УДК 004.8

Formalisms for conceptual design of information systems^{*}

Anureev I.S. (Institute of Informatics Systems)

A class of information systems considered in this paper is defined as follows: a system belongs to the class if its change can be caused by both its environment and factors inside the system, and there is an information transfer from it to its environment and from its environment to it. Two formalisms (information transition systems and conceptual transition systems) for abstract unified modelling of the artifacts (concept sketches and models) of the conceptual design of information systems of the class, early phase of information systems design process, are proposed. Information transition defines the abstract unified information model for the artifacts, based on such general concepts as state, information query, answer and transition. Conceptual transition systems are a formalism for conceptual modelling of information systems. They defines the abstract unified conceptual model for the artifacts. The basic definitions of the theory of conceptual transition systems are given. A language of conceptual transition systems is defined.

Keywords: information system, information transition system, conceptual structure, ontology, ontological element, conceptual, conceptual state, conceptual configuration, conceptual transition system, conceptual information transition model, transition system, CTSL

1. Introduction

The conceptual models play an important role in the overall system development life cycle [1]. Numerous conceptual modelling techniques have been created, but all of them have a limited number of kinds of ontological elements and therefore can only represent ontological elements of fixed conceptual granularity. For example, entity-relationship modelling technique [2] uses two kinds of ontological elements: entities and relationships.

The purpose of the paper is propose formalisms for abstract unified modelling of the artifacts (concept sketches and models) of the conceptual design of information systems (IS for short) by ontological elements of arbitrary conceptual granularity. In our two stage approach the informational and conceptual aspects of the system that the conceptual model represents are described by two separate formalisms. The first formalism describes the informational model of the informational model of the system, and the second formalism describes the conceptual model of the informational

Partially supported by RFBR under grants 15-01-05974 and 15-07-04144 and SB RAS interdisciplinary integration project No.15/10.

model.

An information transition system (ITS for short) is an extension of an information query system (IQS for short) characterized additionally by the exogenous and endogenous transition relations specifying transitions on states. The exogenous transition relation models change of an information system caused by its environment. It associates queries with binary relations on states called transition relations and answers returning by state pairs from these transition relations called transitions. The endogenous transition relation models change of an information system caused by factors inside the system. It is defined as a transition relation with answers returning by transitions of the transition relation.

A wide variety of information systems is modelled by ITSs in the information aspect, including database management systems with transitions initiated by queries, expert systems with transitions initiated by operations with facts and rules, social networks with transitions initiated by actions of users in accordance with certain communications protocols, abstract machines specifying operational semantics of programming languages with transitions initiated by instructions of abstract machines, verification condition generators specifying axiomatic semantics of programming languages with transitions initiated by inference rules and so on.

We consider that the second formalism used for for conceptual modelling of ITSs must meet the following general requirements (in relation to modelling of a ITS):

- 1. It must model the conceptual structure of states and state objects of the ITS.
- 2. It must model the content of the conceptual structure.
- 3. It must model information queries, information query objects, answers and answer objects of the IQS.
- 4. It must model the interpretation function of the ITS.
- 5. It must be quite universal to model typical ontological elements (concepts, attributes, concept instances, relations, relation instances, individuals, types, domains, and so on.).
- 6. It must provide a quite complete classification of ontological elements, including the determination of their new kinds and subkinds with arbitrary conceptual granularity.
- 7. The model of the interpretation function must be extensible.
- 8. It must have language support. The language associated with the formalism must define syntactic representations of models of states, state objects, queries, query objects, answers and answer objects and includes the set of predefined basic query models.
- 9. It must model the change of the conceptual structure of states and state objects of the

ITS.

10. It must model the change of the content of the conceptual structure.

- 11. It must model the transition relations of the ITS.
- 12. The model of the exogenous transition relation must be extensible.

As is shown in [3], conceptual configuration systems (CCSs for short) meet the seven requirements in relation to IQSs. Comparison of CCSs with the abstract state machines [4, 5] which partially meet these requirements was made in [3]. In this paper we present an extension of CCSs, conceptual transition systems (CTSs for short) as the formalism satisfying the all above requirements.

The paper has the following structure. The preliminary concepts and notation are given in section 2. The basic definitions of the theory of CTSs are given in section 3. The language CTSL of CTSs is described in section 4. Semantics of executable elements in CTSL is defined in 5. We establish that CTSs meet the above requirements in section 6.

2. Preliminaries

2.1. Sets, sequences, multisets

Let O_b be the set of objects considered in this paper. Let S_t be a set of sets. Let I_{nt} , N_t , N_{t0} and B_l be sets of integers, natural numbers, natural numbers with zero and boolean values *true* and *false*, respectively.

Let the names of sets be represented by capital letters possibly with subscripts and the elements of sets be represented by the corresponding small letters possibly with extended subscripts. For example, i_{nt} and $i_{nt.1}$ are elements of I_{nt} .

Let S_q be a set of sequences. Let $s_{t.(*)}$, $s_{t.\{*\}}$, and $s_{t.*}$ denote sets of sequences of the forms $(o_{b.1}, \ldots, o_{b.n_{t0}})$, $\{o_{b.1}, \ldots, o_{b.n_{t0}}\}$, and $o_{b.1}, \ldots, o_{b.n_{t0}}$ from elements of s_t . For example, $I_{nt.(*)}$ is a set of sequences of the form $(i_{nt.1}, \ldots, i_{nt.n_{t0}})$, and $i_{nt.*}$ is a sequence of the form $i_{nt.1}, \ldots, i_{nt.n_{t0}}$. Let $o_{b.1}, \ldots, o_{b.n_{t0}}$, denote $o_{b.1}, \ldots, o_{b.n_{t0}}$. Let $s_{t.(*n_{t0})}$, $s_{t.\{*n_{t0}\}}$, and $s_{t.*n_{t0}}$ denote sets of the corresponding sequences of the length n_{t0} .

Let $o_{b.1} \prec_{[s_q]} o_{b.2}$ denote the fact that there exist $o_{b.*.1}$, $o_{b.*.2}$ and $o_{b.*.3}$ such that $s_q = o_{b.*.1}$, $o_{b.1}$, $o_{b.1}$, $o_{b.2}$, $o_{b.3}$).

Let $[o_b \ o_{b,1} \leftrightarrow o_{b,2}]$ denote the result of replacement of all occurrences of $o_{b,1}$ in o_b by $o_{b,2}$. Let $[s_q \ o_b \leftrightarrow_* o_{b,1}]$ denote the result of replacement of each element $o_{b,2}$ in s_q by $[o_{b,1} \ o_b \leftrightarrow o_{b,2}]$. For example, $[(a,b) \ x \leftrightarrow_* (f \ x)]$ denotes $((f \ a), (f \ b))$. Let $[len s_q]$ denote the length of s_q . Let *und* denote the undefined value. Let $[s_q \cdot n_t]$ denote the n_t -th element of s_q . If $[len s_q] < n_t$, then $[s_q \cdot n_t] = und$. Let $[s_q + s_{q,1}]$, $[o_b \cdot + s_q]$ and $[s_q + \cdot o_b]$ denote $o_{b,*}, o_{b,*,1}, o_b, o_{b,*}$ and $o_{b,*}, o_b$, where $s_q = o_{b,*}$ and $s_{q,1} = o_{b,*,1}$.

Let $[and s_q]$ denote $(c_{nd.1} and \ldots and c_{nd.n_t})$, where $s_q = c_{nd.1}, \ldots, c_{nd.n_t}$, and [and] denote true. In the case of $n_t = 1$, the brackets can be omitted.

Let $o_{b,1}, o_{b,2} \in S_t \cup S_q$. Then $o_{b,1} =_{st} o_{b,2}$ denote that the sets of elements of $o_{b,1}$ and $o_{b,2}$ coincide, and $o_{b,1} =_{ml} o_{b,2}$ denote that the multisets of elements of $o_{b,1}$ and $o_{b,2}$ coincide.

2.2. Contexts

The terms used in the paper are context-dependent.

Let L_b be a set of objects called labels. Contexts have the form $[\![o_{b.*}]\!]$, where the elements of $o_{b.*}$ called embedded contexts have the form: $l_b:o_b$, $l_b:$ or o_b .

The context in which some embedded contexts are omitted is called a partial context. All omitted embedded contexts are considered bound by the existential quantifier, unless otherwise specified.

Let $o_b[\![o_{b,*}]\!]$ denote the object o_b in the context $[\![o_{b,*}]\!]$.

The object 'in $[\![o_b, o_{b,*}]\!]$ ' can be reduced to 'in $[\![o_b]\!]$ in $[\![o_{b,*}]\!]$ ' if this does not lead to ambiguity.

2.3. Functions

Let F_n be a set of functions. Let A_{rg} and V_l be sets of objects called arguments and values. Let $[f_n \ a_{rg.*}]$ denote the application of f_n to $a_{rg.*}$.

Let $[support f_n]$ denote the support in $\llbracket f_n \rrbracket$, i. e. $[support f_n] = \{a_{rg} : [f_n a_{rg}] \neq und\}$. Let $[image f_n s_t]$ denote the image in $\llbracket f_n, s_t \rrbracket$, i. e. $[image f_n s_t] = \{[f_n a_{rg}] : a_{rg} \in s_t\}$. Let $[image f_n]$ denote the image in $\llbracket f_n, [support f_n] \rrbracket$. Let $[narrow f_n s_t]$ denote the function $f_{n.1}$ such that $[support f_{n.1}] = [support f_{n.1}] \cap s_t$, and $[f_{n.1} a_{rg}] = [f_n a_{rg}]$ for each $a_{rg} \in [support f_{n.1}]$. The function $f_{n.1}$ is called a narrowing of f_n to s_t . Let $[support f_{n.1}] \cap [support f_{n.2}] = \emptyset$. Let $f_{n.1} \cup f_{n.2}$ denote the union f_n of $f_{n.1}$ and $f_{n.2}$ such that $[f_n a_{rg}] = [f_{n.1} a_{rg}]$ for each $a_{rg} \in [support f_{n.2}] = \emptyset$. Let $f_{n.1} \cup f_{n.2}$ denote the union f_n of $f_{n.1}$ and $f_{n.2}$ such that $[f_n a_{rg}] = [f_{n.1} a_{rg}]$ for each $a_{rg} \in [support f_{n.2}] = \emptyset$. Let $f_{n.1} \cup f_{n.2}$ denote the union f_n of $f_{n.2}$ and $[f_{n.2} a_{rg}] \in [support f_{n.2}]$. Let $f_{n.1} \subseteq f_{n.2}$ denote the union f_n of $f_{n.2}$ and $[f_{n.2} a_{rg}] \in [support f_{n.2}]$. Let $f_{n.2} \subseteq [support f_{n.2}]$, and $[f_{n.2} a_{rg}] = [f_{n.2} a_{rg}]$ for each $a_{rg} \in [support f_{n.2}]$.

An object u_p of the form $a_{rg} : v_l$ is called an update. Let U_p be a set of updates. The objects a_{rg} and v_l are called an argument and value in $[\![u_p]\!]$.

Let $[f_n \ u_p]$ denote the function $f_{n,1}$ such that $[f_{n,1} \ a_{rg}] = [f_n \ a_{rg}]$ if $a_{rg} \neq a_{rg}[\![u_p]\!]$, and

 $[f_{n.1} \ a_{rg}\llbracket u_p \rrbracket] = v_l\llbracket u_p \rrbracket$. Let $[f_n \ u_p, u_{p.*n_t}]$ be a shortcut for $[[f_n \ u_p] \ u_{p.*n_t}]$. Let $[f_n \ a_{rg.a_{rg.1}} \ \dots \ a_{rg.n_t} : v_l]$ be a shortcut for $[f_n \ a_{rg} : [[f_n \ a_{rg}] \ a_{rg.1} \ \dots \ a_{rg.n_t} : v_l]]$. Let $[u_{p.*}]$ be a shortcut for $[f_n \ u_{p.*}]$, where $[support \ f_n] = \emptyset$.

Let C_{nd} be a set of objects called conditions. Let $[if c_{nd} then o_{b,1} else o_{b,2}]$ denote the object o_b such that

- if $c_{nd} = true$, then $o_b = o_{b.1}$;
- if $c_{nd} = false$, then $o_b = o_{b.2}$.

2.4. Attributes and multi-attributes

An object $o_{b.ma}$ of the form $(u_{p.*})$ is called a multi-attribute object. Let $O_{b.ma}$ be a set of multi-attribute objects. The elements of $[o_{b.ma} \ w \ \leftarrow_* \ a_{rg}[\![w]\!]]$ are called multi-attributes in $[\![o_{b.ma}]\!]$. Let $O_{b.ma}$ be a set of multi-attributes. The elements of $[o_{b.ma} \ w \ \leftarrow_* \ v_l[\![w]\!]]$ are called values in $[\![o_{b.ma}]\!]$. The sequence $u_{p.*}$ is called a sequence in $[\![o_{b.ma}]\!]$ and denoted by $[sequence \ in \ o_{b.ma}]$. An object v_l is a value in $[\![a_{tt.m}, o_{b.ma}]\!]$ if $o_{b.ma} = (u_{p.*,1}, a_{tt.m} : v_l, u_{p.*,2})$ for some $u_{p.*,1}$ and $u_{p.*,2}$.

An object $o_{b.ma}$ is an attribute object if the elements of $[o_{b.ma} \ w \leftrightarrow_* a_{rg} \llbracket w \rrbracket]$ are pairwise distinct. Let $O_{b.a}$ be a set of attribute objects. The multi-attributes in $\llbracket o_{b.a} \rrbracket$ are called attributes in $\llbracket o_{b.a} \rrbracket$. Let A_{tt} be a set of objects called attributes.

Let $[function \ o_{b.a}], [o_{b.a} \ a_{tt}], \text{ and } [support \ o_{b.a}] \text{ denote } [[sequence \ in \ o_{b.a}]], [[function \ o_{b.a}] \ a_{tt}],$ and $[support \ [function \ o_{b.a}]].$

Let $[seq-to-att-obj \ s_q]$ denote $(1 : [s_q \ . \ 1], ..., [len \ s_q] : [s_q \ . \ [len \ s_q]])$. Let $o_{b.a} =_{st} (1 : v_{l.1}, ..., n_t : v_{l.n_t})$. Then $[att-obj-to-seq \ o_{b.a}]$ denote $(v_{l.1}, ..., v_{l.n_t})$.

3. Basic definitions of the theory of conceptual transition systems

Conceptual transition systems (CTSs) are transition systems in which states are conceptual configurations, and transition relations are binary relations on conceptual configurations. In this section the basic definitions of the theory of conceptual transition systems are presented. The defined structures of CTSs are constructed from atoms and, thus, defined implicitly in $[A_{tm}]$.

3.1. Information transition systems

Let S_{tt} be a set of objects called states. An element t_{rn} of the form $(s_{tt.1}, s_{tt.2})$ is called a transition. Let T_{rn} be a set of transitions. The states $s_{tt.1}$ and $s_{tt.2}$ are called input and output states in $[t_{rn}]$.

Let $S_{s,q}$ be a set of query systems. An object $s_{s,t,i}$ of the form $(s_{s,q}, t_{rn.rlt.ex}, t_{rn.rlt.en})$ is an information transition system if $t_{rn.rlt.ex} \in Q_r \times A_{ns} \times S_{tt} \times S_{tt} \to B_l$, $t_{rn.rlt.en} \in A_{ns} \times S_{tt} \times S_{tt} \to B_l$, and for all $q_r \in Q_r$ there exists $s_{tt} \in S_{tt}$ such that $[value \ q_r \ s_{tt}] \neq und$, or there exist $s_{tt.1} \in S_{tt}, s_{tt.2} \in S_{tt}$ and $a_{ns} \in A_{ns}$ such that $[t_{rn.rlt.ex} \ q_r \ a_{ns} \ s_{tt.1} \ s_{tt.2}] = true$. Let $S_{s.t.i}$ be a set of information transition systems.

The system $s_{s,q}$ is called a query system in $[s_{s,t,i}]$. The function $t_{rn.rlt.ex}$ is called an exogenous transition relation in $[s_{s,t,i}]$. The function $t_{rn.rlt.en}$ is called an endogenous transition relation in $[s_{s,t,i}]$. Let $s_{tt,1} \rightarrow_{qr,a_{ns}} s_{tt,2}$ and $s_{tt,1} \rightarrow_{a_{ns}} s_{tt,2}$ be shortcuts for $[t_{rn.rlt.ex} q_r a_{ns} s_{tt,1} s_{tt,2}] = true$ and $[t_{rn.rlt.en} a_{ns} s_{tt,1} s_{tt,2}] = true$, respectively.

The elements of $S_{tt}[s_{s,q}]$, $O_{b,s}[s_{s,q}]$, $Q_r[s_{s,q}]$, $O_{b,q}[s_{s,q}]$, $A_{ns}[s_{s,q}]$ and $O_{b,a}[s_{s,q}]$ are called states, state objects, queries, query objects, answers and answer objects in $[s_{s,t,i}]$, respectively. The function $value[s_{s,q}]$ is called a query interpretation in $[s_{s,t,i}]$.

A query q_r is an information query in $[s_{s.t.i}]$ if $[value q_r s_{tt}] \neq und$ for some s_{tt} . A query q_r is a change query in $[s_{s.t.i}]$ if $[t_{rn.rlt.ex} q_r a_{ns} s_{tt.1} s_{tt.2}] = true$ for some $s_{tt.1}, s_{tt.2}$ and a_{ns} .

A system $s_{s.t.i}$ executes t_{rn} if $s_{tt.1}[t_{rn}] \rightarrow_{q_r,a_{ns}} s_{tt.2}[t_{rn}]$ for some q_r and a_{ns} , or $s_{tt.1}[t_{rn}] \rightarrow_{a_{ns}} s_{tt.2}[t_{rn}]$ for some a_{ns} . A system $s_{s.t.i}$ transits from $s_{tt.1}$ to $s_{tt.2}$ if $s_{s.t.i}$ executes $(s_{tt.1}, s_{tt.2})$.

3.2. Substitutions, patterns, pattern specifications, instances

A function $s_b \in E_l \to E_{l,*}$ is called a substitution. Let S_b be a set of substitutions. A function $subst \in S_b \times E_{l,*} \to E_{l,*}$ is a substitution function if it is defined as follows (the first proper rule is applied):

- if $e_l \in [support \ s_b]$, then $[subst \ s_b \ e_l] = [s_b \ e_l]$;
- $[subst \ s_b \ a_{tm}] = a_{tm};$
- $[subst s_b l_b : e_l] = [subst s_b l_b] : [subst s_b e_l];$
- $[subst \ s_b \ e_l :: nosubst] = e_l;$
- $[subst \ s_b \ e_l :: (nosubstexcept \ e_{l.*})] = [subst \ [narrow \ s_b \ \{e_{l.*}\}] \ e_l];$
- $[subst s_b e_l :: s_{rt}] = [subst s_b e_l] :: [subst s_b s_{rt}];$
- $[subst \ s_b \ (e_{l.*})] = ([e_{l.*} \ w \longleftrightarrow_* [subst \ s_b \ w]]);$
- $[subst \ s_b \ e_{l,*}] = [e_{l,*} \ w \longleftrightarrow_* [subst \ s_b \ w]].$

The sort *nosubst* specifies the elements to which the substitution s_b is not applied. The sort (*nosubstexcept* $e_{l,*}$) specifies the elements to which the narrowing of the substitution s_b to the set $e_{l,*}$ is applied. An element p_t is a pattern in $[\![e_l, s_b]\!]$ if $[subst s_b p_t] = e_l$. Let P_t be a set of patterns. An element i_{nst} is an instance in $[\![p_t, s_b]\!]$ if $[subst s_b p_t] = i_{nst}$. Let I_{nst} be a set of instances.

Let V_r and $V_{r.s}$ be sets of objects called element variables and sequence variables, respectively. An element $p_{t.s}$ of the form $(p_t, (v_{r.s}), (v_{r.s.*}))$ is a pattern specification if $\{v_{r.s.*}\} \cap \{v_{r.*}\} = \emptyset$, and the elements of $\{v_{r.*}\} \cup \{v_{r.s.*}\}$ are pairwise distinct. Let $P_{t.s}$ be a set of pattern specifications.

The objects p_t , $(v_{r,*})$, and $(v_{r,s,*})$ are called a pattern, element variable specification, and sequence variable specification in $[\![p_{t,s}]\!]$. The elements of $v_{r,*}$ and $v_{r,s,*}$ are called element pattern variables and sequence pattern variables in $[\![p_{t,s}]\!]$, respectively.

An element i_{nst} is an instance in $[\![p_{t.s}, s_b]\!]$ if $[support \ s_b] = \{v_{r.*}\}, \ [s_b \ v_r] \in E_l$ for $v_r \in \{v_{r.*}\} \setminus \{v_{r.s.*}\}, \ [s_b \ v_r] \in E_{l.*}$ for $v_r \in \{v_{r.s.*}\}$, and i_{nst} is an instance in $[\![p_{t.s}, s_b]\!]$. An element i_{nst} is an instance in $[\![p_{t.s.}, s_b]\!]$.

A function $m_t \in E_l \times P_{t,s} \to S_b$ is a match if the following property holds:

• if $[m_t \ e_l \ p_{t,s}] = s_b$, then e_l is an instance in $[\![p_{t,s}, s_b]\!]$.

An element i_{nst} is an instance in $[\![p_{t.s}, m_t, s_b]\!]$ if $[m_t \ i_{nst} \ p_{t.s}] = s_b$. An element i_{nst} is an instance in $[\![p_{t.s}, m_t]\!]$ if there exists s_b such that i_{nst} is an instance in $[\![p_{t.s}, m_t, s_b]\!]$.

3.3. The transition relation

Let $S_{s.c.c}$ be a set of conceptual configuration systems. Let C_{nf} be a set of conceptual configurations. An element t_{rn} of the form $(c_{nf.1}, c_{nf.2})$ is called a transition. Let T_{rn} be a set of transitions. The configurations $c_{nf.1}$ and $c_{nf.2}$ are called input and output configurations in $[t_{rn}]$.

The transition relations of a IQS is modelled by the transition relation $t_{rn.rlt} \in T_{rn} \rightarrow B_l$ based on atomic exogenous transition relations, transition rules, atomic endogenous transition relations, the exogenous transition order and the endogenous transition order. The exogenous transition relation of the IQS is modelled by atomic exogenous transition relations and transition rules. The endogenous transition relation of the IQS is modelled by atomic endogenous transition relations.

Transitions from a configuration c_{nf} in $[t_{rn.rlt}]$ are executed by a program in $[c_{nf}]$. An element sequence p_{rg} is a program in $[c_{nf}]$ if $[c_{nf} (0 : ()) :: state :: program] = (p_{rg})$. Let

 P_{rg} be a set of programs. Thus, programs in configurations are specified by the conceptual (0:()):: state :: program from the substate program of the configurations. A program in $[c_{nf}]$ is empty if $[c_{nf} (0:())::$ state :: program] = (). Atomic exogenous transition relations and transition rules define transitions executed by the first element of the program. Atomic endogenous transition relations define transitions executed in the case of the empty program.

Let $c_{nf.1} \rightarrow c_{nf.2}$ be a shortcut for $[t_{rn.rlt} c_{nf.1} c_{nf.2}] = true$. Transitions can return values. An element v_l is a value in $[\![c_{nf}]\!]$ if $v_l = [c_{nf} (0:()) :: state :: value]$. An element v_l is a value in $[\![t_{rn}]\!]$ if $c_{nf.1}[\![t_{rn}]\!] \rightarrow c_{nf.2}[\![t_{rn}]\!]$, and v_l is a value in $[\![c_{nf.2}[\![t_{rn}]\!]]\!]$. Thus, the returned values in transitions are specified by the conceptual (0:()) :: state :: value from the substate value of output configurations of the transitions. A transition t_{rn} returns a value v_l if v_l is a value in $[\![t_{rn}]\!]$. A transition t_{rn} returns (or generates) an exception e_{xc} if e_{xc} is a value in $[\![t_{rn}]\!]$. A transition t_{rn} is normally executed if t_{rn} returns no exception.

The special variables conf :: in and val :: in reference to the current configuration and the value in the current configuration, respectively, in the definitions below.

An object $t_{rn.rlt.ex}$ of the form $(p_t, (v_{r.*}), (v_{r.s.*}), f_n)$ is an atomic exogenous transition relation if $(p_t, (v_{r.*}), (v_{r.s.*}))$ is a pattern specification, $conf :: in \notin \{v_{r.*}\} \cup \{v_{r.s.*}\}, val :: in \notin \{v_{r.*}\} \cup \{v_{r.s.*}\}, f_n \in S_b \rightarrow (T_{rn} \rightarrow B_l), [support f_n] = \{s_b : [support s_b] = \{v_{r.*}\} \cup \{v_{r.s.*}\} \cup \{conf :: in, val : in\}, [s_b v_r] \in E_l$ for $v_r \in \{v_{r.*}\}$ and $[s_b v_r] \in E_{l.*}$ for $v_r \in \{v_{r.s.*}\}$. Let $T_{rn.rlt.ex}$ be a set of atomic exogenous transition relations. Let $c_{nf.1} \rightarrow_{f_n,s_b} c_{nf.2}$ be a shortcut for $[[f_n s_b] c_{nf.1} c_{nf.2}] = true.$

The objects p_t , $(v_{r,*})$, $(v_{r,s,*})$, and f_n are called a pattern, element variable specification, sequence variable specification, and value in $[t_{rn.rlt.ex}]$. The elements of $v_{r,*}$ and $v_{r,s,*}$ are called element pattern variables and sequence pattern variables in $[t_{rn.rlt.ex}]$, respectively.

A function $t_{rn.rlt.ex.s} \in E_l \to T_{rn.rlt.ex}$ is called an atomic exogenous transition specification if [support $t_{rn.rlt.ex.s}$] is finite. A relation $t_{rn.rlt.ex}$ is an atomic exogenous transition relation in $[t_{rn.rlt.ex.s}]$ if $[t_{rn.rlt.ex.s} \ n_m] = t_{rn.rlt.ex}$ for some $n_m \in E_l$. An element n_m is a name in $[t_{rn.rlt.ex}, t_{rn.rlt.ex.s}]$ if $[t_{rn.rlt.ex.s} \ n_m] = t_{rn.rlt.ex}$. An element n_m a name in $[t_{rn.rlt.ex.s}]$ if n_m is a name in $[t_{rn.rlt.ex}, t_{rn.rlt.ex}, t_{rn.rlt.ex.s}]$ for some $t_{rn.rlt.ex}$. Let $c_{nf.1} \to n_{m,sb} \ c_{nf.2}$ be a shortcut for $c_{nf.1} \to f_n[[t_{rn.rlt.ex.s} \ n_m]], s_b \ c_{nf.2}$.

An element r_l of the form $(p_t, (v_{r,*}), (v_{r,s,*}), (b_d))$ is a transition rule if $b_d \in E_{l,*}, (p_t, (v_{r,*}), (v_{r,s,*}))$ is a pattern specification, $conf :: in \notin \{v_{r,*}\} \cup \{v_{r,s,*}\}$, and $val :: in \notin \{v_{r,*}\} \cup \{v_{r,s,*}\}$. Let R_l be a set of transition rules. The objects p_t , $(v_{r,*})$, $(v_{r,s,*})$ and b_d are called a pattern, element variable specification, sequence variable specification and body in $[[r_l]]$. The elements of $v_{r,*}$ and $v_{r,s,*}$ are called element pattern variables and sequence pattern variables in $[[r_l]]$, respectively.

An attribute element $r_{l,s}$ is called a transition rule specification if $[support r_{l,s}] \subseteq E_l$, and $[image \ r_{l,s}] \subseteq E_l$. A rule r_l is a rule in $[\![r_{l,s}]\!]$ if $[r_{l,s} \ n_m] = r_l$ for some $n_m \in E_l$. An element n_m is a name in $[\![r_l, r_{l,s}]\!]$ if $[r_{l,s} \ n_m] = r_l$. An element n_m a name in $[\![r_{l,s}]\!]$ if n_m is a name in $[\![r_l, r_{l,s}]\!]$ for some r_l .

A function $t_{rn.rlt.en} \in \{c_{nf} : [c_{nf} (0 : ()) :: state :: program] = ()\} \times C_{nf} \to B_l$ is called an atomic endogenous transition relation. Let $T_{rn.rlt.en}$ be a set of atomic endogenous transition relations.

A function $t_{rn.rlt.en.s} \in E_l \to T_{rn.rlt.en}$ is called an atomic endogenous transition specification if [support $t_{rn.rlt.en.s}$] is finite. A relation $t_{rn.rlt.en}$ is an atomic endogenous transition relation in $[t_{rn.rlt.en.s}]$ if $[t_{rn.rlt.en.s} n_m] = t_{rn.rlt.en}$ for some $n_m \in E_l$. An element n_m is a name in $[t_{rn.rlt.en}, t_{rn.rlt.en.s}]$ if $[t_{rn.rlt.en.s} n_m] = t_{rn.rlt.en}$. An element n_m a name in $[t_{rn.rlt.en.s}, t_{rn.rlt.en.s}]$ for some $t_{rn.rlt.en}$. Let $c_{nf} \to_{n_m} c_{nf}$ be a shortcut for $[[t_{rn.rlt.en.s} n_m] c_{nf} c_{nf.1}] = true.$

Let [support $t_{rn.rlt.ex.s}$], [support $t_{rn.rlt.en.s}$] and [support $r_{l.s}$] be pairwise disjoint.

An element $o_{rd.trn.ex}$ of the form $(n_{m.*})$ is called an exogenous transition order in $[t_{rn.rlt.ex.s}, r_{l.s}]$ if $\{n_{m.*}\} \subseteq [support t_{rn.rlt.ex.s}] \cup [support r_{l.s}]$, and the elements of $n_{m.*}$ are pairwise distinct. It specifies the order of application of atomic exogenous transition relations and transition rules.

An element $o_{rd.trn.en}$ of the form $(n_{m.*})$ is called an endogenous transition order in $[t_{rn.rlt.en.s}]$ if $\{n_{m.*}\} \subseteq [support \ t_{rn.rlt.en.s}]$, and the elements of $n_{m.*}$ are pairwise distinct. It specifies the order of application of atomic endogenous transition relations.

The information about the transition rule specification and the transition orders is stored in the substate *transition* of the configurations. The conceptuals (0: rules) :: state :: transition,(-1: exogenous, 0: order) :: state :: transition and (-1: endogenous, 0: order) :: state ::transition define the transition rule specification, exogenous transition order and endogenoustransition order. The conceptual <math>(0: history) :: state :: transition defines the substates that store the information about transitions preceding the transition to the current configuration.

An element c_{nf} is consistent with $(t_{rn.rlt.ex.s}, r_{l.s}, t_{rn.rlt.en.s}, o_{rd.trn.ex}, o_{rd.trn.en})$ if the following properties hold:

• if $[support \ t_{rn.rlt.ex.s}] \cap [support \ [c_{nf} \ (0 : rules) :: state :: transition]] = \emptyset;$

- if [support $o_{rd.trn.en}$] \cap [support [c_{nf} (0 : rules) :: state :: transition]] = \emptyset ;
- if $r_{l.s} \subseteq [c_{nf} \ (0:rules) :: state :: transition];$
- if $n_{m.1} \prec_{[o_{rd.trn.ex}]} n_{m.2}$, and $n_{m.1}$, $n_{m.2} \in [c_{nf} (-1 : exogenous, 0 : order) :: state :: transition], then <math>n_{m.1} \prec_{[[c_{nf} (-1: exogenous, 0: order) ::: state:: transition]]} n_{m.2};$
- if $n_{m.1} \prec_{[\![o_{rd.trn.en}]\!]} n_{m.2}$, and $n_{m.1}$, $n_{m.2} \in [c_{nf} (-1 : endogenous, 0 : order) :: state :: transition], then <math>n_{m.1} \prec_{[\![c_{nf} (-1: endogenous, 0: order):: state:: transition]\!]} n_{m.2}$.

Let $e_{l,*} \# c_{nf}$ be a shortcut for $[c_{nf} \ program.(0:()):(e_{l,*})]$. Let $e_{l,*} \# v_l \# c_{nf}$ be a shortcut for $[c_{nf} \ program.(0:()):(e_{l,*}), value.(0:()):v_l]$.

Let $[add-history \ c_{nf.1} \ to \ c_{nf.2}]$ denote $[narrow \ c_{nf.1} \ [support \ c_{nf.1}] \setminus \{[c_{nf.1} \ (0 : history) :: state :: transition]\}] \cup [narrow \ c_{nf.1} \ \{[c_{nf.1} \ (0 : history) :: state :: transition]\}]$. A function $t_{rn.rlt} \in C_{nf.c} \times C_{nf} \rightarrow B_l$ is a transition relation in $[t_{rn.rlt.ex.s}, r_{l.s}, t_{rn.rlt.en.s}, \ o_{rd.trn.ex}, o_{rd.trn.en}]$ if it is defined by the following definition rules (the first proper rule is applied):

- if c_{nf} is not consistent with $(t_{rn.rlt.ex.s}, r_{l.s}, t_{rn.rlt.en.s}, o_{rd.trn.ex}, o_{rd.trn.en})$, then $[t_{rn.rlt} c_{nf} c_{nf.1}] = false;$
- if $t_{rn.rlt.ex} = [t_{rn.rlt.ex.s} \ n_m]$, e_l is an instance in $[\![p_{t.s}[\![t_{rn.rlt.ex}]\!], m_t, s_b]\!]$, $e_{l.*} \ \# \ c_{nf} \rightarrow n_{m,s_b \cup (conf::in:c_{nf}, val::in:v_l[[c_{nf}]])} \ e_{l.*.1} \ \# \ v_l \ \# \ c_{nf.1}$, and $v_l \neq und$, then (execute-exogenous-transition, e_l , $(n_m \ n_{m.*})$), $e_{l.*} \ \# \ c_{nf} \rightarrow e_{l.*.1} \ \# \ v_l \ \# \ c_{nf.1}$;
- if $t_{rn.rlt.ex} = [t_{rn.rlt.ex.s} \ n_m]$, e_l is an instance in $[\![p_{t.s}[\![t_{rn.rlt.ex}]\!], m_t, s_b]\!]$, $e_{l.*} \ \# \ c_{nf} \rightarrow n_{m,s_b \cup (conf::in:c_{nf}, val::in:v_l[[c_{nf}]])} \ e_{l.*.1} \ \# \ u_{nd} \ \# \ c_{nf.1}$, then $(execute-exogenous-transition, e_l, \ (n_{m.*}))$, $e_{l.*} \ \# \ c_{nf} \rightarrow (execute-exogenous-transition, e_l, \ (n_{m.*}))$, $e_{l.*} \ \# \ [add-history \ c_{nf.1} \ to \ c_{nf}]$;
- if $t_{rn.rlt.ex} = [t_{rn.rlt.ex.s} \ n_m]$, and e_l is not an instance in $[\![p_{t.s}[\![t_{rn.rlt.ex}]\!], m_t]\!]$, then (execute-exogenous-transition, e_l , $(n_m, \ n_{m.*})$), $e_{l.*} \ \# \ c_{nf} \rightarrow (execute-exogenous-transition, e_l, (n_{m.*})), e_{l.*} \ \# \ c_{nf}$;
- if $r_l = [[c_{nf} \ (0 : rules) :: state :: transition] \ n_m]$, and e_l is an instance in $[\![p_{t.s}[\![r_l]\!], m_t, s_b]\!]$, then $(execute-exogenous-transition, \ e_l, \ (n_m \ n_{m.*})), \ e_{l.*} \ \# \ c_{nf} \rightarrow ([subst \ s_b \cup (conf :: in : c_{nf}, val :: in : v_l[\![c_{nf}]\!]) \ b_d[\![r_l]\!]]$, $(execute-exogenous-transition, \ e_l, \ (n_m \ n_{m.*}), \ (e_{l.*}), \ c_{nf}), \ e_{l.*} \ \# \ c_{nf};$
- if $v_l \neq und$, then (execute-exogenous-transition, e_l , $(n_m \ n_{m.*})$, $(e_{l.*.1})$, $c_{nf.1}$), $e_{l.*} \# v_l$ # $c_{nf} \rightarrow e_{l.*} \# v_l \# c_{nf}$;
- (execute-exogenous-transition, $(n_m \ n_{m.*})$, e_l , $(e_{l.*.1})$, $c_{nf.1}$), $e_{l.*} \ \# \ und \ \# \ c_{nf} \rightarrow (execute-exogenous-transition, \ e_l, \ (n_{m.*}))$, $e_{l.*.1} \ \# \ [add-history \ c_{nf} \ to \ c_{nf.1}]$;

- if $r_l = [[c_{nf} (0: rules) :: state :: transition] n_m]$, and e_l is not an instance in $[\![p_{t.s}[\![r_l]\!], m_t]\!]$, then (execute-exogenous-transition, e_l , $(n_m \ n_{m.*})$), $e_{l.*} \ \# \ c_{nf} \rightarrow (execute-exogenous-transition, e_l, (n_{m.*}))$, $e_{l.*} \ \# \ c_{nf}$;
- (execute-exogenous-transition, e_l , ()), $e_{l.*} \# c_{nf} \to e_{l.*} \# und \# c_{nf}$;
- if $t_{rn.rlt.en} = [t_{rn.rlt.en.s} \ n_m], \ c_{nf} \rightarrow_{n_m} e_{l.*} \# v_l \# c_{nf.1}, \text{ and } v_l \neq und, \text{ then } (execute-endogenous-transition, (n_m \ n_{m.*})) \# c_{nf} \rightarrow e_{l.*} \# v_l \# c_{nf.1};$
- if $t_{rn.rlt.en} = [t_{rn.rlt.en.s} \ n_m]$, and $c_{nf} \rightarrow_{n_m} e_l \ e_{l.*} \ \# \ u_{nd} \ \# \ c_{nf.1}$, then (executeendogenous-transition, $(n_m \ n_{m.*})$) $\# \ c_{nf} \rightarrow e_l \ e_{l.*} \ \# \ u_{nd} \ \# \ c_{nf.1}$;
- if $t_{rn.rlt.en} = [t_{rn.rlt.en.s} \ n_m]$, and $c_{nf} \rightarrow_{n_m} \# u_{nd} \# c_{nf.1}$, then (execute-endogenoustransition, $(n_m \ n_{m.*})) \# c_{nf} \rightarrow (execute-endogenous-transition, (n_{m.*})) \# [add-history \ c_{nf.1} \ to \ c_{nf}]$;
- $e_l, e_{l,*} \# c_{nf} \to (execute-exogenous-transition, e_l, [c_{nf} (-1:exogenous, 0:order)::$ state :: transition]), $e_{l,*} \# c_{nf}$;
- $\# c_{nf} \rightarrow (execute-endogenous-transition, [c_{nf} (-1: endogenous, 0: order) :: state :: transition]), <math>\# c_{nf}$.

3.4. Conceptual transition systems

An object $s_{s.t.c}$ of the form $(s_{s.c.c}, t_{rn.rlt.ex.s}, r_{l.s}, t_{rn.rlt.en.s}, o_{rd.trn.ex}, o_{rd.trn.en})$ is a conceptual transition system if $s_{s.c.c}$ is a conceptual configuration system, $t_{rn.rlt.ex.s}, r_{l.s}, t_{rn.rlt.en.s}, o_{rd.trn.ex}$ and $o_{rd.trn.en}$ are an atomic exogenous transition specification, transition rule specification, atomic endogenous transition specification, exogenous transition order and endogenous transition order in $[A_{tm}[s_{s.c.c}]]$, and the sets $[support t_{rn.rlt.ex.s}]$, $[support t_{rn.rlt.en.s}]$ and $[support r_{l.s}]$ are pairwise disjoint. It specifies the transition system $(C_{nf}[s_{s.c.c}]], t_{rn.rlt}[t_{rn.rlt.ex.s}, r_{l.s}, t_{rn.rlt.en.s}, o_{rd.trn.ex}, o_{rd.trn.en}, m_t[s_{s.c.c}]])$. Let $S_{s.t.c}$ be a set of conceptual transition systems.

The elements of $A_{tm}[s_{s.c.c}]$, $E_l[s_{s.c.c}]$, $C_{ncpl}[s_{s.c.c}]$, $S_{tt}[s_{s.c.c}]$, $C_{nf}[s_{s.c.c}]$ and $T_{rn}[A_{tm}[s_{s.c.c}]]$ are called atoms, elements, conceptuals, states, configurations and transitions in $[s_{s.t.c}]$.

The objects $t_{rn.rlt.ex.s}$, $r_{l.s}$, $t_{rn.rlt.en.s}$, $o_{rd.trn.ex}$, $o_{rd.trn.en}$, $i_{ntr.a.s}[s_{s.c.c}]$, $d_{f.s}[s_{s.c.c}]$, $o_{rd.intr}[s_{s.c.c}]$ and $m_t[s_{s.c.c}]$ are called an atomic exogenous transition specification, transition rule specification, atomic endogenous transition specification, exogenous transition order, endogenous transition order, atomic element interpretation specification, element definition specification, element interpretation order and match in $[s_{s.t.c}]$.

The function $t_{rn.rlt}[[t_{rn.rlt.ex.s}, r_{l.s}, t_{rn.rlt.en.s}, o_{rd.trn.ex}, o_{rd.trn.en}, m_t]]$ is called a transition rela-

tion in $[\![s_{s.t.c}]\!]$. A system $s_{s.t.c}$ executes t_{rn} if $s_{tt.1}[\![t_{rn}]\!] \to s_{tt.2}[\![t_{rn}]\!]$. A system $s_{s.t.c}$ transits from $s_{tt.1}$ to $s_{tt.2}$ if $s_{s.t.c}$ executes $(s_{tt.1}, s_{tt.2})$.

An element e_l is interpretable in $[\![s_{s.t.c}]\!]$ if e_l is interpretable in $[\![s_{s.c.c}[\![s_{s.t.c}]\!]]\!]$.

An element e_l is executable in $[\![s_{s.t.c}]\!]$ if there exist n_m such that e_l is an instance in $[\![p_{t.s}]\![[t_{rn.rlt.ex.s} n_m]]\!], m_t]\!]$, or e_l is an instance in $[\![p_{t.s}]\![[r_{l.s} n_m]]\!], m_t]\!]$.

3.5. Conceptual information transition models

An object $m_{dl.t.q.c}$ of the form $(s_{s.t.c}, r_{pr.s}, r_{pr.q}, r_{pr.a})$ is a conceptual information transition model in $[s_{s.t.i}]$ if $(s_{s.c.c}[s_{s.t.c}], r_{pr.s}, r_{pr.q}, r_{pr.a})$ is a conceptual query model in $[s_{s.q}[s_{s.t.i}]]$, $[t_{rn.rlt.ex}[s_{s.t.i}], q_r a_{ns} s_{tt.1} s_{tt.2}] = [t_{rn.rlt}[s_{s.t.c}]] [[r_{pr.s} s_{tt.1}] (0:()) :: state :: program : <math>([r_{pr.q} q_r])$] $[[r_{pr.s} s_{tt.2}] (0:()) :: state :: value : [r_{pr.a} a_{ns}]]]$, and $[t_{rn.rlt.en}[s_{s.t.i}]] a_{ns} s_{tt.1} s_{tt.2}] = [t_{rn.rlt}[s_{s.t.c}]] [[r_{pr.s} s_{tt.2}] (0:()) :: state :: program : ()] [[r_{pr.s} s_{tt.2}] (0:()) :: state :: value : [r_{pr.a} a_{ns}]]]$. Let $M_{dl.t.q.c}$ be a set of conceptual query transition models.

The objects $s_{s.c.c}[s_{s.t.c}]$ and $s_{s.t.c}$ are called a conceptual configuration system and conceptual transition system in $[m_{dl.t.q.c}]$, respectively. The functions $r_{pr.s}$, $r_{pr.q}$ and $r_{pr.a}$ are called a state representation, query representation and answer representation in $[m_{dl.t.q.c}]$.

A system $s_{s.t.i}$ is conceptually modelled in $[s_{s.t.c}]$ if there exists $m_{dl.t.q.c}$ such that $s_{s.t.c} = s_{s.t.c}[m_{dl.t.q.c}]$, and $m_{dl.t.q.c}$ is a conceptual query model in $[s_{s.t.i}]$. The set $[image r_{pr.s}]$ is called an ontology in $[s_{s.t.i}, m_{dl.t.q.c}]$.

3.6. Extensions

A system $s_{s.t.i.1}$ is an extension of $s_{s.t.i.2}$ if $s_{s.q}[\![s_{s.t.i.1}]\!]$ is an extension of $s_{s.q}[\![s_{s.t.i.2}]\!]$, and $s_t[\![s_{s.t.i.1}]\!] \subseteq s_t[\![s_{s.t.i.2}]\!]$ for each $s_t \in \{t_{rn.rlt.ex}, t_{rn.rlt.en}\}$.

A system $s_{s.t.c.1}$ is an extension of $s_{s.t.c.2}$ if $s_{s.c.c}[\![s_{s.t.c.1}]\!]$ is an extension of $s_{s.c.c}[\![s_{s.t.c.2}]\!]$, $s_t[\![s_{s.t.c.1}]\!] \subseteq s_t[\![s_{s.t.c.2}]\!]$ for each $s_t \in \{t_{rn.rlt.ex.s}, r_{l.s}, t_{rn.rlt.en.s}\}$, and the following property hold:

- if $n_{m.1} \prec_{[\![o_{rd.trn.ex}[\![s_{s.t.c.2}]\!]]} n_{m.2}$, and $n_{m.1}, n_{m.2} \in o_{rd.trn.ex}[\![s_{s.t.c.2}]\!]$, then $n_{m.1} \prec_{[\![o_{rd.trn.ex}[\![s_{s.t.c.2}]\!]]} n_{m.2}$;
- if $n_{m.1} \prec_{\llbracket o_{rd.trn.en}\llbracket s_{s.t.c.1} \rrbracket} n_{m.2}$, and $n_{m.1}, n_{m.2} \in o_{rd.trn.en}\llbracket s_{s.t.c.2} \rrbracket$, then $n_{m.1} \prec_{\llbracket o_{rd.trn.en}\llbracket s_{s.t.c.2} \rrbracket} n_{m.2}$.

A CCS l_n is a language of CTSs if the conceptual structures (atoms, elements, conceptuals and so on) of l_n is syntactically defined.

3.7. Programs

A program p_{rg} is executed in $[t_{rn}]$ if p_{rg} is a program in $[c_{nf.1}[t_{rn}]]$, and $c_{nf.1}[t_{rn}] \rightarrow c_{nf.2}[t_{rn}]$. A program p_{rg} executes (initiates) t_{rn} if p_{rg} is executed in $[t_{rn}]$.

An element v_l is a value in $[\![p_{rg}, t_{rn}]\!]$ if p_{rg} executes $[\![t_{rn}]\!]$, and v_l is a value in $[\![t_{rn}]\!]$. A program p_{rg} returns v_l in $[\![t_{rn}]\!]$ if v_l is a value in $[\![p_{rg}, t_{rn}]\!]$. A program p_{rg} returns v_l in $[\![c_{nf}]\!]$ if there exists t_{rn} such that p_{rg} returns v_l in $[\![t_{rn}]\!]$, and $c_{nf} = c_{nf,1}[\![t_{rn}]\!]$.

A program p_{rg} returns (or generates) an exception e_{xc} in $[t_{rn}]$ if e_{xc} is a value in $[p_{rg}, t_{rn}]$. A program p_{rg} is normally executed in $[t_{rn}]$ if p_{rg} is executed in $[t_{rn}]$, and t_{rn} is normally executed.

An element e_l is executed in $[t_{rn}]$ if there exist p_{rg} such that p_{rg} is executed in $[t_{rn}]$, and $e_l = [p_{rg} \cdot 1]$. An element e_l executes (initiates) t_{rn} if e_l is executed in $[t_{rn}]$.

An element v_l is a value in $[\![e_l, t_{rn}]\!]$ if e_l is executed in $[\![t_{rn}]\!]$, and v_l is a value in $[\![t_{rn}]\!]$. An element v_l returns v_l in $[\![t_{rn}]\!]$ if v_l is a value in $[\![v_l, t_{rn}]\!]$. An element v_l returns v_l in $[\![c_{nf}]\!]$ if there exists t_{rn} such that v_l returns v_l in $[\![t_{rn}]\!]$, and $c_{nf} = c_{nf,1}[\![t_{rn}]\!]$.

An element e_l returns (or generates) an exception e_{xc} in $[t_{rn}]$ if e_{xc} is a value in $[e_l, t_{rn}]$. An element e_l is normally executed in $[t_{rn}]$ if e_l is executed in $[t_{rn}]$, and t_{rn} is normally executed.

3.8. Safe configurations, transitions, programs and elements

A configuration c_{nf} is locally safe if $v_l[\![c_{nf}]\!] \neq und$.

A transition t_{rn} is safe if $c_{nf,1}[[t_{rn}]]$ and $c_{nf,2}[[t_{rn}]]$ are locally safe.

A configuration c_{nf} is safe if there is no $c_{nf,1}$ such that $c_{nf} \rightarrow^* c_{nf,1}$ and $c_{nf,1}$ is not locally safe.

A program p_{rg} is safe in $[c_{nf}]$ if p_{rg} is a program in $[c_{nf}]$, and c_{nf} is safe. A program p_{rg} is safe if p_{rg} is safe in $[c_{nf}]$ for each c_{nf} .

An element e_l is safe in $[c_{nf}]$ if $e_l = [p_{rg}[c_{nf}]]$. 1], and p_{rg} is safe in $[c_{nf}]$. An element e_l is safe if e_l is safe in $[c_{nf}]$ for each c_{nf} .

4. The CTSL language

The CTSL language (Conceptual Transition System Language) is a basic language of CTSs. The CCSL language is a sublanguage of CTSL. Interpretable and executable elements of CTSL are called basic elements of CTSs.

Let $s_b \subseteq (x : x_0, y : y_0, z : z_0, u : u_0, v : v_0, w : w_0, x_1 : x_{1.0}, ..., x_{n_t} : x_{n_t.0}, conf :: in : c_{nf}, val :: in : v_l[[c_{nf}]]).$

4.1. Syntax of CCSL

CTSL is an extension of CCSL. Therefore, atoms, elements, conceptual states, conceptual configurations, pattern specifications and element definitions are represented in CTSL as in CCSL.

The element (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ then b_d) :: name :: n_m in CCSL represents the transition rule $(p_t, (v_{r,*}), (v_{r,s,*}), b_d)$ with the name n_m .

For simplicity, we omit the names of atomic transition relations and transition rules.

4.2. The special forms for atomic exogenous transition relations, transition rules and atomic endogenous transition relations

In this section we define the special forms for atomic exogenous transition relations, transition rules and atomic endogenous transition relations used below.

The form (transition p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ then f_n) :: name :: n_m denotes the atomic exogenous transition relation $(p_t, (v_{r,*}), (v_{r,s,*}), f_n)$ with the name n_m .

The objects var $(v_{r,*})$ and seq $(v_{r,s,*})$ in the form (transition ...) can be omitted. The omitted objects correspond to var () and seq (), respectively.

The form (endogenous-transition f_n) :: name :: n_m denotes the atomic endogenous transition relation f_n with the name n_m .

Let $\{v_{r,*}\}$, $\{v_{r,s,*}\}$, $\{v_{r,*,1}\}$ and $\{v_{r,*,2}\}$ are pairwise disjoint, $\{v_{r,*,3}\} \subseteq \{v_{r,*}\} \cup \{v_{r,*,1}\} \cup \{v_{r,*,2}\}$, and $(e_{l,*}) \in \{(), und, abn\}$. The form (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ abn $(v_{r,*,1})$ und $(v_{r,*,2})$ val $(v_{r,*,3}) e_{l,*}$ where c_{nd} then b_d) called a rule form is defined as follows:

- (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und $(v_{r,*,1})$ abn $(v_{r,*,2})$ val $(v_{r,*,3})$ $e_{l,*}$ where c_{nd} then b_d) is a shortcut for (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ abn $(v_{r,*,1})$ und $(v_{r,*,2})$ val $(v_{r,*,3})$ $e_{l,*}$ then (if c_{nd} then b_d else und));
- (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und $(v_{r,*,1})$ abn $(v_{r,*,2})$ val $(v_{r,*,3}, v_r)$ $e_{l,*}$ then b_d) is a shortcut for (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und $(v_{r,*,1})$ abn $(v_{r,*,2})$ val $(v_{r,*,3})$ $e_{l,*}$ then (let w be v_r in [subst $(v_r :: *: w)$ b_d])), where w is a new element that does not occur in this definition;
- (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und $(v_{r,*,1})$ abn $(v_{r,*,2})$ val () $e_{l,*}$ then b_d) is a shortcut for (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und $(v_{r,*,1})$ abn $(v_{r,*,2})$ $e_{l,*}$ then b_d);
- (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und $(v_{r,*,1}, v_r)$ abn $(v_{r,*,2})$ $e_{l,*}$ then b_d) is a shortcut for (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und $(v_{r,*,1})$ abn $(v_{r,*,2})$ $e_{l,*}$ then (if $(v_r \text{ is undefined})$ then und else b_d));

- (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und () abn $(v_{r,*,2})$ $e_{l,*}$ then b_d) is a shortcut for (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ abn $(v_{r,*,2})$ $e_{l,*}$ then b_d);
- (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ abn $(v_{r,*,2}, v_r)$ $e_{l,*}$ then b_d) is a shortcut for (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ abn $(v_{r,*,2})$ $e_{l,*}$ then (if $(v_r \text{ is abnormal})$ then v_r else b_d));
- (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ abn () $e_{l,*}$ then b_d) is a shortcut for (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*}) e_{l,*}$ then b_d);
- (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und then b_d) is a shortcut for (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ then (if (val :: in is undefined) then skip else b_d);
- (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ abn then b_d) is a shortcut for (rule p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ then (if (val :: in is abnormal) then skip else b_d).

The element c_{nd} specifies the restriction on the values of the pattern variables. The undefined value is propagated through the variables of $v_{r,*,1}$. Abnormal values are propagated through the variables of $v_{r,*,2}$. The sequence $e_{l,*}$ specifies propagation of abnormal values depending on the value of val :: in. The undefined value is propagated when $e_{l,*} = und$. Abnormal values are propagated when $e_{l,*} = abn$. The special element $v_r :: *$ references to the value of element associated with the pattern variable v_r . A pattern variable is evaluated if the element associated with it is evaluated. Thus, the sequence $v_{r,*,3}$ contains evaluated pattern variables. A pattern variable is quoted if the element associated with it is not evaluated. Let $F_{rm,r}$ be a set of rule forms.

The objects $var(v_{r,*})$, $seq(v_{r,s,*})$, $und(v_{r,*,1})$, $abn(v_{r,*,2})$, $val(v_{r,*,3})$ and $where c_{nd}$ in the form (*rule* ...) can be omitted. The omitted objects correspond to var(), seq(), und(), abn(), val() and where true, respectively.

5. Semantics of executable elements in CTSL

5.1. Element interpretation

The element x :: value returning the interpretation of x is defined by the rule (rule x :: value var(x) abn then x :: value :: atm); (transition x :: value :: atm var(x) then f_n), where $x_0 :: value :: atm e_{l.*} \# c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \# [value x_0 c_{nf}] \# c_{nf}$.

5.2. Abnormal elements operations

The element und is defined by the rule

(rule und abn then und :: q).

The element e_{xc} is defined by the rule

(rule x var (x) abn where (x is exception) then x :: q) :: name :: ("@", exception).

The rule satisfies the property: $n_m \prec_{[o_{rd.trn.ex}]}$ ("@", exception) for each n_m such that n_m is a name of an atomic exogenous transition relation or transition rule with the pattern distinct from v_r , where v_r is a variable of this pattern.

The element $e_l :: q$ is defined by the rule

(rule x ::: q var (x) abn then x ::: q ::: value).

The element e_l of the form $(catch :: u \ x \ y)$ called an undefined value handler is defined as follows:

 $(transition (catch :: u x y) var (x) seq (y) then f_n),$

where $(catch :: u \ x_0 \ y_0)$, $e_{l,*} \# v_l \# c_{nf} \to_{f_n,s_b} [subst (x_0 : v_l) \ y_0]$, $e_{l,*} \# true \# c_{nf}$. The elements x and y are called a variable and body in $[\![e_l]\!]$. The element e_l replaces all occurences of x in y by the current value, resets the current value to true and executes the modified body.

The element e_l of the form $(catch \ x \ y)$ called an exception handler is defined as follows: $(rule \ (catch \ x \ y) \ var \ (x) \ seq \ (y) \ und \ then \ (catch :: u \ x \ y)).$ The elements x and y are called a variable and body in $[\![e_l]\!]$.

The element e_l of the form (throw x) is defined by the rule (rule (throw x) var (x) val (x) abn then (throw <math>x :: *) :: atm); $(transition (throw x) :: atm var (x) then f_n),$ where $(throw x_0) :: atm, e_{l.*} \# c_{nf} \rightarrow_{f_n, s_b} e_{l.*} \# x_0 \# c_{nf}.$ The element x is called a body in $\llbracket e_l \rrbracket.$

The deletion (delete-exception x) of the exception of the type x is defined by the rule $(rule \ (delete-exception x) \ var \ (x) \ und \ then \ (catch \ w$

(if ((w is exception) and (((element in w) ... type) = x :: q))

then (throw true) else (throw w :: q))).

5.3. Statements

The element skip is defined as follows:

(rule skip abn then skip :: atm);

 $(transition \ skip :: atm \ then \ f_n)$,

where $skip :: atm, e_{l,*} \# c_{nf} \rightarrow_{f_n,s_b} e_{l,*} \# c_{nf}$.

The sequential composition e_l of the form $(seq \ e_{l,*})$ is defined by the rule

(rule (seq x) var (x) seq (x) then x)

The elements of $e_{l,*}$ are called elements in $\llbracket e_l \rrbracket$ and $e_{l,*}$ is called a body in $\llbracket e_l \rrbracket$. The element e_l executes its elements sequentially from left to right.

The conditional element (if x then y else z) is defined as follows:

(rule (if x then y else z) var (x) seq (y, z) val (x) abn

then (if x :: * then y else z) :: atm);

(transition (if x then y else z) :: atm var (x) seq (y, z) then f_n),

where $(if \ x_0 \ then \ y_0 \ else \ z_0) :: atm, e_{l,*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} [if \ [x_0 \neq und] \ then \ y_0 \ else \ z_0], e_{l,*} \ \# \ c_{nf}.$

The element $(if \ x \ then \ y)$ is a shortcut for $(if \ x \ then \ y \ else \ skip)$.

The conditional element (if x then y else if z then $u \dots else v$) is defined as follows:

 $(definition \ (if \ x \ then \ y \ elseif \ z) \ var \ (x) \ seq \ (y, \ z) \ abn$

then (if x then y else (if z))).

The element e_l of the form (let x be y in z) is defined as follows:

(rule (let x be y in z) var (x) seq (y, z) abn then (let x be y in z) :: atm);

(transition (let x be y in z) :: atm var (x) seq (y, z) then f_n),

where $(let \ x_0 \ be \ y_0 \ in \ z_0) :: atm, e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n, s_b} y_0$, $(let \ x_0 \ be-val-in \ z_0), e_{l.*} \ \# \ c_{nf}$. The elements x, y and z are called a substitution variable, substitution value and substitution body in $[\![e_l]\!]$.

The auxiliary element (let $x \ be-val-in \ y$) is defined as follows:

(transition (let x be-val-in y) var (x) seq (y) abn then f_n),

where $(let \ x_0 \ be-val-in \ y_0), e_{l.*} \ \# \ v_l \ \# \ c_{nf} \to_{f_n, s_b} [subst \ (x_0 : v_l) \ y_0], e_{l.*} \ \# \ c_{nf}.$

The element e_l of the form (*let* :: seq x be y in z), where $x \in E_{l.(*)}$, $y \in E_{l.(*)}$, and [len x] = [len y], is defined by the rule

 $(rule \ (let :: seq \ x, \ y \ be \ (z), \ u \ in \ v) \ var \ (x) \ seq \ (y, \ z, \ u, \ v) \ abn$

then (let x be z in (let :: seq y be u in v)));

(rule (let :: seq be in v) seq (v) abn then v).

The elements x, y and z are called a substitution variables specification, substitution values specification and substitution body in $[e_l]$. The elements of x and y are called substitution variables and substitution values in $[e_l]$.

The iterator e_l of the form (*while* x do y) is defined by the rule

(if (while x do y) var (x) seq (y) abn then (if x then y (while x do y))).

The elements x and y are called a condition and body in $\llbracket e_l \rrbracket$.

The iterator e_l of the form (foreach x in y do z) is defined as follows:

(rule (foreach x in y do z) var (x, y) seq (z) val (y) abn where (y :: * is sequence)then (foreach1 x in y :: * do z)).

The objects x, y and z are called an iteration variable, iteration structure specifier and body in $[\![e_l]\!]$. The element e_l executes sequentially z for values of x from $e_{l,1}$, where $e_{l,1}$ is the value of y.

The element (foreach1 x in y do z) is defined by the rules (rule (foreach1 x in () do y) var (x) seq (y) abn then); (rule (foreach1 x in (y z) do v) var (x, y) seq (z, v) abn then (let x be y in v), (foreach1 x in (z) do v)).

5.4. Characteristic functions for defined concepts

An object $d_{f.c}$ is a concept definition if $d_{f.c}$ is an atomic transition relation of the form (transition n_m if $(e_{l.1} is e_{l.2})$ var $(v_{r.*})$ seq $(v_{r.s.*})$ then f_n), or $d_{f.c}$ is a transition rule of the form (rule n_m if $(e_{l.1} is e_{l.2})$ var $(v_{r.*})$ seq $(v_{r.s.*})$ then b_d). Concept definitions specify concepts and their instances. Concepts specified by them are called defined concepts. The elements $e_{l.1}$ and $e_{l.2}$ are called an instance pattern and concept pattern in $[d_{f.c}]$. The element $(e_{l.1} is e_{l.2})$ is called a characteristic function in $[d_{f.c}]$. Let $D_{f.c}$ be a set of concept definitions.

An element $c_{ncp.d}$ is a defined concept in $[d_{f.c}, s_b]$ if c_{ncp} is an instance in $[(e_{l.2}, var (v_{r.*}) seq (v_{r.s.*})), m_t, s_b]$. An element $c_{ncp.d}$ is a defined concept in $[d_{f.c}]$ if there exists s_b such that $c_{ncp.d}$ is a concept in $[d_{f.c}, s_b]$. An element $c_{ncp.d}$ is a defined concept in $[c_{nf}]$ if there exists $d_{f.c}[c_{nf}]$ such that $c_{ncp.d}$ is a concept in $[d_{f.c}]$. Let $C_{ncp.d}$ be a set of defined concepts.

An element i_{nstn} is an instance in $[\![d_{f.c}, s_b]\!]$ if i_{nstn} is an instance in $[\![(e_{l.1}, var(v_{r.*}) seq(v_{r.s.*}))]$, $m_t, s_b]\!]$. An element i_{nstn} is an instance in $[\![d_{f.c}]\!]$ if there exists s_b such that $c_{ncp.d}$ is an instance in $[\![d_{f.c}, s_b]\!]$.

An element i_{nstn} is an instance in $[c_{ncp.d}, c_{nf}, d_{f.c}]$ if i_{nstn} is an instance in $[d_{f.c}]$, $c_{ncp.d}$ is a defined concept in $[d_{f.c}]$, and there exist $c_{nf.1}$ and v_l such that (execute-exogenous-transition, $(i_{nstn} \ is \ c_{ncp.d}), \ (n_m)$) $\# \ c_{nf} \rightarrow^* \# v_l \# \ c_{nf.1}$, and $v_l \neq und$. An element i_{nstn} is an instance in $[c_{ncp.d}, c_{nf}]$ if there exists $d_{f.c}$ such that i_{nstn} is an instance in $[c_{ncp.d}, c_{nf}, d_{f.c}]$. An element $c_{ncp.d}$ is an instance in $[c_{ncp.d}, c_{nf}]$ if there exists $c_{ncp.d}$ such that i_{nstn} is an instance in $[c_{ncp.d}, c_{nf}, d_{f.c}]$. An element $c_{ncp.d}$ is an instance in $[c_{ncp.d}, c_{nf}]$ if there exists $c_{ncp.d}$ such that i_{nstn} is an instance in $[c_{ncp.d}, c_{nf}]$. Let I_{nstn} be a set of instances.

A set s_t is called a content in $[[c_{ncp.d}, c_{nf}]]$ if s_t is a set of all i_{nstn} such that i_{nstn} is an instance in $[[c_{ncp.d}, c_{nf}]]$. Let $[content \ c_{ncp.d} \ c_{nf}]$ denote the content in $[[c_{ncp.d}, c_{nf}]]$.

The notion of defined concepts is extended to the rules of the form (rule $(e_{l,1} is e_{l,2}) var(v_{r,*})$ seq $(v_{r,s,*})$ und $(v_{r,*,1}) val(v_{r,*,3})$ where c_{nd} then b_d). Let r_l have this form. An element $c_{ncp,d}$ is a defined concept in $[r_l, s_b]$ if $c_{ncp,d}$ is a defined concept in $[r_{l,1}, s_b]$, where $r_{l,1}$ is a rule of the form (rule $(e_{l,1} is e_{l,2}) var(v_{r,*}) seq(v_{r,s,*})$ then $b_{d,1}$) such that r_l is reduced to $r_{l,1}$.

The element (x is atom) specifying that x is an atom is defined by the rule $(rule \ (x \text{ is atom}) \ var \ (x) \ abn \ then \ (x \text{ is atom}) :: value).$

The element (x is update) specifying that x is an element update is defined by the rule $(rule \ (x \text{ is update}) \ var \ (x) \ abn \ then \ (x \ is \ update) :: value).$

The element (x is multi-attribute) specifying that x is a multi-attribute element is defined by the rule

(rule (x is multi-attribute) var (x) abn then (x is multi-attribute) :: value).

The element (x is attribute) specifying that x is an attribute element is defined by the rule (rule (x is attribute) var (x) abn then (x is attribute) :: value).

The element (x is sorted) specifying that x is a sorted element is defined by the rule $(rule \ (x \text{ is sorted}) \ var \ (x) \ abn \ then \ (x \ is \ sorted) :: value).$

The element (x is undefined) specifying that x equals und is defined by the rule (rule (x is undefined) var (x) abn then (x is undefined) :: value).

The element (x is defined) specifying that x does not equal und is defined by the rule $(rule \ (x \text{ is defined}) \ var \ (x) \ abn \ then \ (x \ is \ defined) :: value).$

The element (x is exception) specifying that x is an exception is defined by the rule $(rule \ (x \text{ is exception}) \ var \ (x) \ abn \ then \ (x \ is \ exception) :: value).$

The element (x is normal) specifying that x is a normal element is defined by the rule $(rule \ (x \text{ is normal}) \ var \ (x) \ abn \ then \ (x \ is \ normal) :: value.$

The element (x is normal) specifying that x is an abnormal element is defined by the rule $(rule \ (x \text{ is abnormal}) \ var \ (x) \ abn \ then \ (x \ is \ abnormal) :: value.$

The element (x is sequence) specifying that x is a sequence element is defined by the rule $(rule \ (x \text{ is sequence}) \ var \ (x) \ abn \ then \ (x \ is \ sequence) :: value).$

The element (x is set) specifying that the elements of the sequence element x are pairwise distinct is defined as follows:

(rule (x is set) var (x) abn then (x is set) :: value).

The element (x is empty) specifying that x is an empty element is defined by the rule $(rule \ (x \text{ is empty}) \ var \ (x) \ abn \ then \ (x \ is \ empty) :: value).$

The element (x is nonempty) specifying that x is not an empty element is defined by the rule

(rule (x is nonempty) var (x) abn then (x is nonempty) :: value).

The element (x is conceptual) specifying that x is a conceptual is defined by the rule (rule (x is conceptual) var (x) abn then (x is conceptual) :: value).

The element (x is (conceptual in y)) specifying that x is a conceptual in the context of the state y is defined by the rule

(rule (x is (conceptual in y)) var (x, y) abn then (x is (conceptual in y)) :: value.

The element (x is state) specifying that x is a conceptual state is defined by the rule $(rule \ (x \text{ is state}) \ var \ (x) \ abn \ then \ (x \ is \ state) :: value).$

The element (x is configuration) specifying that x is a conceptual configuration is defined by the rule

(rule (x is configuration) var (x) abn then (x is configuration) :: value).

The element (x is nat) specifying that x is a natural number is defined by the rule $(rule \ (x \text{ is } nat) \ var \ (x) \ abn \ then \ (x \ is \ nat) :: value).$

The element (x is nat0) specifying that x is either a natural number, or a zero is defined by the rule

(rule (x is nat0) var (x) abn then (x is nat0) :: value).

The element (x is int) specifying that x is an integer is defined by the rule

(rule (x is int) var (x) abn then (x is int) :: value).

The element (x is (satisfiable in y)) specifying that x is satisfiable in the context of variables y is defined by the rule

(rule (x is (satisfiable in y)) var (x) seq (y) abn

then (x is (satisfiable in (y))) :: value).

The element (x is (valid in y)) specifying that x is valid in the context of variables y is defined by the rule

(rule (x is (valid in y)) var (x) seq (y) abn then (x is (valid in (y))) :: value).

The element (x is (sequence y)) specifying that x is a sequence element such that the value in $[\![(e_l \text{ is } y)]\!]$ does not equal und for each element e_l of x is defined by the rule (rule ((x y) is (sequence z)) var (x, z) seq (y) abn then $((x \text{ is } z) \text{ and } ((y) \text{ is } (sequence \ z)));$

(rule (() is (sequence x)) var (x) abn then true).

The element (x is rule) specifying that x is a rule is defined as follows:

(rule (x is rule) var (x) abn then (x is rule) :: value);

(interpretation (x is rule) var (x) then f_n),

where $[f_n \ s_b] = [if \ [x_0 \in R_l] \ then \ true \ else \ und].$

The element (x is (rule in y)) specifying that x is a rule in the context of the state y is defined as follows:

(rule (x is (rule in y)) var (x, y) abn then (x is (rule in y)) :: value); (definition (x is (rule in y)) var (x, y) where ((x is rule) and (y is state)) then (x is conceptual in y) :: atm); (interpretation (x is (conceptual in y)) :: atm var (x, y) then f_n), where $[f_n s_b] = [if [x_0 \in R_l[y_0]]$ then true else und].

The element (x is transition) specifying that x is a transition is defined as follows: (rule (x is transition) var (x) abn then (x is transition) :: value); (interpretation (x is transition) var (x) then f_n), where $[f_n s_b] = [if [x_0 \in T_{rn}]$ then true else und].

5.5. Elements operations

The element () is defined by the rule

(rule () abn then () :: q).

The element (len x) specifying the length of the element x is defined by the rule

(rule (len x) var (x) val (x) abn then (len x :: * :: q) :: value).

The element (x = y) specifying the equality of the elements x and y is defined by the rule $(rule \ (x = y) \ var \ (x, y) \ val \ (x, y) \ abn \ then \ (x :: * :: q = y :: * :: q) :: value).$

The element $(x \mid = y)$ specifying the inequality of the elements x and y is defined in the similar way.

The element $(x \cdot y)$ specifying the y-th element of the sequence element x is defined by the rule

(rule $(x ext{ . } y)$ var $(x, ext{ } y)$ val $(x, ext{ } y)$ abn then $(x ext{ } :: * :: q ext{ } y ext{ } :: * :: q) ext{ } :: value)$.

The element $(x \dots y)$ specifying the value of the attribute element x for the attribute y is defined by the rule

 $(rule \ (x \ .. \ y) \ var \ (x, \ y) \ val \ (x) \ abn \ then \ (x :: * :: q \ .. \ y) :: value).$

The element (x + y) specifying the concatenation of the sequence elements x and y is defined by the rule

(rule (x + y) var (x, y) val (x, y) abn then (x :: * :: q + y :: * :: q) :: value).

The element (x + y) specifying the addition of the element x to the head of the sequence element y is defined by the rule

(rule (x + y) var (x, y) val (x, y) abn then (x :: * :: q + y :: * :: q) :: value).

The element (x + :: set y) specifying the addition of the element x to the head of the sequence element y representing a set is defined as follows:

(rule (x .+ :: set y) var (x, y) val (x, y) abn where (y :: * is set)then (x :: * :: q .+ :: set y :: * :: q) :: value).

The element (x + . y) specifying the addition of the element y to the tail of the sequence element x is defined by the rule

(rule (x + . y) var (x, y) val (x, y) abn then (x :: * :: q + . y :: * :: q) :: value).

The element (x + . :: set y) specifying the addition of the element y to the tail of the sequence element x representing a set is defined by the rule

(rule (x + ... set y) var (x, y) val (x, y) abn where (x ... * is set) then (x ... * ... q + ... set y ... * ... q) ... abn).

The element (x - . :: set y) specifying the deletion of the element y from the sequence element x representing a set is defined by the rule

(rule (x - . :: set y) var (x, y) val (x, y) abn where (x :: * is set)then (x :: * :: q - . :: set y :: * :: q) :: value).

The element $(upd \ x \ y_1 : z_1, ..., y_{n_t} : z_{n_t})$ specifying the sequential updates of the attribute element x at the points $y_1, ..., y_{n_t}$ by $z_1, ..., z_{n_t}$ is defined by the rules

(rule (upd x y) var (x) seq (y) val (x) abn

where ((x :: * is attribute) and ((y) is (sequence update))) then (upd :: att x :: * y));

(rule (upd :: att x y z) var (y) seq (z) und (x) abn

then (upd :: att (upd1 :: att x y) z));

(rule (upd :: att x) var (x) then x);

(rule (upd1 :: att x y : z) var (x, y, z) val (z) abn

then $(upd1 :: att \ x \ y : z :: * :: q) :: value)$.

The element $(upd \ x \ y : z)$ specifying the update of the sequence element x at the index y by z is defined by the rule

(rule (upd x y z) var (x, y, z) val (x, y, z) abn

then $(upd :: seq \ x :: * :: q \ y :: * :: q \ z :: * :: q) :: value)$.

The element (x in :: set y) specifying that x is an element of the sequence element y is defined as follows:

(rule (x in :: set y) var (x, y) val (x, y) abn then (x in :: set y) :: value).

The element (x includes :: set y) specifying that the sequence element x includes the elements of the sequence element y is defined as follows:

(rule (x includes :: set y) var (x, y) val (x, y) abn then (x includes :: set y) :: value).

The element (*attributes in x*) specifying the sequence of attributes of the attribute element x is defined by the rule

(rule (attributes in x) var (x) abn then (attributes in x) :: value).

The element (values in x) specifying the sequence of attribute values of the attribute element x is defined by the rule

(rule (values in x) var (x) abn then (values in x) :: value).

The element (element in x) specifying the element of the sorted element x is defined by the rule

(rule (element in x) var (x) abn then (element in x) :: value).

The element (sort in x) specifying the sort of the sorted element x is defined by the rule (rule (sort in x) var (x) abn then (sort in x) :: value).

The element (*attribute in x*) specifying the attribute of the element update x is defined by the rule

(rule (attribute in x) var (x) abn then (attribute in x) :: value).

The element (value in x) specifying the value of the element update x is defined by the rule (rule (value in x) var (x) abn then (value in x) :: value).

The element (unbracket (x)) is defined by the rule

(rule (unbracket (x)) seq (x) abn then x).

5.6. Boolean operations

The element *true* is defined by the rule: (*rule true abn then true* :: *value*). The element (x and y) specifying the conjunction of x and y is defined by the rule:

(rule (x and y) var (x, y) abn then (if x then y else und)).

The elements $(x \ o_p \ y)$, where $o_p \in \{or, =>, <=>\}$ specifying the disjunction, implication and equivalence of x and y are defined in the similar way.

The element $(x_1 \text{ and } x_2 \text{ and } \dots \text{ and } x_{n_t})$ specifying the conjunction of x_1, x_2, \dots, x_{n_t} is defined by the rule

(rule (x and y and z) var (x, y) seq (z) abn then ((x and y) and z).

The element $(x_1 \text{ or } x_2 \text{ or } \dots \text{ or } x_{n_t})$ specifying the disjunction of x_1, x_2, \dots, x_{n_t} is defined in the similar way.

The element (not x) specifying the negation of x is defined by the rule (rule (not x) var (x) abn then (if x then und else true)).

5.7. Integers

The element i_{nt} is defined by the rule

(rule x var (x) abn where (x is int) then x :: q) :: name :: ("@", int).

The rule satisfies the property: ("@", exception) $\prec_{[\![o_{rd.trn.ex}]\!]}$ ("@", int).

The element (x + y) specifying the sum of x and y is defined by the rule (rule (x + y) var (x, y) val (x, y) abn then (x :: * :: q + y :: * :: q) :: value).

The elements $(x \ o_p \ y)$, where $o_p \in \{-, *, div, mod\}$, specifying the integer operations -, *, div and mod, are defined in the similar way.

The element (x < y) specifying that x is less than y is defined by the rule (rule (x < y) var (x, y) val (x, y) abn then (x :: * :: q < y :: * :: q) :: value).

The elements $(x \ o_p \ y)$, where $o_p \in \{<=, >, >=\}$, specifying the integer relations $\leq, >$ and

 \geq , are defined in the similar way.

5.8. Conceptuals operations

The element (x in y) specifying the value of the conceptual x in the state y is defined by the rule

(rule (x in y) var (x, y) about then (x in y) :: value).

The element x :: state :: y specifying the value of the conceptual x in the substate with the name y of the current configuration is defined by the rule

(rule x :: state :: y var(x, y) abn then (x :: state :: y) :: value).

The element c_{ncpl} is a shortcut for $c_{ncpl} :: ()$.

The assignment $(c_{ncpl} :: state :: n_m ::= e_l)$ of e_l to $c_{ncpl} :: state :: n_m$ is defined as follows: $(rule \ (x :: state :: z ::= y) \ var \ (x, y, z) \ val \ (y) \ abn \ where \ (x \ is \ conceptual)$ $then \ (x :: state :: z ::= y :: *) :: atm);$ $(transition \ (x :: state :: z ::= y) :: atm \ var \ (x, y, z) \ then \ f_n),$

where $(x_0 :: state :: z_0 ::= y_0) :: atm, e_{l,*} \# c_{nf} \rightarrow_{f_n, s_b} e_{l,*} \# [[c_{nf} z_0] x_0 : y_0].$

The element $(c_{ncpl} ::= e_l)$ is a shortcut for $(c_{ncpl} :: () ::= e_l)$. The elements $(c_{ncpl} :: state :: n_m ::=)$ and $(c_{ncpl} ::=)$ are shortcuts for $(c_{ncpl} :: state :: n_m ::= und)$ and $(c_{ncpl} ::= und)$.

5.9. Countable concepts operations

A normal element $c_{ncp.c}$ is a countable concept in $[\![c_{nf}]\!]$ if $[\![c_{nf} \ countable-concept]\ (0 : c_{ncp.c})] \in N_t$. Thus, the substate countable-concept specifies countable concepts. Let $C_{ncp.c}$ be a set of countable concepts. The element $[\![c_{nf} \ countable-concept]\ (0 : c_{ncp.c})]$ is called an order in $[\![c_{ncp.c}, c_{nf}]\!]$. Let $O_{rd.cncp.c}$ be a set of orders of countable concepts. An element $n_t :: cc :: c_{ncp.c}$ is called an instance in $[\![c_{ncp.c}, c_{nf}]\!]$. An element $n_t :: cc :: c_{ncp.c}$ is an instance in $[\![c_{ncp.c}, c_{nf}]\!]$ if $n_t \leq o_{rd.cncp.c}[\![c_{ncp.c}, c_{nf}]\!]$.

The element (x is countable-concept) specifying that x is a countable concept is defined as follows:

(rule (x is countable-concept) var (x) abn then (x is countable-concept) :: value).

The element $n_t :: cc :: c_{ncp.c}$ is defined by the rule:

(rule x :: cc :: y var (x, y) abn then x :: cc :: y :: value).

Let c_{ncpl} denote (0 : x) :: countable-concept. The element (new x) called an instance generator generates a new instance of the countable concept x and adds this concept if it was not. It is defined as follows:

(rule (new x) var (x) abn then (new x) :: atm);

 $(transition (new x) :: atm var (x) then f_n),$

where $(new \ x_0) :: atm, e_{l,*} \ \# \ c_{nf} \rightarrow_{f_n, s_b} (let \ w \ be \ c_{ncpl} \ in \ (if \ (w \ is \ int) \ then \ (seq \ (c_{ncpl} \ ::= (w+1)), \ (let \ w1 \ be \ (w+1) \ in \ w1 :: x :: cc)) \ else \ (seq \ (c_{ncpl} \ ::= 1), \ 1 :: x :: cc))), \ e_{l,*} \ \# \ c_{nf}.$

5.10. Matching operations

The conditional pattern matching element e_l of the form (*if x matches y var z seq u then v* else w), where (y, z, u) is a pattern specification, is defined as follows:

(rule (if x matches y var z seq u then v else w) var (x, y, z, u) seq (v, w) abn
where ((z is sequence) and (u is sequence) and (z includes :: set u))
then (if x matches y var z seq u then v else w) :: atm);
(transition (if x matches y var z seq u then v else w) :: atm

var (x, y, z, u, v, w) then f_n),

where $(if \ x_0 \ matches \ y_0 \ var \ z_0 \ seq \ u_0 \ then \ v_0 \ else \ w_0) :: atm, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} [if \ [x_0 \ is an instance in \ [[(y_0, z_0, u_0), m_t, s_{b.1}]] \ for some \ s_{b.1}] \ then \ [subst \ s_{b.1} \cup (conf \ :: \ in \ : \ c_{nf}, val \ :: \ in \ : \ v_l[[c_{nf}]]) \ v_0] \ else \ [subst \ (conf \ :: \ in \ : \ c_{nf}, val \ :: \ in \ : \ v_l[[c_{nf}]]) \ w_0], \ e_{l.*} \ \# \ c_{nf}.$ The objects x, y, z, u, v and w are called a matched element, pattern, variable specification, sequence variable specification, then-branch and else-branch in \ [[e_l]]. The elements of z are called pattern variables in \ [[e_l]]. The element \ e_l executes the instance of the then-branch v in \ [[s_{b.1}]] if x is an instance in \ [[y, s_{b.1}]]. Otherwise, the element \ e_l executes the else-branch w.

Let $\{v_{r,*}\}$, $\{v_{r,s,*}\}$, $\{v_{r,*,1}\}$ and $\{v_{r,*,2}\}$ are pairwise disjoint, and $\{v_{r,*,3}\} \subseteq \{v_{r,*}\} \cup \{v_{r,*,1}\} \cup \{v_{r,*,2}\}$. The form (*if* e_l matches p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ abn $(v_{r,*,1})$ und $(v_{r,*,2})$ val $(v_{r,*,3})$ where c_{nd} then $e_{l,1}$ else $e_{l,2}$) is defined as follows:

- (if e_l matches p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und $(v_{r,*,1})$ abn $(v_{r,*,2})$ val $(v_{r,*,3})$ where c_{nd} then $e_{l,1}$ else $e_{l,2}$) is a shortcut for (if e_l matches p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ abn $(v_{r,*,1})$ und $(v_{r,*,2})$ val $(v_{r,*,3})$ then (if c_{nd} then $e_{l,1}$ else $e_{l,2}$:: (nosubstexcept conf :: in, val :: in)) else $e_{l,2}$);
- (if e_l matches p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und $(v_{r,*,1})$ abn $(v_{r,*,2})$ val $(v_{r,*,3}, v_r)$ then $e_{l,1}$ else $e_{l,2}$) is a shortcut for (if e_l matches p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und $(v_{r,*,1})$ abn $(v_{r,*,2})$ val $(v_{r,*,3})$ then (let w be v_r in [subst $(v_r :: *: w) e_{l,1}$]) else $e_{l,2}$), where w is a new element that does not occur in this definition;
- (if e_l matches p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und $(v_{r,*,1})$ abn $(v_{r,*,2})$ val () then $e_{l,1}$ else $e_{l,2}$) is a shortcut for (if e_l matches p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und $(v_{r,*,1})$ abn $(v_{r,*,2})$ then $e_{l,1}$ else $e_{l,2}$);
- (if e_l matches p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und $(v_{r,*,1}, v_r)$ abn $(v_{r,*,2})$ then b_d) is a shortcut for (if e_l matches p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und $(v_{r,*,1})$ abn $(v_{r,*,2})$ then (if $(v_r \text{ is undefined})$ then und else $e_{l,1}$) else $e_{l,2}$);
- (if e_l matches p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ und () abn $(v_{r,*,2})$ then $e_{l,1}$ else $e_{l,2}$) is a shortcut for (if e_l matches p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ abn $(v_{r,*,2})$ then $e_{l,1}$ else $e_{l,2}$);
- (if e_l matches p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ abn $(v_{r,*,2}, v_r)$ then $e_{l,1}$ else $e_{l,2}$) is a shortcut for (if e_l matches p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ abn $(v_{r,*,2})$ then (if $(v_r \text{ is abnormal})$ then v_r else

 $e_{l.1}$) else $e_{l.2}$);

• (if e_l matches p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ abn () then $e_{l,1}$ else $e_{l,2}$) is a shortcut for (if e_l matches p_t var $(v_{r,*})$ seq $(v_{r,s,*})$ then $e_{l,1}$ else $e_{l,2}$).

The element c_{nd} specifies the restriction on the values of the pattern variables. The undefined value is propagated through the variables of $v_{r,*,1}$. Abnormal values are propagated through the variables of $v_{r,*,2}$. The special element $v_r ::$ * references to the value of element associated with the pattern variable v_r . A pattern variable is evaluated if the element associated with it is evaluated. Thus, the sequence $v_{r,*,3}$ contains evaluated pattern variables. A pattern variable is quoted if the element associated with it is not evaluated.

The objects $var(v_{r,*})$, $seq(v_{r,s,*})$, $und(v_{r,*,1})$, $abn(v_{r,*,2})$, $val(v_{r,*,3})$, where c_{nd} and $else e_{l,2}$ in this form can be omitted. The omitted objects correspond to var(), seq(), und(), abn(), val(), where true and else skip, respectively.

The form $(e_l \ matches \ p_t \ var \ (v_{r,*}) \ seq \ (v_{r,s,*}) \ und \ (v_{r,*,1}) \ abn \ (v_{r,*,2}) \ val \ (v_{r,*,3}) \ where \ c_{nd})$ is a shortcut for $(if \ e_l \ matches \ p_t \ var \ (v_{r,*}) \ seq \ (v_{r,s,*}) \ und \ (v_{r,*,1}) \ abn \ (v_{r,*,2}) \ val \ (v_{r,*,3}) \ where \ c_{nd}$ then true else und). The objects $var \ (v_{r,*}), \ seq \ (v_{r,s,*}), \ und \ (v_{r,*,1}), \ abn \ (v_{r,*,2}), \ val \ (v_{r,*,3}) \ and$ where c_{nd} in this form can be omitted. The omitted objects correspond to $var \ (), \ seq \ (), \ und \ (), \ abn \ (), \ val \ () \ and \ where \ true, \ respectively.$

5.11. Interpretations operations

The element (x is definition - form) specifying that x is a definition form is defined as follows:

(rule (x is definition-form) var (x) abn then (x is definition-form) :: value); (transition (x is definition-form) var (x) then f_n), where $[f_n s_b] = [if [x_0 \in F_{rm.d}]$ then true else und].

The element $f_{rm.d}$:: name :: n_m specifying a definition with the name n_m is defined as follows:

(rule $x :: name :: y \ var \ (x, \ y)$ abn where (x is definition-form)

then x ::: name :: y ::: atm :: definition);

 $(transition \ x :: name :: y :: atm :: definition \ var \ (x, \ y) \ then \ f_n),$

where

• if $y_0 \in [support \ [c_{nf} \ (0 : definitions) :: state :: interpretation]] \cup [support \ i_{ntr.a.s}]$, then $x_0 :: name :: y_0 :: atm :: definition, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n, s_b} e_{l.*} \ \# \ und \ \# \ c_{nf};$ • if $y_0 \notin [support \ [c_{nf} \ (0 : definitions) ::: state :: interpretation]] \cup [support \ i_{ntr.a.s}],$ and x_0 is reduced to d_f , then $x_0 ::: name ::: y_0 ::: atm :: definition, \ e_{l.*} \# \ c_{nf} \to_{f_n, s_b} e_{l.*} \# \ [c_{nf} \ interpretation.(0 : definitions).y_0 : d_f].$

The element (add-interpretation x) adding the interpretation with the name x is defined as follows:

(rule (add-interpretation x) var (x) abn then (add-interpretation x) :: atm); (transition (add-interpretation x) :: atm var (x) then f_n), where

- if $x_0 \in [support \ [c_{nf} \ (0 : definitions) :: state :: interpretation]] \cup [support \ i_{ntr.a.s}]$, then $(add-interpretation \ x_0) :: atm, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \ \# \ [c_{nf} \ interpretation.(0 : order) : [value \ [[c_{nf} \ (0 : order) :: state :: interpretation] :: q \ + . :: set \ x_0 :: q] \ c_{nf}]];$
- if $x_0 \notin [support \ [c_{nf} \ (0 : definitions) :: state :: interpretation]] \cup [support \ i_{ntr.a.s}]$, then (add-interpretation x_0) :: atm, $e_{l.*} \# c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \# und \# c_{nf}$.

The element $(add-interpretation \ x \ after \ y)$ adding the interpretation with the name x after the interpretation with the name y is defined as follows:

(rule $(add-interpretation \ x \ after \ y) \ var \ (x, \ y) \ abn$

then $(add-interpretation \ x \ after \ y) :: atm);$

(transition (add-interpretation x after y) :: atm var (x, y) then f_n),

where

- if $x_0 \in [support \ [c_{nf} \ (0 : definitions) :: state :: interpretation]] \cup [support \ i_{ntr.a.s}]$, and $y_0 \notin [c_{nf} \ (0 : order) :: state :: interpretation] :: q - . :: set \ x_0]$, then $(add-interpretation \ x_0) :: atm, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \ \# \ und \ \# \ c_{nf};$
- if $x_0 \in [support \ [c_{nf} \ (0 : definitions) :: state :: interpretation]] \cup [support \ i_{ntr.a.s}]$, and $[value \ [c_{nf} \ (0 : order) :: state :: interpretation] :: q \ - . :: set \ x_0] = n_{m.*.1} \ y_0 \ n_{m.*.2}$, then $(add-interpretation \ x_0) :: atm, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \ \# \ [c_{nf} \ interpretation.(0 : order) : n_{m.*.1} \ y_0 \ x_0 \ n_{m.*.2}];$
- if $x_0 \notin [support \ [c_{nf} \ (0 : definitions) :: state :: interpretation]] \cup [support \ i_{ntr.a.s}]$, then $(add-interpretation \ x_0) :: atm, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \ \# \ und \ \# \ c_{nf}.$

The element (delete-interpretation x) deleting the interpretation with the name x is defined as follows:

(rule (delete-interpretation x) var (x) abn then (delete-interpretation x) :: atm); (transition (delete-interpretation x) :: atm var (x) then f_n), where

- if $x_0 \in [support \ [c_{nf} \ (0 : definitions) ::: state ::: interpretation]] \cup [support \ i_{ntr.a.s}],$ then $(delete-interpretation \ x_0) ::: atm, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \ \# \ [c_{nf} \ interpretation.(0 : order) :: [value \ [c_{nf} \ (0 : order) :: state ::: transition] ::: q \ -. :: set \ x_0 ::: q \ c_{nf}]];$
- if $x_0 \notin [support \ [c_{nf} \ (0 : definitions) :: state :: interpretation]] \cup [support \ i_{ntr.a.s}]$, then $(delete-interpretation \ x_0) :: atm, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \ \# \ und \ \# \ c_{nf}.$

5.12. Configurations operations

The element conf :: cur specifying the current configuration is defined as follows: (*rule conf :: cur abn then conf :: cur :: value*).

The element val :: cur specifying the value in the current configuration is defined as follows: (rule val :: cur abn then val :: cur :: value);(definition val :: cur then val :: cur :: value);(interpretation $val :: cur then f_n),$ where $[f_n s_b] = v_l [\![c_{nf}]\!].$

5.13. Transitions operations

The element (x is rule-form) specifying that x is a rule form is defined as follows: $(rule \ (x \text{ is } rule-form) \ var \ (x) \ abn \ then \ (x \text{ is } rule-form) :: value);$ $(transition \ (x \text{ is } rule-form) \ var \ (x) \ then \ f_n),$ where $[f_n \ s_b] = [if \ [x_0 \in F_{rm.r}] \ then \ true \ else \ und].$

The element $f_{rm.r}$:: name :: n_m specifying a rule with the name n_m is defined as follows: (rule x :: name :: y var (x, y) abn where (x is rule-form)

then x :: name :: y :: atm :: rule);

 $(transition \ x :: name :: y :: atm :: rule \ var \ (x, \ y) \ then \ f_n),$

where

- if $y_0 \in [support \ [c_{nf} \ (0 : rules) :: state :: transition]] \cup [support \ t_{rn.rlt.ex.s}] \cup [support \ t_{rn.rlt.ex.s}]$, then $x_0 :: name :: y_0 :: atm :: rule, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \ \# \ und \ \# \ c_{nf};$
- if $y_0 \notin [support \ [c_{nf} \ (0 : rules) ::: state :: transition]] \cup [support \ t_{rn.rlt.ex.s}] \cup [support \ t_{rn.rlt.ex.s}]$, and x_0 is reduced to r_l , then $x_0 :: name :: y_0 :: atm :: rule, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \ \# \ [c_{nf} \ transition.(0 : rules).y_0 : r_l].$

The element (add-transition x) adding the transition with the name x is defined as follows:

(rule (add-transition x) var (x) abn then (add-transition x) :: atm); (transition (add-transition x) :: atm var (x) then f_n), where

- if $x_0 \in [support \ [c_{nf} \ (0 : rules) :: state :: transition]] \cup [support \ t_{rn.rlt.ex.s}]$, then $(add-transition \ x_0) :: atm, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \ \# \ [c_{nf} \ transition.(-1 : exogenous, 0 : order) : [value \ [[c_{nf} \ (-1 : exogenous, 0 : order) :: state :: transition] :: q + . :: set \ x_0 :: q] \ c_{nf}]];$
- if $x_0 \in [support \ t_{rn.rlt.en.s}]$, then $(add-transition \ x_0) :: atm, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \ \# \ [c_{nf} \ transition.(-1 : endogenous, 0 : order) : [value [[c_{nf} \ (-1 : endogenous, 0 : order) :: state :: transition] :: q \ + . :: set \ x_0 :: q] \ c_{nf}]];$
- if $x_0 \notin [support \ [c_{nf} \ (0 : rules) ::: state :: transition]] \cup [support \ t_{rn.rlt.ex.s}] \cup [support \ t_{rn.rlt.ex.s}]$, then $(add-transition \ x_0) ::: atm, \ e_{l.*} \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \# \ und \ \# \ c_{nf}.$

The element $(add-transition \ x \ after \ y)$ adding the transition with the name x after the transition with the name y is defined as follows:

(rule (add-transition x after y) var (x, y) abn

then $(add-transition \ x \ after \ y) :: atm);$

(transition (add-transition x after y) :: atm var (x, y) then f_n),

where

- if $x_0 \in [support \ [c_{nf} \ (0 : rules) :: state :: transition]] \cup [support \ t_{rn.rlt.ex.s}]$, and $y_0 \notin [c_{nf} \ (-1 : exogenous, 0 : order) :: state :: transition] :: <math>q \ldots : set \ x_0]$, then $(add-transition \ x_0) :: atm, \ e_{l.*} \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \# und \# \ c_{nf};$
- if $x_0 \in [support \ [c_{nf} \ (0 : rules) :: state :: transition]] \cup [support \ t_{rn.rlt.ex.s}]$, and $[value \ [c_{nf} \ (-1 : exogenous, 0 : order) :: state :: transition] :: q . :: set \ x_0] = n_{m.*.1} \ y_0 \ n_{m.*.2}$, then $(add-transition \ x_0) :: atm, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \ \# \ [c_{nf} \ transition.(-1 : exogenous, 0 : order) : n_{m.*.1} \ y_0 \ x_0 \ n_{m.*.2}];$
- if $x_0 \in [support \ t_{rn.rlt.en.s}]$, and $y_0 \notin [c_{nf} \ (-1 : endogenous, 0 : order) :: state :: transition] :: <math>q \ldots$:: set x_0], then $(add-transition \ x_0)$:: $atm, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \ \# \ und \ \# \ c_{nf};$
- if $x_0 \in [support \ t_{rn.rlt.en.s}]$, and $[value \ [c_{nf} \ (-1 : endogenous, 0 : order) :: state :: transition] :: <math>q . :: set \ x_0] = n_{m.*.1} \ y_0 \ n_{m.*.2}$, then $(add-transition \ x_0) :: atm, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \ \# \ [c_{nf} \ transition.(-1 : endogenous, 0 : order) : n_{m.*.1} \ y_0 \ x_0 \ n_{m.*.2}];$
- if $x_0 \notin [support \ [c_{nf} \ (0 : rules) :: state :: transition]] \cup [support \ t_{rn.rlt.ex.s}] \cup [support \ support \ t_{rn.rlt.ex.s}] \cup [support \ t_$

 $t_{rn.rlt.en.s}$], then $(add-transition x_0) :: atm, e_{l.*} \# c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \# und \# c_{nf}$.

The element (delete-transition x) deleting the transition with the name x is defined as follows:

(rule (delete-transition x) var (x) abn then (delete-transition x) :: atm); (transition (delete-transition x) :: atm var (x) then f_n),

where

- if $x_0 \in [support \ [c_{nf} \ (0 : rules) ::: state ::: transition]] \cup [support \ t_{rn.rlt.ex.s}]$, then $(delete-transition \ x_0) ::: atm, \ e_{l.*} \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \# \ [c_{nf} \ transition.(-1 : exogenous, 0 : order) :: [value \ [c_{nf} \ (-1 : exogenous, 0 : order) :: state ::: transition] :: q \ -. :: set \ x_0 :: q \ c_{nf}]];$
- if $x_0 \in [support \ t_{rn.rlt.en.s}]$, then $(delete-transition \ x_0) :: atm, \ e_{l.*} \ \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \ \# \ [c_{nf} \ transition.(-1 : endogenous, 0 : order) : [value \ [c_{nf} \ (-1 : endogenous, 0 : order) :: state :: transition] :: q \ -. :: set \ x_0 :: q \ c_{nf}]];$
- if $x_0 \notin [support \ [c_{nf} \ (0 : rules) :: state :: transition]] \cup [support \ t_{rn.rlt.ex.s}] \cup [support \ t_{rn.rlt.ex.s}]$, then $(delete-transition \ x_0) :: atm, \ e_{l.*} \# \ c_{nf} \rightarrow_{f_n,s_b} e_{l.*} \# \ und \ \# \ c_{nf}.$

The element e_l of the form $(modify \ x)$ or $(modify :: n \ x)$ is defined as follows:

(rule (modify x) var (x) then (modify x) :: atm);

- (rule (modify :: n x) var (x) abn then (modify x) :: atm);
- $(transition (modify x) :: atm var (x) then f_n),$

where $(modify \ x_0) :: atm, e_{l,*} \ \# \ v_l \ \# \ c_{nf} \to_{f_n,s_b} e_{l,*} \ \# \ [if \ [there exists \ c_{nf.1} \ such that \ [value [subst (conf :: in : c_{nf}, val :: in : v_l[[c_{nf}]], conf :: out : c_{nf.1}, val :: out : v_l[[c_{nf.1}]]) \ x_0] \ c_{nf}] \ \neq und] \ then \ v_l \ \# \ c_{nf.1} \ else \ und \ \# \ c_{nf}].$ The element x is called a transition condition in $[[e_l]]$. It specifies the set of configurations reachable from c_{nf} for one transition. The elements conf :: in and conf :: out reference to the input state and the output state, and the elements val :: in and val :: out reference to values in these states.

- \bigoplus The execution of the element (modify (((-1: value, 0: x, 1: variable) inconf :: out) =
 - 0)) initiates the transition to a state in which the value of the variable x equals to 0.
- \bigoplus The execution of the element (modify (((-1: value, 0: x, 1: variable) = "green") and (((-1: value, 0: x, 1: variable) in conf :: out) = "red"))) initiates the transition from a state in which the value of the variable x equals to "green" to a state in which the variable x equals to "red".

The element e_l of the form (modify-exist (x) y) or (modify-exist :: n (x) y) is defined as follows:

(rule (modify-exist (x) y) var (y) seq (x) then (modify-exist (x) y) :: atm); (rule (modify-exist :: n (x) y) var (y) seq (x) abn then (modify-exist (x) y) :: atm); (transition (modify-exist (x) y) :: atm var (y) seq (x) then f_n), where (modify-exist (x₀) y₀) :: atm, $e_{l,*} \# v_l \# c_{nf} \rightarrow_{f_n,s_b} e_{l,*} \# [if [there exists <math>c_{nf,1}$ such that [[subst (conf :: in : c_{nf} , val :: in : $v_l[[c_{nf}]]$, conf :: out : $c_{nf,1}$, val :: out : $v_l[[c_{nf,1}]]$) y₀] is satisfiable in ((x₀), c_{nf})] then $v_l \# c_{nf,1}$ else und $\# c_{nf}$]. The element y is called a transition condition in $[[e_l]]$. The elements of x are called existential variables in $[[e_l]]$.

5.14. Safety operations

The element e_l of the form (assert x) or (assert :: n x) is defined as follows:

(rule (assert x) var (x) then (assert x) :: atm);

(rule (assert x :: n) var (x) abn then (assert x) :: atm);

 $(transition (assert x) :: atm var (x) then f_n),$

where $(assert x_0) :: atm, e_{l,*} \# v_l \# c_{nf} \to_{f_n,s_b} e_{l,*} \# [if [[value [subst (conf :: inc_{nf}, val :: in : v_l) x_0] c_{nf}] \neq und] then v_l else und] \# c_{nf}$. The element x is called a safety condition in $[e_l]$.

5.15. Branching operations

The element e_l of the form (branching x) is defined as follows:

(rule (branching x) seq (x) abn then (branching x) :: atm);

 $(transition (branching x) :: atm var (x) then f_n),$

where $(branching x_0) :: atm, e_{l,*} \# v_l \# c_{nf} \rightarrow_{f_n,s_b} \# (type : assume) :: exc \# [c_{nf} branching. (0 : ()) : [((x_0), c_{nf}, (e_{l,*})) . + [[c_{nf} branching] (0 : ())]]]. The elements of x are called branches in <math>[\![e_l]\!]$. The element e_l generates the branchpoint with the branches x. The exception (type : assume) :: exc specifies the failure of the execution of the current branch. The substate branching contains information about branching. The conceptual (0 : ()) :: state :: branching specifies the current sequence of branchpoints.

The endogenous transition relation specifying branching is defined as follows: $(endogenous-transition \ f_n) :: name :: branching$ where

• if $[[c_{nf} \ branching] \ (0 : ())] = (((e_{l.*.1}, \ e_l, \ e_{l.*.2}), \ c_{nf.1}, \ (e_{l.*.3})), e_{l.*}),$ then $\# \ (type : e_{l.*.2})$

assume) :: $exc \ \# \ c_{nf} \rightarrow_{branching} \ e_{l.*.3} \ \# \ [c_{nf.1} \ branching.(0:()):(((e_{l.*.1}, \ e_{l.*.2}), \ c_{nf.1}, (e_{l.*.3})), e_{l.*})];$

• if $[[c_{nf} \ branching] \ (0 : ())] = (((), \ c_{nf.1}, \ (e_{l.*.3})), e_{l.*}), \ \text{then} \ \# \ (type : assume) :: exc \ \# \ c_{nf} \rightarrow_{branching} \ \# \ (type : assume) :: exc \ \# \ [c_{nf.1} \ branching. (0 : ()) : (e_{l.*})].$

The element e_l of the form (assume x) or (assume :: n x) is defined as follows:

(rule (assume x) var (x) then (assume x) :: atm);

(rule (assume :: n x) var (x) abn then (assume x) :: atm);

 $(transition (assume x) :: atm var (x) then f_n)$,

variables in $[e_l]$.

where $(assume \ x_0) :: atm, e_{l,*} \# v_l \# c_{nf} \rightarrow_{f_n,s_b} [if [[value [subst (conf :: in : c_{nf}, val :: in : <math>v_l[[c_{nf}]]) \ x_0] \ c_{nf}] \neq und]$ then $e_{l,*} \# v_l$ else $\# (type : assume) :: exc] \# c_{nf}$. The element x is called a continuation condition in $[e_l]$. The violation of this condition initiates the failure of the execution of the current branch.

The element e_l of the form (assume-exist (x) y) or (assume-exist :: n (x) y) is defined as follows:

(rule (assume-exist (x) y) var (y) seq (x) then (assume-exist x) :: atm); (rule (assume-exist :: n (x) y) var (y) seq (x) abn then (assume-exist x) :: atm); (transition (assume-exist (x) y) :: atm var (y) seq (x) then f_n), where (assume (x₀) y₀) :: atm, $e_{l.*} \# v_l \# c_{nf} \rightarrow_{f_n,s_b} [if [[subst (conf :: in : c_{nf}, val :: in : <math>v_l[[c_{nf}]])$ y₀] is satisfiable in $[[(x_0), c_{nf}]]$ then $e_{l.*} \# v_l$ else # (type : assume) :: exc] $\# c_{nf}$. The element y is called a continuation condition in $[[e_l]]$. The elements of x are called existential

6. Justification of requirements for conceptual transition systems

In this section, we establish that CTSs meet the additional requirements stated in section 1:

- 8. The formalism must have language support. The language associated with the formalism must define syntactic representations of models of states, state objects, queries, query objects, answers and answer objects and includes the set of predefined basic query models. The CTSL language associated with CTSs defines syntactic representations of models of states, state objects, queries, query objects, answers and answer objects and includes the set of predefined basic formed basic query models.
- 9. It must model the change of the conceptual structure of states and state objects of the ITS. The change of the conceptual structure of the ITS is described by the transition relation

on conceptual configurations specifying conceptual structures of the ITS with different sets of ontological elements.

- 10. It must model the change of the content of the conceptual structure. The change of the content of the conceptual structure of the ITS is described by the transition relation on conceptual states specifying the same conceptual structure of the ITS. In fact, the distinction between requirements 9 and 10 is relative, for conceptuals allow to define classifications of ontological elements with different granularity.
- 11. It must model the transition relations of the ITS. The transition relations of the ITS are modelled by the transition relation $t_{rn,rlt}$ of the CTS.
- 12. The model of the exogenous transition relation must be extensible. The model of the exogenous transition relation of the IQS is extended by addition of transition rules.

Thus, the additional requirements are met for CTSs.

7. Conclusion

In the paper two formalisms (ITSs and CTSs) for abstract unified modelling of the artifacts of the conceptual design of information systems have been proposed by ontological elements with arbitrary conceptual granularity. The basic definitions of the theory of CTSs have been given. The language of CTSs has been defined.

We plan to use CTSs to design and prototype software systems as well as to specify operational and axiomatic semantics of programming languages. In the case of operational semantics of a programming language, CTSs model an abstract machine of the language. In the case of axiomatic semantics of a programming language, CTSs model a verification conditions generator for programs in the language.

References

- Sokolowski J., Banks C. Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains. Wiley, 2010.
- Chen P. Entity-relationship modeling: historical events, future trends, and lessons learned // Software pioneers. Springer-Verlag New York, 2002. P. 296-310.
- Anureev I.S. Formalisms for conceptual design of closed information systems // System Informatics. 2016. N 7. P. 69-148.
- 4. Gurevich Y. Abstract state machines: An Overview of the Project // Foundations of Information and Knowledge Systems. Lect. Notes Comput. Sci. 2004. Vol. 2942. P. 6-13.

 Gurevich Y. Evolving Algebras. Lipari Guide // Specification and Validation Methods. Oxford University Press, 1995. P. 9-36.