 belongs to the 5th class. The requirement 6 belongs to the

3rd class. For example, the sixth requirement is formalized as the following annotation:

toEnvP s∧

(∀s1. substate s1 s ∧ toEnvP s1∧

getVarBool s1 brake = True −→ getVarBool s2 rotation = False)

4.4. Fridge

In this case study, a fridge is considered as a controlled device. The fridge consists of a

fridge and a freezer and has two compresses. The temperature in the fridge is registered by the
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fridgeTempGreaterMin and fridgeTempGreaterMax sensors, showing whether the temperature

exceeds the minimum and maximum values, respectively. To control the temperature in the

freezer, the device has sensors freezerTempGreaterMin and freezerTempGreaterMax. The fridge

maintains the temperature in the range between the minimum and maximum values. When

the temperature in the fridge is exceeded, the compressor (fridgeCompressor) turns on, which

turns off when the temperature reaches the minimum value. The freezer Compressor is used

for the freezer. When the fridge door is opened, the lighting turns on, which turns off when

it is closed. If the fridge door is open for more than 30 seconds, a sound signal (dorsignal) is

given.

We offer the following requirements for this program:

1. When the fridge door is opened, the lighting turns on.

2. When the fridge door is closed, the lighting turns off.

3. If the fridge door is open, the signal is given after no more than 30 seconds if the user

does not close the door during this time.

4. The sound signal is not given spontaneously. The signal is given only if the door is open

for at least 30 seconds.

5. If the temperature in the fridge exceeds the maximum, the compressor turns on.

Here the requirements 1, 2 and 5 belong to the 2nd class. The requirement 3 belongs to the

1st class. The requirement 4 belongs to the 5th class. For example, the fourth requirement is

formalized as the following annotation:

toEnvP s∧

(∀s1s2s3. substate s1 s2 ∧ substate s2 s3 ∧ substate s3 s ∧ toEnvP s1 ∧ toEnvP s2∧

toEnvP s3 ∧ toEnvNum s1 s2 = 1 ∧ toEnvNum s2 s3 < OPEN_DOOR_TIME_LIMIT

getVarBool s1 fridgeDoor = CLOSED′ ∧ getVarBool s2 fridgeDoor = OPEN −→

¬ getVarBool s3 doorSignal)

4.5. Thermopot

In this task, a thermopot is considered as a controlled device. A thermopot is the device

that combines the functions of a kettle and a thermos. The thermopot has three temperature

modes. It heats the water to the temperature corresponding to the selected temperature mode

(selectedTemp), and maintains this temperature. The device contains a housing with a sealed

flask, which allows it to maintain the required temperature for a long time, a lid and a heating
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element (heater). There is a control panel with three buttons (button1, button2, button3) on

the lid that allow you to select the desired temperature mode. The boiling button (boiling-

Button) is used to turn on the boiling. During boiling, the lid is locked. Output signal lid

controls the lid locking. After boiling, the thermopot switches to the temperature maintenance

mode. In the temperature maintenance mode, the heating element turns on when the water

temperature becomes more than 5 degrees less than the set temperature. The boilingMode and

maintainingMode indicators show whether the thermopot is in the boiling and temperature

maintenance mode, respectively.

We propose the following requirements for this program:

1. Until the required temperature is reached, the lid is locked.

2. When the set temperature is reached, the heating element turns off.

3. The heating element turns on when the water temperature becomes more than 5 degrees

less than the set temperature.

4. When one of the temperature mode selection buttons is pressed, the corresponding re-

quired temperature is set.

item If the boiling button is not pressed, the heating will not turn on.

Here the requirements 1, 2, 3 and 5 belong to the 2nd class. The requirement 4 belongs to

the 3rd class. For example, the first requirement is formalized as the following annotation:

toEnvP s∧

(∀s1s2. substate s1 s2 ∧ substate s2 s ∧ toEnvP s1 ∧ toEnvP s2 ∧ toEnvNum s1 s2 = 1∧

getVarBool s1 boilingMode′ ∧ getVarInt s2 temperature′ < BOILINGPOINT ′ −→

getVarBool s2 lid′ = LOCKED′)

5. Conclusion

In this paper, we proposed a collection of control programs in process-oriented poST lan-

guage. We formulated a set of temporal requirements for each program. These requirements

have been classified according previously developed requirements patterns. This classification

confirmed that most of the requirements belong to previously introduced classes, but some

requirements form a new class. We defined the pattern for this requirements class. The devel-

oped collection of process-oriented programs can be used in the research of methods of formal

verification of such programs, in particular, in the development of a methodology for proving

verification conditions.
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In the future, we plan to investigate the possibility of automation of proving verification

conditions for requirements belonging to developed classes.
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